Chapter 11

a.In its simplest form the law of contiguity asserts that whatever has once formed part of a body continues to form part of it or to represent it for magical purposes; thus, by obtaining possession of the parings of a person’s nails, or the clippings of his hair, and by working magic upon them, it is held to be possible to produce on the actual human body the effects which are in reality produced on the object of the magical rite. As is clear by the well-known case of the “life index,” the current of magical power may pass in either direction; if the life of a man is supposed to be bound up with the life of a tree, so that any injury to the tree reacts on the man, it is equally believed that the death of the man will not fail to be manifest by the state of the tree. In particular this sympathetic relation is predicated of wizards or witches and their animal familiars; it is then known by the name of “repercussion.” It is not only upon parts of the body that contagious magic can be worked; anything which has been in contact with the body, such as clothes, anything which has been in part assimilated by the body, such as the remains of food, and even representations of the body or of parts of it such as footprints, &c., may be used as objects of magical rites, in order to transmit to the human being some influence, maleficent or otherwise. The contact demanded may be actual, or mediate, for in Australia it suffices to connect the magician and his patient by a thread in order that the disease may be removed. (i) The use of clothes for magical purposes gives us perhaps the clue to the widespread custom of “rag-trees”; in nearly every part of the world it is the practice to suspend wool or rags to trees associated with some spirit, or, in Christian countries, with some saint, in order to reap a benefit; similarly nails are driven into trees or images; pins are dropped into wells, stones are cast upon cairns, and missiles aimed at various holy objects; but it cannot be assumed that the same explanation lies at the root of the whole group of practices. (ii) This law may perhaps be taken as the explanation of the “couvade”; in many parts of the world relatives, and in particular the father of a new-born child, are compelled to practise various abstinences, in order that the health of the child may not be affected, membership of the same family therefore establishes a sympathetic relation. (iii) In this direct transference of qualities is exemplified another magical process, which may also be referred to the operation of the law of sympathy; it is a world-wide belief that the assimilation of food involves the transference to the eater of the qualities, or of some of them, inherent in the source of the food; a South African warrior, for example, may not eat hedgehog, because the animal is held to be cowardly and the eater would himself become a coward; on the other hand, the flesh of lions is fit meat for brave men, because they at the same time transfer its courage to themselves.b.The law of homoeopathy takes two forms. (i) The magician may proceed on the assumption that like produces like; he may, for example, take an image of wax or wood, and subject it to heat or other influences under the belief that it represents the human being against whom his malefice is directed, and that without any contact, real or pretended; so that any results produced on the image, which may be replaced by an animal or a portion of one, are equally produced in the human being. There need not even be any resemblance between the representation and the person or thing represented; a pot may serve to represent a village; hence step by step we pass from the representation to the symbol. (ii) The law of homoeopathy also manifests itself in the formulasimilia similibus curantur; the Brahman in India treated dropsy with ablutions, not in order to add to, but to subtract from, the quantity of liquid in the patient’s body. So, too, the yellow turmeric was held to be a specific for jaundice.c.Here we approach the third class of sympathetic rites; it is clear that a remedy produces the contrary, when it cures the like; conversely, like by producing like expels its contrary.

a.In its simplest form the law of contiguity asserts that whatever has once formed part of a body continues to form part of it or to represent it for magical purposes; thus, by obtaining possession of the parings of a person’s nails, or the clippings of his hair, and by working magic upon them, it is held to be possible to produce on the actual human body the effects which are in reality produced on the object of the magical rite. As is clear by the well-known case of the “life index,” the current of magical power may pass in either direction; if the life of a man is supposed to be bound up with the life of a tree, so that any injury to the tree reacts on the man, it is equally believed that the death of the man will not fail to be manifest by the state of the tree. In particular this sympathetic relation is predicated of wizards or witches and their animal familiars; it is then known by the name of “repercussion.” It is not only upon parts of the body that contagious magic can be worked; anything which has been in contact with the body, such as clothes, anything which has been in part assimilated by the body, such as the remains of food, and even representations of the body or of parts of it such as footprints, &c., may be used as objects of magical rites, in order to transmit to the human being some influence, maleficent or otherwise. The contact demanded may be actual, or mediate, for in Australia it suffices to connect the magician and his patient by a thread in order that the disease may be removed. (i) The use of clothes for magical purposes gives us perhaps the clue to the widespread custom of “rag-trees”; in nearly every part of the world it is the practice to suspend wool or rags to trees associated with some spirit, or, in Christian countries, with some saint, in order to reap a benefit; similarly nails are driven into trees or images; pins are dropped into wells, stones are cast upon cairns, and missiles aimed at various holy objects; but it cannot be assumed that the same explanation lies at the root of the whole group of practices. (ii) This law may perhaps be taken as the explanation of the “couvade”; in many parts of the world relatives, and in particular the father of a new-born child, are compelled to practise various abstinences, in order that the health of the child may not be affected, membership of the same family therefore establishes a sympathetic relation. (iii) In this direct transference of qualities is exemplified another magical process, which may also be referred to the operation of the law of sympathy; it is a world-wide belief that the assimilation of food involves the transference to the eater of the qualities, or of some of them, inherent in the source of the food; a South African warrior, for example, may not eat hedgehog, because the animal is held to be cowardly and the eater would himself become a coward; on the other hand, the flesh of lions is fit meat for brave men, because they at the same time transfer its courage to themselves.

b.The law of homoeopathy takes two forms. (i) The magician may proceed on the assumption that like produces like; he may, for example, take an image of wax or wood, and subject it to heat or other influences under the belief that it represents the human being against whom his malefice is directed, and that without any contact, real or pretended; so that any results produced on the image, which may be replaced by an animal or a portion of one, are equally produced in the human being. There need not even be any resemblance between the representation and the person or thing represented; a pot may serve to represent a village; hence step by step we pass from the representation to the symbol. (ii) The law of homoeopathy also manifests itself in the formulasimilia similibus curantur; the Brahman in India treated dropsy with ablutions, not in order to add to, but to subtract from, the quantity of liquid in the patient’s body. So, too, the yellow turmeric was held to be a specific for jaundice.

c.Here we approach the third class of sympathetic rites; it is clear that a remedy produces the contrary, when it cures the like; conversely, like by producing like expels its contrary.

Some statements of the law of sympathy suggest that it is absolute in its application. It is true that the current of magical power is sometimes held to be transmitted along lines indicatedby the law of sympathy, without the intervention of any volition, human or otherwise; thus, the crow which carries stray hairs away to weave them into the structure of its nest is nowhere supposed to be engaged in a magical process; but it is commonly held that the person whose hair is thus used will suffer from headache or other maladies; this seems to indicate that the law of sympathy operates mechanically in certain directions, though the belief may also be explained as a secondary growth. In general the operation of these laws is limited in the extreme. For example, the medieval doctrine known as the Law of Signatures asserted that the effects of remedies were correlated to their external qualities; bear’s grease is good for baldness, because the bear is a hairy animal. But the transference was held to terminate with the acquisition by the man of this single quality; in some magical books powdered mummy is recommended as a means of prolonging life, but it is simply the age of the remedy which is to benefit the patient; the magician who removes a patient’s pains or diseases does not transfer them to himself; the child whose parents eat forbidden foods is held to be affected by their transgression, while they themselves come off unharmed. The magical effects are limited by exclusive attention and abstraction; and this is true not only of the kind of effect produced but also as to the direction in which it is held to be produced.

The Magic of Names.—For primitive peoples the name is as much a part of the person as a limb; consequently the magical use of names is in some of its aspects assimilable to the processes dependent on the law of sympathy. In some cases the name must be withheld from any one who is likely to make a wrong use of it, and in some parts of the world people have secret names which are never used. Elsewhere the name must not be told by the bearer of it, but any other person may communicate it without giving an opening for the magical use of it. Not only human beings but also spirits can be coerced by the use of their names; hence the names of the dead are forbidden, lest the mention of them act as an evocation, unintentional though it be. Even among more advanced nations it has been the practice to conceal the real name of supreme gods; we may probably explain this as due to the fear that an enemy might by the use of them turn the gods away from those to whom they originally belonged. For the same reason ancient Rome had a secret name.

Magical Rites.—The magic of names leads us up to the magic of the spoken word in general. The spell or incantation and the magical act together make up the rite. (a) The manual acts are very frequently symbolic or sympathetic in their nature; sometimes they are mere reversals of a religious rite; such is the marching against the sun (known aswiddershinsordeisul); sometimes they are purificatory; and magic has its sacrifices just as much as religion. (b) There are many types of oral rites; some of the most curious consist in simply reciting the effect intended to be produced, describing the manual act, or, especially in Europe, telling a mythical narrative in which Christ or the apostles figure, and in which they are represented as producing a similar effect to the one desired; in other cases the “origin” of the disease or maleficent being is recited. Oral rites, which are termed spells or incantations, correspond in many cases to the oral rites of religion; they, like the manual rites, are a heterogeneous mass and hardly lend themselves to classification. Some formulae may be termed sympathetic; it suffices to name the result to be produced in order to produce it; but often an incantation is employed, not to produce a result directly, but to coerce a god or other being and compel him to fulfil the magician’s will. The language of the incantations often differs from that of daily life; it may be a survival of archaic forms or may be a special creation for magical purposes. In many languages the word used to express the idea of magic means an act, a deed; and it may be assumed that few if any magical ceremonies consist of formulae only; on the other hand, it is certain that no manual act in magic stands absolutely alone without oral rite; if there is no spoken formula, there is at least an unspoken thought. It is in many cases difficult to discover the relative proportions and importance of manual and oral acts. Not only the words but also the tone are of importance in magic; in fact, the tone may be the more important. Rhythm and repetition are no less necessary in oral than in manual acts. (c) As preliminaries, more seldom as necessary sequels to the central feature of the rite, manual or oral, we usually find a certain number of accessory observances prescribed, which find their parallel in the sacrificial ritual. For example, it is laid down at what time of year, at what period of the month or week, at what hour of the day a rite must be performed; the waxing or waning of the moon must be noted; and certain days must be avoided altogether. Similarly, certain places may be prescribed for the performance of the ritual; often the altar of the god serves magical purposes also; but elsewhere it is precisely the impure sites which are devoted to magical operations—the cemeteries and the cross roads. The instruments of magic are in like manner often the remains of a sacrifice, or otherwise consecrated by religion; sometimes, especially when they belong to the animal or vegetable world, they must be sought at certain seasons, May Day, St George’s Day, Midsummer Day, &c. The magician and his client must undergo rites of preparation and the exit may be marked by similar ceremonies.Magicians.—Most peoples know the professional worker of magic, or what is regarded as magic. (a) In most if not all societies magic, or certain sorts of it, may be performed by any one, so far as we can see, who has mastered the necessary ritual; in other cases the magician is a specialist who owes his position to an accident of birth (seventh son of a seventh son); to simple inheritance (families of magicians in modern India, rain-makers in New Caledonia); to revelation from the gods or the spirits of the dead (Malays), showing itself in the phenomena of possession; or to initiation by other magicians. (b) From a psychical point of view it may probably be said that the initiation of a magician corresponds to the “development” of the modern spiritualistic medium; that is to say, that it resolves itself into exercises and rites which have for their object the creation or evolution of a secondary personality. From this point of view it is important to notice that certain things are forbidden to magicians under pain of loss of their powers; thus, hot tea is taboo to the Arunta medicine man; and if this seems unlikely to cause the secondary personality to disappear, it must be remembered that to the physiological effects, if any, must be added the effects of suggestion. Of this duplication of personality various explanations are given; in Siberia the soul of theshamanis said to wander into the other world, and this is a widely spread theory; where the magician is supposed to remain on earth, his soul is again believed to wander, but there is an alternative explanation which gives him two or more bodies. Here we reach a point at which the familiar makes its appearance; this is at times a secondary form of the magician, but more often is a sort of life index or animal helper (seeLycanthropy); in fact, the magician’s power is sometimes held to depend on the presence—that is, the independence—of his animal auxiliary. Concurrent with this theory is the view that the magician must first enter into a trance before the animal makes its appearance, and this makes it a double of the magician, or, from the psychological point of view, a phase of secondary personality. (c) In many parts of the world magical powers are associated with the membership of secret societies, and elsewhere the magicians form a sort of corporation; in Siberia, for example, they are held to be united by a certain tie of kinship; where this is not the case, they are believed, as in Africa at the present day or in medieval Europe, to hold assemblies, so-called witches’ Sabbaths; in Europe the meetings of heretics seem to be responsible for the prominence of the idea if not for its origin (seeWitchcraft). The magician is often regarded as possessed (seePossession) either by an animal or by a human or super-human spirit. The relations of priest and magician are for various reasons complex; where the initiation of the magician is regarded as the work of the gods, the magician is for obvious reasons likely to develop into a priest, but he may at the same time remain a magician; where a religion has been superseded, the priests of the old cult are, for those who supersede them, one and all magicians; in the medieval church, priests were regarded as especially exposed to the assaults of demons, and were consequently often charged with working magic. The great magicians who are gods rather than men—e.g.kings of Fire and Water in Cambodia—enjoy a reverence and receive a cult which separates them from the common herd, and assimilates them to priests rather than to magicians. The function of the so-called magician is often said to be beneficent; in Africa the witch-doctor’s business is to counteract evil magic; in Australia the magician has to protect his own tribe against the assaults of hostile magicians of other tribes; and in Europe “white magic” is the correlative of this beneficent power; but it may be questioned how far the beneficent virtue is regarded as magical outside Europe.Talismans and Amulets.—Inanimate objects as well as living beings are credited with stores of magical force; when they are regarded as bringing good,i.e.are positive in their action, they may be termed “talismans”; “amulets” are protective or negative in their action, and their function is to avert evil; a single object may serve both purposes. Broadly speaking, the fetish, whose “magical” properties are due to association with a spirit, tends to become a talisman or amulet. The “medicine” of the Red Indian, originally carried as means of union between him and hismanito, is perhaps the prototype of many European charms. In other cases it is some specific quality of the object or animal which is desired; the boar’s tusk is worn on the Papuan Gulf as a means of imparting courage to the wearer; the Lukungen Indians of Vancouver Island rub the ashes of wasps on the faces of their warriors, in order that they may be pugnacious. Some Bechuanas wear a ferret as a charm, in the belief that it will make them difficult to kill, the animal being very tenacious of life. Among amulets may be mentioned horns and crescents, eyes or their representations, and grotesque figures, all of which are supposed to be powerful against the Evil Eye (q.v.).Tylor has shown that the brass objects so often seen on harness were originally amuletic in purpose, and can be traced back to Roman times. Some amulets are supposed to protect from the evil eye simply by attracting the glance from the wearer to themselves, but, as a rule, magical power is ascribed to them.Evil Magic.—The object of “black” magic is to inflict injury, disease, or death on an enemy, and the various methods employed illustrate the general principles dealt with above and emphasize the conclusion that magic is not simply a matter of sympathetic rites, but involves a conception of magical force. (a) It has been mentioned that contagious magic makes use of portions of a person’s body; the Cherokee magician follows his victim till he spits on the ground; collecting the spittle mingled with dust on the end of a stick, the magician puts it into a tube made of a poisonous plant together with seven earth worms, beaten into a paste, and splinters of a tree blasted by lightning; the whole is buried with seven yellow stones at the foot of a tree struck by lightning, and a fire is built over the spot; the magician fasts till the ceremony is over. Probably the worms are supposed to feed on the victim’s soul, which is said to become “blue” when the charm works; the yellow stones are the emblem of trouble, and lightning-struck trees are reputed powerful in magic. If the charm does not work, the victim survives the critical seven days, and the magician and his employer are themselves in danger, for a charm gone wrong returns upon the head of him who sent it forth. (b) In homoeopathic magic the victim is represented by an image or other object. In the Malay Peninsula the magician makes an image like a corpse, a footstep long. “If you want to cause sickness, you pierce the eye and blindness results; or you pierce the waist and the stomach gets sick. If you want to cause death, you transfix the head with a palm twig; then you enshroud the image as you would a corpse and you pray over it as if you were praying over the dead; then you bury it in the middle of the path which leads to the place of the person whom you wish to charm, so that he may step over it.” Sometimes the wizard repeats a form of words signifying that not he but the Archangel Gabriel is burying the victim; sometimes he exclaims, “It is not wax I slay but the liver, heart and spleen of So-and-so.” Finally, the image is buried in front of the victim’s doors. (c) Very widespread is the idea that a magician can influence his victim by charming a bone, stick or other object, and then projecting the magical influence from it. It is perhaps the commonest form of evil magic in Australia; in the Arunta tribe a man desirous of using one of these pointing sticks or bones goes away by himself into the bush, puts the bone on the ground and crouches over it, muttering a charm: “May your heart be rent asunder.” After a time he brings the irna back to the camp and hides it; then one evening after dark he takes it and creeps near enough to see the features of his victim; he stoops down with theirnain his hand and repeatedly jerks it over his shoulder, muttering curses all the time. The evil magic,arungquiltha, is said to go straight to the victim, who sickens and dies without apparent cause, unless some medicine-man can discover what is wrong and save him by removing the evil magic. Theirnais concealed after the ceremony, for the magician would at once be killed if it were known that he had used it. (d) Magicians are often said to be able to assume animal form or to have an animal familiar. They are said to suck the victim’s blood or send a messenger to do so; sometimes they are said to steal his soul, thus causing sickness and eventually death. These beliefs bring the magician into close relation with the werwolf (seeLycanthropy).Rain-making.—In the lower stages of culture rain-making assumes rather the appearance of a religious ceremony, and even in higher stages the magical character is by no means invariably felt. It will, however, be well to notice some of the methods here. (a) Among the Dieri of Central Australia the whole tribe takes part in the ceremony; a hole is dug, and over this a hut is built, large enough for the old men; the women are called to look at it and then retire some five hundred yards. Two wizards have their arms bound at the shoulder, the old men huddle in the hut, and the principal wizard bleeds the two men selected by cutting them inside the arm below the elbow. The blood is made to flow on the old men, and the two men throw handfuls of down into the air. The blood symbolizes the rain; the down is the clouds. Then two large stones are placed in the middle of the hut; these two represent gathering clouds. The women are again summoned, and then the stones are placed high in a tree; other men pound gypsum and throw it into a water-hole; the ancestral spirits are supposed to see this and to send rain. Then the hut is knocked down, the men butting at it with their heads; this symbolizes the breaking of the clouds, and the fall of the hut is the rain, if no rain comes they say that another tribe has stopped their power or that theMura-mura(ancestors) are angry with them. (b) Rain-making ceremonies are far from uncommon in Europe. Sometimes water is poured on a stone; a row of stepping-stones runs into one of the tarns on Snowdon, and it is said that water thrown upon the last one will cause rain to fall before night. Sometimes the images of saints are carried to a river or a fountain and ducked or sprinkled with water in the belief that rain will follow; sometimes rain is said to ensue when the water of certain springs is troubled; perhaps the idea is that the rain-god is disturbed in his haunts. But perhaps the commonest method is to duck or drench a human figure or puppet, who represents in many instances the vegetation demon. The gipsies of Transylvania celebrate the festival of “Green George” at Easter or on St George’s Day; a boy dressed up in leaves and blossoms is the principal figure; he throws grass to the cattle of the tribe, and after various other ceremonies a pretence is made of throwing him into the water; but in fact only a puppet is ducked in the stream.

Magical Rites.—The magic of names leads us up to the magic of the spoken word in general. The spell or incantation and the magical act together make up the rite. (a) The manual acts are very frequently symbolic or sympathetic in their nature; sometimes they are mere reversals of a religious rite; such is the marching against the sun (known aswiddershinsordeisul); sometimes they are purificatory; and magic has its sacrifices just as much as religion. (b) There are many types of oral rites; some of the most curious consist in simply reciting the effect intended to be produced, describing the manual act, or, especially in Europe, telling a mythical narrative in which Christ or the apostles figure, and in which they are represented as producing a similar effect to the one desired; in other cases the “origin” of the disease or maleficent being is recited. Oral rites, which are termed spells or incantations, correspond in many cases to the oral rites of religion; they, like the manual rites, are a heterogeneous mass and hardly lend themselves to classification. Some formulae may be termed sympathetic; it suffices to name the result to be produced in order to produce it; but often an incantation is employed, not to produce a result directly, but to coerce a god or other being and compel him to fulfil the magician’s will. The language of the incantations often differs from that of daily life; it may be a survival of archaic forms or may be a special creation for magical purposes. In many languages the word used to express the idea of magic means an act, a deed; and it may be assumed that few if any magical ceremonies consist of formulae only; on the other hand, it is certain that no manual act in magic stands absolutely alone without oral rite; if there is no spoken formula, there is at least an unspoken thought. It is in many cases difficult to discover the relative proportions and importance of manual and oral acts. Not only the words but also the tone are of importance in magic; in fact, the tone may be the more important. Rhythm and repetition are no less necessary in oral than in manual acts. (c) As preliminaries, more seldom as necessary sequels to the central feature of the rite, manual or oral, we usually find a certain number of accessory observances prescribed, which find their parallel in the sacrificial ritual. For example, it is laid down at what time of year, at what period of the month or week, at what hour of the day a rite must be performed; the waxing or waning of the moon must be noted; and certain days must be avoided altogether. Similarly, certain places may be prescribed for the performance of the ritual; often the altar of the god serves magical purposes also; but elsewhere it is precisely the impure sites which are devoted to magical operations—the cemeteries and the cross roads. The instruments of magic are in like manner often the remains of a sacrifice, or otherwise consecrated by religion; sometimes, especially when they belong to the animal or vegetable world, they must be sought at certain seasons, May Day, St George’s Day, Midsummer Day, &c. The magician and his client must undergo rites of preparation and the exit may be marked by similar ceremonies.

Magicians.—Most peoples know the professional worker of magic, or what is regarded as magic. (a) In most if not all societies magic, or certain sorts of it, may be performed by any one, so far as we can see, who has mastered the necessary ritual; in other cases the magician is a specialist who owes his position to an accident of birth (seventh son of a seventh son); to simple inheritance (families of magicians in modern India, rain-makers in New Caledonia); to revelation from the gods or the spirits of the dead (Malays), showing itself in the phenomena of possession; or to initiation by other magicians. (b) From a psychical point of view it may probably be said that the initiation of a magician corresponds to the “development” of the modern spiritualistic medium; that is to say, that it resolves itself into exercises and rites which have for their object the creation or evolution of a secondary personality. From this point of view it is important to notice that certain things are forbidden to magicians under pain of loss of their powers; thus, hot tea is taboo to the Arunta medicine man; and if this seems unlikely to cause the secondary personality to disappear, it must be remembered that to the physiological effects, if any, must be added the effects of suggestion. Of this duplication of personality various explanations are given; in Siberia the soul of theshamanis said to wander into the other world, and this is a widely spread theory; where the magician is supposed to remain on earth, his soul is again believed to wander, but there is an alternative explanation which gives him two or more bodies. Here we reach a point at which the familiar makes its appearance; this is at times a secondary form of the magician, but more often is a sort of life index or animal helper (seeLycanthropy); in fact, the magician’s power is sometimes held to depend on the presence—that is, the independence—of his animal auxiliary. Concurrent with this theory is the view that the magician must first enter into a trance before the animal makes its appearance, and this makes it a double of the magician, or, from the psychological point of view, a phase of secondary personality. (c) In many parts of the world magical powers are associated with the membership of secret societies, and elsewhere the magicians form a sort of corporation; in Siberia, for example, they are held to be united by a certain tie of kinship; where this is not the case, they are believed, as in Africa at the present day or in medieval Europe, to hold assemblies, so-called witches’ Sabbaths; in Europe the meetings of heretics seem to be responsible for the prominence of the idea if not for its origin (seeWitchcraft). The magician is often regarded as possessed (seePossession) either by an animal or by a human or super-human spirit. The relations of priest and magician are for various reasons complex; where the initiation of the magician is regarded as the work of the gods, the magician is for obvious reasons likely to develop into a priest, but he may at the same time remain a magician; where a religion has been superseded, the priests of the old cult are, for those who supersede them, one and all magicians; in the medieval church, priests were regarded as especially exposed to the assaults of demons, and were consequently often charged with working magic. The great magicians who are gods rather than men—e.g.kings of Fire and Water in Cambodia—enjoy a reverence and receive a cult which separates them from the common herd, and assimilates them to priests rather than to magicians. The function of the so-called magician is often said to be beneficent; in Africa the witch-doctor’s business is to counteract evil magic; in Australia the magician has to protect his own tribe against the assaults of hostile magicians of other tribes; and in Europe “white magic” is the correlative of this beneficent power; but it may be questioned how far the beneficent virtue is regarded as magical outside Europe.

Talismans and Amulets.—Inanimate objects as well as living beings are credited with stores of magical force; when they are regarded as bringing good,i.e.are positive in their action, they may be termed “talismans”; “amulets” are protective or negative in their action, and their function is to avert evil; a single object may serve both purposes. Broadly speaking, the fetish, whose “magical” properties are due to association with a spirit, tends to become a talisman or amulet. The “medicine” of the Red Indian, originally carried as means of union between him and hismanito, is perhaps the prototype of many European charms. In other cases it is some specific quality of the object or animal which is desired; the boar’s tusk is worn on the Papuan Gulf as a means of imparting courage to the wearer; the Lukungen Indians of Vancouver Island rub the ashes of wasps on the faces of their warriors, in order that they may be pugnacious. Some Bechuanas wear a ferret as a charm, in the belief that it will make them difficult to kill, the animal being very tenacious of life. Among amulets may be mentioned horns and crescents, eyes or their representations, and grotesque figures, all of which are supposed to be powerful against the Evil Eye (q.v.).Tylor has shown that the brass objects so often seen on harness were originally amuletic in purpose, and can be traced back to Roman times. Some amulets are supposed to protect from the evil eye simply by attracting the glance from the wearer to themselves, but, as a rule, magical power is ascribed to them.

Evil Magic.—The object of “black” magic is to inflict injury, disease, or death on an enemy, and the various methods employed illustrate the general principles dealt with above and emphasize the conclusion that magic is not simply a matter of sympathetic rites, but involves a conception of magical force. (a) It has been mentioned that contagious magic makes use of portions of a person’s body; the Cherokee magician follows his victim till he spits on the ground; collecting the spittle mingled with dust on the end of a stick, the magician puts it into a tube made of a poisonous plant together with seven earth worms, beaten into a paste, and splinters of a tree blasted by lightning; the whole is buried with seven yellow stones at the foot of a tree struck by lightning, and a fire is built over the spot; the magician fasts till the ceremony is over. Probably the worms are supposed to feed on the victim’s soul, which is said to become “blue” when the charm works; the yellow stones are the emblem of trouble, and lightning-struck trees are reputed powerful in magic. If the charm does not work, the victim survives the critical seven days, and the magician and his employer are themselves in danger, for a charm gone wrong returns upon the head of him who sent it forth. (b) In homoeopathic magic the victim is represented by an image or other object. In the Malay Peninsula the magician makes an image like a corpse, a footstep long. “If you want to cause sickness, you pierce the eye and blindness results; or you pierce the waist and the stomach gets sick. If you want to cause death, you transfix the head with a palm twig; then you enshroud the image as you would a corpse and you pray over it as if you were praying over the dead; then you bury it in the middle of the path which leads to the place of the person whom you wish to charm, so that he may step over it.” Sometimes the wizard repeats a form of words signifying that not he but the Archangel Gabriel is burying the victim; sometimes he exclaims, “It is not wax I slay but the liver, heart and spleen of So-and-so.” Finally, the image is buried in front of the victim’s doors. (c) Very widespread is the idea that a magician can influence his victim by charming a bone, stick or other object, and then projecting the magical influence from it. It is perhaps the commonest form of evil magic in Australia; in the Arunta tribe a man desirous of using one of these pointing sticks or bones goes away by himself into the bush, puts the bone on the ground and crouches over it, muttering a charm: “May your heart be rent asunder.” After a time he brings the irna back to the camp and hides it; then one evening after dark he takes it and creeps near enough to see the features of his victim; he stoops down with theirnain his hand and repeatedly jerks it over his shoulder, muttering curses all the time. The evil magic,arungquiltha, is said to go straight to the victim, who sickens and dies without apparent cause, unless some medicine-man can discover what is wrong and save him by removing the evil magic. Theirnais concealed after the ceremony, for the magician would at once be killed if it were known that he had used it. (d) Magicians are often said to be able to assume animal form or to have an animal familiar. They are said to suck the victim’s blood or send a messenger to do so; sometimes they are said to steal his soul, thus causing sickness and eventually death. These beliefs bring the magician into close relation with the werwolf (seeLycanthropy).

Rain-making.—In the lower stages of culture rain-making assumes rather the appearance of a religious ceremony, and even in higher stages the magical character is by no means invariably felt. It will, however, be well to notice some of the methods here. (a) Among the Dieri of Central Australia the whole tribe takes part in the ceremony; a hole is dug, and over this a hut is built, large enough for the old men; the women are called to look at it and then retire some five hundred yards. Two wizards have their arms bound at the shoulder, the old men huddle in the hut, and the principal wizard bleeds the two men selected by cutting them inside the arm below the elbow. The blood is made to flow on the old men, and the two men throw handfuls of down into the air. The blood symbolizes the rain; the down is the clouds. Then two large stones are placed in the middle of the hut; these two represent gathering clouds. The women are again summoned, and then the stones are placed high in a tree; other men pound gypsum and throw it into a water-hole; the ancestral spirits are supposed to see this and to send rain. Then the hut is knocked down, the men butting at it with their heads; this symbolizes the breaking of the clouds, and the fall of the hut is the rain, if no rain comes they say that another tribe has stopped their power or that theMura-mura(ancestors) are angry with them. (b) Rain-making ceremonies are far from uncommon in Europe. Sometimes water is poured on a stone; a row of stepping-stones runs into one of the tarns on Snowdon, and it is said that water thrown upon the last one will cause rain to fall before night. Sometimes the images of saints are carried to a river or a fountain and ducked or sprinkled with water in the belief that rain will follow; sometimes rain is said to ensue when the water of certain springs is troubled; perhaps the idea is that the rain-god is disturbed in his haunts. But perhaps the commonest method is to duck or drench a human figure or puppet, who represents in many instances the vegetation demon. The gipsies of Transylvania celebrate the festival of “Green George” at Easter or on St George’s Day; a boy dressed up in leaves and blossoms is the principal figure; he throws grass to the cattle of the tribe, and after various other ceremonies a pretence is made of throwing him into the water; but in fact only a puppet is ducked in the stream.

Negative Magic.—There is also a negative side to magic, which, together with ritual prohibitions of a religious nature, is often embraced under the name of taboo (q.v.); this extension of meaning is not justified, for taboo is only concerned with sacred things, and the mark of it is that its violation causes the taboo to be transmitted. All taboos are ritual prohibitions, but all ritual prohibitions are not taboos; they include also (a) interdictions of which the sanction is the wrath of a god; these may be termed religious interdictions; (b) interdictions, the violation of which will automatically cause some undesired magico-religious effect; to these the term negative magic should be restricted, and they might conveniently be called “bans”; they correspond in the main to positive rites and are largely based on the same principles.

(a) Certain prohibitions, such as those imposed on totem kins, seem to occupy an intermediate place; they depend on the sanctity of the totem animal without being taboos in the strict sense; to them no positive magical rites correspond, for the totemic prohibition is clearly religious, not magical.(b) Among cases of negative magic may be mentioned (i.) the couvade, and prohibitions observed by parents and relatives generally; this is most common in the case of young children, but a sympathetic relation is held to exist in other cases also. In Madagascar a son may not eat fallen bananas, for the result would be to cause the death of his own father; the sympathy between father and son establishes a sympathy between the father and objects touched or eaten by the son, and, in addition, the fall of the bananas is equated with the death of a human being. Again, the wife of a Malagasy warrior may not be faithless to him when he is absent; if she is, he will be killed or wounded. Ownership, too, may create a sympathetic relation of this kind, for it is believed in parts of Europe that if a man kills a swallow his cows will give bloody milk. In some cases it is even harder to see how the sympathetic bond is established; some Indians of Brazil always hamstring animals before bringing them home, in the belief that by so doing they make it easier for themselves and their children to run down their enemies, who are then magically deprived of the use of their legs. These are all examples of negative magic with regard to persons, but things may be equally affected; thus in Borneo men who search for camphor abstain from washing their plates for fear the camphor, which is found crystallized in the crevices of trees, should dissolve and disappear. (ii.) Rules which regulate diet exist not only for the benefit of others but also for that of the eater. Some animals, such as the hare, are forbidden, just as others, like the lion, are prescribed; the one produces cowardice, while the other makes a man’s heart bold. (iii.) Words may not be used; Scottish fishermen will not mention the pig at sea; the real names of certain animals, like the bear, may not be used; the names of the dead may not be mentioned; a sacred language must be used,e.g.camphor language in the Malay peninsula, or only words of good omen (cf. Gr.εὐφημεῖτε); or absolute silence must be preserved. Personal names are concealed; a man may not mention the names of certain relatives, &c. There are customs of avoidance not only as to (iv.) the names of relatives, but as to the persons themselves; the mother-in-law must avoid the son-in-law, and vice versa; sometimes they may converse at a distance, or in low tones, sometimes not at all, and sometimes they may not even meet. (v.) In addition to these few classes selected at random, we have prohibitions relating to numbers (cf. unlucky thirteen, which is, however, of recent date), the calendar (Friday as an unlucky day, May as an unlucky month for marriage), places, persons, orientation, &c.; but it is impossible to enumerate even the main classes. The individual origin of such beliefs, which with us form the superstitions of daily life but in a savage or semi-civilized community play a large part in regulating conduct, is often shrouded in darkness; the meaning of the positive rite is easily forgotten; the negative rite persists, but it is observed merely to avoid some unknown misfortune. Sometimes we can, however, guess at the meaning of our civilized notions of ill luck; it is perhaps as a survival of the savage belief that stepping over a person is injurious to him that many people regard going under a ladder as unlucky; in the one case the luck is taken away by the person stepping over, in the other left behind by the person passing under.

(a) Certain prohibitions, such as those imposed on totem kins, seem to occupy an intermediate place; they depend on the sanctity of the totem animal without being taboos in the strict sense; to them no positive magical rites correspond, for the totemic prohibition is clearly religious, not magical.

(b) Among cases of negative magic may be mentioned (i.) the couvade, and prohibitions observed by parents and relatives generally; this is most common in the case of young children, but a sympathetic relation is held to exist in other cases also. In Madagascar a son may not eat fallen bananas, for the result would be to cause the death of his own father; the sympathy between father and son establishes a sympathy between the father and objects touched or eaten by the son, and, in addition, the fall of the bananas is equated with the death of a human being. Again, the wife of a Malagasy warrior may not be faithless to him when he is absent; if she is, he will be killed or wounded. Ownership, too, may create a sympathetic relation of this kind, for it is believed in parts of Europe that if a man kills a swallow his cows will give bloody milk. In some cases it is even harder to see how the sympathetic bond is established; some Indians of Brazil always hamstring animals before bringing them home, in the belief that by so doing they make it easier for themselves and their children to run down their enemies, who are then magically deprived of the use of their legs. These are all examples of negative magic with regard to persons, but things may be equally affected; thus in Borneo men who search for camphor abstain from washing their plates for fear the camphor, which is found crystallized in the crevices of trees, should dissolve and disappear. (ii.) Rules which regulate diet exist not only for the benefit of others but also for that of the eater. Some animals, such as the hare, are forbidden, just as others, like the lion, are prescribed; the one produces cowardice, while the other makes a man’s heart bold. (iii.) Words may not be used; Scottish fishermen will not mention the pig at sea; the real names of certain animals, like the bear, may not be used; the names of the dead may not be mentioned; a sacred language must be used,e.g.camphor language in the Malay peninsula, or only words of good omen (cf. Gr.εὐφημεῖτε); or absolute silence must be preserved. Personal names are concealed; a man may not mention the names of certain relatives, &c. There are customs of avoidance not only as to (iv.) the names of relatives, but as to the persons themselves; the mother-in-law must avoid the son-in-law, and vice versa; sometimes they may converse at a distance, or in low tones, sometimes not at all, and sometimes they may not even meet. (v.) In addition to these few classes selected at random, we have prohibitions relating to numbers (cf. unlucky thirteen, which is, however, of recent date), the calendar (Friday as an unlucky day, May as an unlucky month for marriage), places, persons, orientation, &c.; but it is impossible to enumerate even the main classes. The individual origin of such beliefs, which with us form the superstitions of daily life but in a savage or semi-civilized community play a large part in regulating conduct, is often shrouded in darkness; the meaning of the positive rite is easily forgotten; the negative rite persists, but it is observed merely to avoid some unknown misfortune. Sometimes we can, however, guess at the meaning of our civilized notions of ill luck; it is perhaps as a survival of the savage belief that stepping over a person is injurious to him that many people regard going under a ladder as unlucky; in the one case the luck is taken away by the person stepping over, in the other left behind by the person passing under.

History of Magic.—The subject is too vast and our data are too slight to make a general sketch of magic possible. Our knowledge of Assyrian magic, for example, hardly extends beyond the rites of exorcism; the magic of Africa is most inadequately known, and only in recent years have we well-analysedrepertories of magical rituals from any part of the world. For certain departments of ancient magic, however, like the Pythagorean philosophy, there is no lack of illustrative material; it depended on mystical speculations based on numbers or analogous principles. The importance of numbers is recognized in the magic of America and other areas, but the science of the Mediterranean area, combined with the art of writing, was needed to develop such mystical ideas to their full extent. Among the neo-Platonists there was a strong tendency to magical speculation, and they sought to impress into their service the demons with which they peopled the universe. Alexandria was the home of many systems of theurgic magic, and gnostic gems afford evidence of the nature of their symbols. In the middle ages the respectable branches of magic, such as astrology and alchemy, included much of the real science of the period; the rise of Christianity introduced a new element, for the Church regarded all the religions of the heathen as dealings with demons and therefore magical (seeWitchcraft). In our own day the occult sciences still find devotees among the educated; certain elements have acquired a new interest, in so far as they are the subject matter of psychical research (q.v.) and spiritualism (q.v.). But it is only among what are regarded as the lower classes, and in England especially the rural population, that belief in its efficacy still prevails to any large extent.

Psychology of Magic.—The same causes which operated to produce a belief in witchcraft (q.v.) aided the creed of magic in general. Fortuitous coincidences attract attention; the failures are disregarded or explained away. Probably the magician is never wholly an impostor, and frequently has a whole-hearted belief in himself; in this connexion may be noted the fact that juggling tricks have in all ages been passed off as magical; the name of “conjuring” (q.v.) survives in our own day, though the conjurer no longer claims that his mysterious results are produced by demons. It is interesting to note that magical leechcraft depended for its success on the power of suggestion (q.v.), which is to-day a recognized element in medicine; perhaps other elements may have been instrumental in producing a cure, for there are cases on record in which European patients have been cured by the apparently meaningless performances of medicine-men, but an adequate study of savage medicine is still a desideratum.

Bibliography.—For a general discussion of magic with a list of selected works see Hubert and Mauss inAnnée sociologique, vii. 1-146; also A. Lehmann,Aberglaube und Zauberei; the article “Religion” inLa Grande encyclopédie; K. T. Preuss inGlobus, vols. 86, 87; Mauss,L’Origine des pouvoirs magiques, and Hubert,La Réprésentation du temps(Reports of École pratique des hautes études, Paris). For general bibliographies see Hauck,Realencyklopädie,s.v.“Magie”; A. C. Haddon,Magic and Fetishism. J. G. T. Graesse’sBibliotheca magicais an exhaustive list of early works dealing with magic and superstition. For Australia see Spencer and Gillen’s works, and A. W. Howitt,Native Tribes. For America seeReports of Bureau of Ethnology, vii. xvii. For India see W. Caland,Altindisches Zauber-ritual; and W. Crooke,Popular Religion; also V. Henry,La Magie. For the Malays see W. W. Skeat,Malay Magic. For Babylonia and Assyria see L. W. King’s works. For magic in Greece and Rome see Daremberg and Saglio,s.v.“Magia,” “Amuletum,” &c. For medieval magic see A. Maury,La Magie. For illustrations of magic see J. G. Frazer,The Golden Bough; E. S. Hartland,Legend of Perseus; E. B. Tylor,Primitive Culture; W. G. Black,Folkmedicine. For negative magic see the works of Frazer and Skeat cited above; alsoJourn. Anthrop. Inst.xxxvi. 92-103;Zeitschrift für Ethnologie(Verhandlungen) (1905), 153-162;Bulletin trimestriel de l’académie malgache, iii. 105-159. See also bibliography toTabooandWitchcraft.

Bibliography.—For a general discussion of magic with a list of selected works see Hubert and Mauss inAnnée sociologique, vii. 1-146; also A. Lehmann,Aberglaube und Zauberei; the article “Religion” inLa Grande encyclopédie; K. T. Preuss inGlobus, vols. 86, 87; Mauss,L’Origine des pouvoirs magiques, and Hubert,La Réprésentation du temps(Reports of École pratique des hautes études, Paris). For general bibliographies see Hauck,Realencyklopädie,s.v.“Magie”; A. C. Haddon,Magic and Fetishism. J. G. T. Graesse’sBibliotheca magicais an exhaustive list of early works dealing with magic and superstition. For Australia see Spencer and Gillen’s works, and A. W. Howitt,Native Tribes. For America seeReports of Bureau of Ethnology, vii. xvii. For India see W. Caland,Altindisches Zauber-ritual; and W. Crooke,Popular Religion; also V. Henry,La Magie. For the Malays see W. W. Skeat,Malay Magic. For Babylonia and Assyria see L. W. King’s works. For magic in Greece and Rome see Daremberg and Saglio,s.v.“Magia,” “Amuletum,” &c. For medieval magic see A. Maury,La Magie. For illustrations of magic see J. G. Frazer,The Golden Bough; E. S. Hartland,Legend of Perseus; E. B. Tylor,Primitive Culture; W. G. Black,Folkmedicine. For negative magic see the works of Frazer and Skeat cited above; alsoJourn. Anthrop. Inst.xxxvi. 92-103;Zeitschrift für Ethnologie(Verhandlungen) (1905), 153-162;Bulletin trimestriel de l’académie malgache, iii. 105-159. See also bibliography toTabooandWitchcraft.

(N. W. T.)

1For what is often called “magic,” but is really trick-performance, seeConjuring.

1For what is often called “magic,” but is really trick-performance, seeConjuring.

MAGIC SQUARE,a square divided into equal squares, like a chess-board, in each of which is placed one of a series of consecutive numbers from 1 up to the square of the number of cells in a side, in such a manner that the sum of the numbers in each row or column and in each diagonal is constant.

From a very early period these squares engaged the attention of mathematicians, especially such as possessed a love of the marvellous, or sought to win for themselves a superstitious regard. They were then supposed to possess magical properties, and were worn, as in India at the present day, engraven in metal or stone, as amulets or talismans. According to the old astrologers, relations subsisted between these squares and the planets. In later times such squares ranked only as mathematical curiosities; till at last their mode of construction was systematically investigated. The earliest known writer on the subject was Emanuel Moscopulus, a Greek (4th or 5th century). Bernard Frenicle de Bessy constructed magic squares such that if one or more of the encircling bands of numbers be taken away the remaining central squares are still magical. Subsequently Poignard constructed squares with numbers in arithmetical progression, having the magical summations. The later researches of Phillipe de la Hire, recorded in theMémoires de l’Académie Royalein 1705, are interesting as giving general methods of construction. He has there collected the results of the labours of earlier pioneers; but the subject has now been fully systematized, and extended to cubes.

Two interesting magical arrangements are said to have been given by Benjamin Franklin; these have been termed the “magic square of squares” and the “magic circle of circles.” The first (fig. 1) is a square divided into 256 squares,i.e.16 squares along a side, in Fig. 2. which are placed the numbers from 1 to 256. The chief properties of this square are (1) the sum of the 16 numbers in any row or column is 2056; (2) the sum of the 8 numbers in half of any row or column is 1028,i.e.one half of 2056; (3) the sum of the numbers in two half-diagonals equals 2056; (4) the sum of the four corner numbers of the great square and the four central numbers equals 1028; (5) the sum of the numbers in any 16 cells of the large square which themselves are disposed in a square is 2056. This square has other curiousproperties. The “magic circle of circles” (fig. 2) consists of eight annular rings and a central circle, each ring being divided into eight cells by radii drawn from the centre; there are therefore 65 cells. The number 12 is placed in the centre, and the consecutive numbers 13 to 75 are placed in the other cells. The properties of this figure include the following: (1) the sum of the eight numbers in any ring together with the central number 12 is 360, the number of degrees in a circle; (2) the sum of the eight numbers in any set of radial cells together with the central number is 360; (3) the sum of the numbers in any four adjoining cells, either annular, radial, or both radial and two annular, together with half the central number, is 180.

Two interesting magical arrangements are said to have been given by Benjamin Franklin; these have been termed the “magic square of squares” and the “magic circle of circles.” The first (fig. 1) is a square divided into 256 squares,i.e.16 squares along a side, in Fig. 2. which are placed the numbers from 1 to 256. The chief properties of this square are (1) the sum of the 16 numbers in any row or column is 2056; (2) the sum of the 8 numbers in half of any row or column is 1028,i.e.one half of 2056; (3) the sum of the numbers in two half-diagonals equals 2056; (4) the sum of the four corner numbers of the great square and the four central numbers equals 1028; (5) the sum of the numbers in any 16 cells of the large square which themselves are disposed in a square is 2056. This square has other curiousproperties. The “magic circle of circles” (fig. 2) consists of eight annular rings and a central circle, each ring being divided into eight cells by radii drawn from the centre; there are therefore 65 cells. The number 12 is placed in the centre, and the consecutive numbers 13 to 75 are placed in the other cells. The properties of this figure include the following: (1) the sum of the eight numbers in any ring together with the central number 12 is 360, the number of degrees in a circle; (2) the sum of the eight numbers in any set of radial cells together with the central number is 360; (3) the sum of the numbers in any four adjoining cells, either annular, radial, or both radial and two annular, together with half the central number, is 180.

Construction of Magic Squares.—A square of 5 (fig. 3) has adjoining it one of the eight equal squares by which any square may be conceived to be surrounded, each of which has two sides resting on adjoining squares, while four have sides resting on the surrounded square, and four meet it only at its four angles. 1, 2, 3 are placed along the path of a knight in chess; 4, along the same path, would fall in a cell of the outer square, and is placed instead in the corresponding cell of the original square; 5 then falls within the square. a, b, c, d are placed diagonally in the square; but e enters the outer square, and is removed thence to the same cell of the square it had left. α, β, γ, δ, ε pursue another regular course; and the diagram shows how that course is recorded in the square they have twice left. Whichever of the eight surrounding squares may be entered, the corresponding cell of the central square is taken instead. The 1, 2, 3, ..., a, b, c, ..., α, β, γ, ... are said to lie in “paths.”

Squares whose Roots are Odd.—Figs 4, 5, and 6 exhibit one of the earliest methods of constructing magic squares. Here the 3’s in fig. 4 and 2’s in fig. 5 are placed in opposite diagonals to secure the two diagonal summations; then each number in fig. 5 is multiplied by 5 and added to that in the corresponding square in fig. 4, which gives the square of fig. 6. Figs. 7, 8 and 9 give De la Hire’s method; the squares of figs. 7 and 8, being combined, give the magic square of fig. 9. C. G. Bachet arranged the numbers as in fig. 10, where there are three numbers in each of four surrounding squares; these being placed in the corresponding cells of the central square, the square of fig. 11 is formed. He also constructed squares such that if one or more outer bands of numbers are removed the remaining central squares are magical. His method of forming them may be understood from a square of 5. Here each summation is 5 × 13; if therefore 13 is subtracted from each number, the summations will be zero, and the twenty-five cells will contain the series ± i, ± 2, ± 3, ... ± 12, the odd cell having 0. The central square of 3 is formed with four of the twelve numbers with + and − signs and zero in the middle; the band is filled up with the rest, as in fig. 12; then, 13 being added in each cell, the magic square of fig. 13 is obtained.

Squares whose Roots are Even.—These were constructed in various ways, similar to that of 4 in figs. 14, 15 and 16. The numbers in fig. 15 being multiplied by 4, and the squares of figs. 14 and 15 being superimposed, give fig. 16. The application of this method to squares the half of whose roots are odd requires a complicated adjustment. Squares whose half root is a multiple of 4, and in which there are summations along all the diagonal paths, may be formed, by observing, as when the root is 4, that the series 1 to 16 may be changed into the series 15, 13, ... 3, 1, −1, −3, ... −13, −15, by multiplying each number by 2 and subtracting 17; and, vice versa, by adding 17 to each of the latter, and dividing by 2. The diagonal summations of a square, filled as in fig. 17, make zero; and, to obtain the same in the rows and columns, we must assign such values to the p’s and q’s as satisfy the equations p1+ p2+ a1+ a2= 0, p3+ p4+ a3+ a4= 0, p1+ p3− a1− a3= 0, and p2+ p4− a2− a4= 0,—a solution of which is readily obtained by inspection, as in fig. 18; this leads to the square, fig. 19. When the root is 8, the upper four subsidiary rows may at once be written, as in fig. 20; then, if 65 be added to each, and the sums halved, the square is completed. In such squares as these, the two opposite squares about the same diagonal (except that of 4) may be turned through any number of right angles, in the same direction, without altering the summations.

Nasik Squares.—Squares that have many more summations than in rows, columns and diagonals were investigated by A. H. Frost (Cambridge Math. Jour., 1857), and called Nasik squares, from the town in India where he resided; and he extended the method to cubes, various sections of which have the same singular properties. In order to understand their construction it will be necessary toconsider carefully fig. 21, which shows that, when the root is a prime, and not composite, number, as 7, eight letters a, b, ... h may proceed from any, the same, cell, suppose that marked 0, each letter being repeated in the cells along different paths. These eight paths are called “normal paths,” their number being one more than the root. Observe here that, excepting the cells from which any two letters start, they do not occupy again the same cell, and that two letters, starting from any two different cells along different paths, will appear together in one and only one cell. Hence, if p1be placed in the cells of one of the n + 1 normal paths, each of the remaining n normal paths will contain one, and only one, of these p1’s. If now we fill each row with p2, p3, ... pnin the same order, commencing from the p1in that row, the p2’s, p3’s and pn’s will lie each in a path similar to that of p1, and each of the n normal paths will contain one, and only one, of the letters p1, p2,... pn, whose sum will be Σp. Similarly, if q1be placed along any of the normal paths, different from that of the p’s, and each row filled as above with the letters q2, q3, ... qn, the sum of the q’s along any normal path different from that of the q1will be Σq. The n² cells of the square will now be found to contain all the combinations of the p’s and q’s; and if the q’s be multiplied by n, the p’s made equal to 1, 2, ... n, and the q’s to 0, 1, 2, ... (n − 1) in any order, the Nasik square of n will be obtained, and the summations along all the normal paths, except those traversed by the p’s and q’s, will be the constant Σnq + Σp. When the root is an odd composite number, as 9, 15, &c., it will be found that in some paths, different from the two along which the p1and q1were placed, instead of having each of the p’s and q’s, some will be wanting, while some are repeated. Thus, in the case of 9, the triplets, p1p4p7, p2p5p8, p3p6p9, and q1q4q7, q2q5q8, q3q6q9occur, each triplet thrice, along paths whose summation should be—Σp 45 and Σr 36. But if we make p1, p2, ... p9, = 1, 3, 6, 5, 4, 7, 9, 8, 2, and the r1, r2, ... r9= 0, 2, 5, 4, 3, 6, 8, 7, 1, thrice each of the above sets of triplets will equal Σp and Σq respectively. If now the q’s are multiplied by 9, and added to the p’s in their several cells, we shall have a Nasik square, with a constant summation along eight of its ten normal paths. In fig. 22 the numbers are in the nonary scale; that in the centre is the middle one of 1 to 9², and the sum of pair of numbers equidistant from and opposite to the central 45 is twice 45; and the sum of any number and the 8 numbers 3 from it, diagonally, and in its row and column, is the constant Nasical summation,e.g.72 and 32, 22, 76, 77, 26, 37, 36, 27. The numbers in fig. 22 being kept in the nonary scale, it is not necessary to add any nine of them together in order to test the Nasical summation; for, taking the first column, the figures in the place of units are seen at once to form the series, 1, 2, 3, ... 9, and those in the other place three triplets of 6, 1, 5. For the squares of 15 the p’s and q’s may be respectively 1, 2, 10, 8, 6, 14, 15, 11, 4, 13, 9, 7, 3, 12, 5, and 0, 1, 9, 7, 5, 13, 14, 10, 3, 12, 8, 6, 2, 11, 4, where five times the sum of every third number and three times the sum of every fifth number makes Σp and Σq; then, if the q’s are multiplied by 15, and added to the p’s, the Nasik square of 15 is obtained. When the root is the multiple of 4, the same process gives us, for the square of 4, fig. 23. Here the columns give Σp, but alternately 2q1, 2q3, and 2q2, 2q4; and the rows give Σq, but alternately 2p1, 2p3, and 2p2, 2p4; the diagonals giving Σp and Σq. If p1, p2, p3, p4and q1, q2, q3, q4be 1, 2, 4, 3, and 0, 1, 3, 2, we have the Nasik square of fig. 24. A square like this is engraved in the Sanskrit character on the gate of the fort of Gwalior, in India. The squares of higher multiples of 4 are readily obtained by a similar adjustment.Fig. 25—Nasik Cube.Fig. 26.Fig. 27.Fig. 28.Nasik Cubes.—A Nasik cube is composed of n³ small equal cubes, here called cubelets, in the centres of which the natural numbers from 1 to n³ are so placed that every section of the cube by planes perpendicular to an edge has the properties of a Nasik square; also sections by planes perpendicular to a face, and passing through the cubelet centres of any path of Nasical summation in that face. Fig. 25 shows by dots the way in which these cubes are constructed. A dot is here placed on three faces of a cubelet at the corner, showing that this cubelet belongs to each of the faces AOB, BOC, COA, of the cube. Dots are placed on the cubelets of some path of AOB (here the knight’s path), beginning from O, also on the cubelets of a knight’s path in BOC. Dots are now placed in the cubelets of similar paths to that on BOC in the other six sections parallel to BOC, starting from their dots in AOB. Forty-nine of the three hundred and forty-three cubelets will now contain a dot; and it will be observed that the dots in sections perpendicular to BO have arranged themselves in similar paths. In this manner, p1, q1, r1being placed in the corner cubelet O, these letters are severally placed in the cubelets of three different paths of AOB, and again along any similar paths in the seven sections perpendicular to AO, starting from the letters’ position in AOB. Next, p2q2r2, p3q3r3, ... p7q7r7are placed in the other cubelets of the edge AO, and dispersed in the same manner as p1q1r1. Every cubelet will then be found to contain a different combination of the p’s, q’s and r’s. If therefore the p’s are made equal to 1, 2, ... 7, and the q’s and r’s to 0, 1, 2, ... 6, in any order, and the q’s multiplied by 7, and the r’s by 7², then, as in the case of the squares, the 7³ cubelets will contain the numbers from 1 to 7³, and the Nasical summations will be Σ7²r + Σ7q + p. If 2, 4, 5 be values of r, p, q, the number for that cubelet is written 245 in the septenary scale, and if all the cubelet numbers are kept thus, the paths along which summations are found can be seen without adding, as the seven numbers would contain 1, 2, 3, ... 7 in the unit place, and 0, 1, 2, ... 6 in each of the other places. In all Nasik cubes, if such values are given to the letters on the central cubelet that the number is the middle one of the series 1 to n³, the sum of all the pairs of numbers opposite to and equidistant from the middle number is the double of it. Also, if around a Nasik cube the twenty-six surrounding equal cubes be placed with their cells filled with the same numbers, and their corresponding faces looking the same way,—and if the surrounding space be conceived thus filled with similar cubes, and a straight line of unlimited length be drawn through any two cubelet centres, one in each of any two cubes,—the numbers along that line will be found to recur in groups of seven, which (except in the three cases where the same p, q or r recur in the group) together make the Nasical summation of the cube. Further, if we take n similarly filled Nasik cubes of n, n new letters, s1, s2, ... sn, can be so placed, one in each of the n4cubelets of this group of n cubes, that each shall contain a different combination of the p’s, q’s, r’s and s’s. This is done by placing s1on each of the n² cubelets of the first cube that contain p1, and on the n² cubelets of the 2d, 3d, ... and nth cube that contain p2, p3, ... pnrespectively. This process is repeated with s2, beginning with the cube at which we ended, and so on with the other s’s; the n4cubelets, after multiplying the q’s, r’s, and s’s by n, n², and n³ respectively, will now be filled with the numbers from 1 to n4, and the constant summation will be Σn³s + Σn²r + Σnq + Σp. This process may be carried on without limit; for, if the n cubes are placed in a row with their faces resting on each other, and the corresponding faces looking the same way, n such parallelepipeds might be put side by side, and the n5cubelets of this solid square be Nasically filled by the introduction of a new letter t; while, by introducing another letter, the n6cubelets of the compound cube of n³ Nasikcubes might be filled by the numbers from 1 to n6, and soad infinitum. When the root is an odd composite number the values of the three groups of letters have to be adjusted as in squares, also in cubes of an even root. A similar process enables us to place successive numbers in the cells of several equal squares in which the Nasical summations are the same in each, as in fig. 26.Among the many ingenious squares given by various writers, this article may justly close with two by L. Euler, in theHistoire de l’académie royale des sciences(Berlin, 1759). In fig. 27 the natural numbers show the path of a knight that moves within an odd square in such a manner that the sum of pairs of numbers opposite to and equidistant from the middle figure is its double. In fig. 28 the knight returns to its starting cell in a square of 6, and the difference between the pairs of numbers opposite to and equidistant from the middle point is 18.A model consisting of seven Nasik cubes, constructed by A. H. Frost, is in the South Kensington Museum. The centres of the cubes are placed at equal distances in a straight line, the similar faces looking the same way in a plane parallel to that line. Each of the cubes has seven parallel glass plates, to which, on one side, the seven numbers in the septenary scale are fixed, and behind each, on the other side, its value in the common scale. 1201, the middle number from 1 to 74occupies the central cubelet of the middle cube. Besides each cube having separately the same Nasical summation, this is also obtained by adding the numbers in any seven similarly situated cubelets, one in each cube. Also, the sum of all pairs of numbers, in a straight line, through the central cube of the system, equidistant from it, in whatever cubes they are, is twice 1201.

Nasik Squares.—Squares that have many more summations than in rows, columns and diagonals were investigated by A. H. Frost (Cambridge Math. Jour., 1857), and called Nasik squares, from the town in India where he resided; and he extended the method to cubes, various sections of which have the same singular properties. In order to understand their construction it will be necessary toconsider carefully fig. 21, which shows that, when the root is a prime, and not composite, number, as 7, eight letters a, b, ... h may proceed from any, the same, cell, suppose that marked 0, each letter being repeated in the cells along different paths. These eight paths are called “normal paths,” their number being one more than the root. Observe here that, excepting the cells from which any two letters start, they do not occupy again the same cell, and that two letters, starting from any two different cells along different paths, will appear together in one and only one cell. Hence, if p1be placed in the cells of one of the n + 1 normal paths, each of the remaining n normal paths will contain one, and only one, of these p1’s. If now we fill each row with p2, p3, ... pnin the same order, commencing from the p1in that row, the p2’s, p3’s and pn’s will lie each in a path similar to that of p1, and each of the n normal paths will contain one, and only one, of the letters p1, p2,... pn, whose sum will be Σp. Similarly, if q1be placed along any of the normal paths, different from that of the p’s, and each row filled as above with the letters q2, q3, ... qn, the sum of the q’s along any normal path different from that of the q1will be Σq. The n² cells of the square will now be found to contain all the combinations of the p’s and q’s; and if the q’s be multiplied by n, the p’s made equal to 1, 2, ... n, and the q’s to 0, 1, 2, ... (n − 1) in any order, the Nasik square of n will be obtained, and the summations along all the normal paths, except those traversed by the p’s and q’s, will be the constant Σnq + Σp. When the root is an odd composite number, as 9, 15, &c., it will be found that in some paths, different from the two along which the p1and q1were placed, instead of having each of the p’s and q’s, some will be wanting, while some are repeated. Thus, in the case of 9, the triplets, p1p4p7, p2p5p8, p3p6p9, and q1q4q7, q2q5q8, q3q6q9occur, each triplet thrice, along paths whose summation should be—Σp 45 and Σr 36. But if we make p1, p2, ... p9, = 1, 3, 6, 5, 4, 7, 9, 8, 2, and the r1, r2, ... r9= 0, 2, 5, 4, 3, 6, 8, 7, 1, thrice each of the above sets of triplets will equal Σp and Σq respectively. If now the q’s are multiplied by 9, and added to the p’s in their several cells, we shall have a Nasik square, with a constant summation along eight of its ten normal paths. In fig. 22 the numbers are in the nonary scale; that in the centre is the middle one of 1 to 9², and the sum of pair of numbers equidistant from and opposite to the central 45 is twice 45; and the sum of any number and the 8 numbers 3 from it, diagonally, and in its row and column, is the constant Nasical summation,e.g.72 and 32, 22, 76, 77, 26, 37, 36, 27. The numbers in fig. 22 being kept in the nonary scale, it is not necessary to add any nine of them together in order to test the Nasical summation; for, taking the first column, the figures in the place of units are seen at once to form the series, 1, 2, 3, ... 9, and those in the other place three triplets of 6, 1, 5. For the squares of 15 the p’s and q’s may be respectively 1, 2, 10, 8, 6, 14, 15, 11, 4, 13, 9, 7, 3, 12, 5, and 0, 1, 9, 7, 5, 13, 14, 10, 3, 12, 8, 6, 2, 11, 4, where five times the sum of every third number and three times the sum of every fifth number makes Σp and Σq; then, if the q’s are multiplied by 15, and added to the p’s, the Nasik square of 15 is obtained. When the root is the multiple of 4, the same process gives us, for the square of 4, fig. 23. Here the columns give Σp, but alternately 2q1, 2q3, and 2q2, 2q4; and the rows give Σq, but alternately 2p1, 2p3, and 2p2, 2p4; the diagonals giving Σp and Σq. If p1, p2, p3, p4and q1, q2, q3, q4be 1, 2, 4, 3, and 0, 1, 3, 2, we have the Nasik square of fig. 24. A square like this is engraved in the Sanskrit character on the gate of the fort of Gwalior, in India. The squares of higher multiples of 4 are readily obtained by a similar adjustment.

Nasik Cubes.—A Nasik cube is composed of n³ small equal cubes, here called cubelets, in the centres of which the natural numbers from 1 to n³ are so placed that every section of the cube by planes perpendicular to an edge has the properties of a Nasik square; also sections by planes perpendicular to a face, and passing through the cubelet centres of any path of Nasical summation in that face. Fig. 25 shows by dots the way in which these cubes are constructed. A dot is here placed on three faces of a cubelet at the corner, showing that this cubelet belongs to each of the faces AOB, BOC, COA, of the cube. Dots are placed on the cubelets of some path of AOB (here the knight’s path), beginning from O, also on the cubelets of a knight’s path in BOC. Dots are now placed in the cubelets of similar paths to that on BOC in the other six sections parallel to BOC, starting from their dots in AOB. Forty-nine of the three hundred and forty-three cubelets will now contain a dot; and it will be observed that the dots in sections perpendicular to BO have arranged themselves in similar paths. In this manner, p1, q1, r1being placed in the corner cubelet O, these letters are severally placed in the cubelets of three different paths of AOB, and again along any similar paths in the seven sections perpendicular to AO, starting from the letters’ position in AOB. Next, p2q2r2, p3q3r3, ... p7q7r7are placed in the other cubelets of the edge AO, and dispersed in the same manner as p1q1r1. Every cubelet will then be found to contain a different combination of the p’s, q’s and r’s. If therefore the p’s are made equal to 1, 2, ... 7, and the q’s and r’s to 0, 1, 2, ... 6, in any order, and the q’s multiplied by 7, and the r’s by 7², then, as in the case of the squares, the 7³ cubelets will contain the numbers from 1 to 7³, and the Nasical summations will be Σ7²r + Σ7q + p. If 2, 4, 5 be values of r, p, q, the number for that cubelet is written 245 in the septenary scale, and if all the cubelet numbers are kept thus, the paths along which summations are found can be seen without adding, as the seven numbers would contain 1, 2, 3, ... 7 in the unit place, and 0, 1, 2, ... 6 in each of the other places. In all Nasik cubes, if such values are given to the letters on the central cubelet that the number is the middle one of the series 1 to n³, the sum of all the pairs of numbers opposite to and equidistant from the middle number is the double of it. Also, if around a Nasik cube the twenty-six surrounding equal cubes be placed with their cells filled with the same numbers, and their corresponding faces looking the same way,—and if the surrounding space be conceived thus filled with similar cubes, and a straight line of unlimited length be drawn through any two cubelet centres, one in each of any two cubes,—the numbers along that line will be found to recur in groups of seven, which (except in the three cases where the same p, q or r recur in the group) together make the Nasical summation of the cube. Further, if we take n similarly filled Nasik cubes of n, n new letters, s1, s2, ... sn, can be so placed, one in each of the n4cubelets of this group of n cubes, that each shall contain a different combination of the p’s, q’s, r’s and s’s. This is done by placing s1on each of the n² cubelets of the first cube that contain p1, and on the n² cubelets of the 2d, 3d, ... and nth cube that contain p2, p3, ... pnrespectively. This process is repeated with s2, beginning with the cube at which we ended, and so on with the other s’s; the n4cubelets, after multiplying the q’s, r’s, and s’s by n, n², and n³ respectively, will now be filled with the numbers from 1 to n4, and the constant summation will be Σn³s + Σn²r + Σnq + Σp. This process may be carried on without limit; for, if the n cubes are placed in a row with their faces resting on each other, and the corresponding faces looking the same way, n such parallelepipeds might be put side by side, and the n5cubelets of this solid square be Nasically filled by the introduction of a new letter t; while, by introducing another letter, the n6cubelets of the compound cube of n³ Nasikcubes might be filled by the numbers from 1 to n6, and soad infinitum. When the root is an odd composite number the values of the three groups of letters have to be adjusted as in squares, also in cubes of an even root. A similar process enables us to place successive numbers in the cells of several equal squares in which the Nasical summations are the same in each, as in fig. 26.

Among the many ingenious squares given by various writers, this article may justly close with two by L. Euler, in theHistoire de l’académie royale des sciences(Berlin, 1759). In fig. 27 the natural numbers show the path of a knight that moves within an odd square in such a manner that the sum of pairs of numbers opposite to and equidistant from the middle figure is its double. In fig. 28 the knight returns to its starting cell in a square of 6, and the difference between the pairs of numbers opposite to and equidistant from the middle point is 18.

A model consisting of seven Nasik cubes, constructed by A. H. Frost, is in the South Kensington Museum. The centres of the cubes are placed at equal distances in a straight line, the similar faces looking the same way in a plane parallel to that line. Each of the cubes has seven parallel glass plates, to which, on one side, the seven numbers in the septenary scale are fixed, and behind each, on the other side, its value in the common scale. 1201, the middle number from 1 to 74occupies the central cubelet of the middle cube. Besides each cube having separately the same Nasical summation, this is also obtained by adding the numbers in any seven similarly situated cubelets, one in each cube. Also, the sum of all pairs of numbers, in a straight line, through the central cube of the system, equidistant from it, in whatever cubes they are, is twice 1201.


Back to IndexNext