Chapter 15

(42)

H² = MH × H/M = 8π²Ad / {t² (d² − l²)² tan θ}.

(43)

When a high degree of accuracy is required, the experiments and calculations are less simple, and various corrections are applied. The moment of a magnet may also be deduced from a measurement of the couple exerted on the magnet by a uniform field H. Thus if the magnet is suspended horizontally by a fine wire, which, when the magnetic axis points north and south, is free from torsion, and if θ is the angle through which the upper end of the wire must be twisted to make the magnet point east and west, then MH = Cθ, or M = Cθ/H, where C is the torsional couple for 1°. A bifilar suspension is sometimes used instead of a single wire. If P is the weight of the magnet, l the length of each of the two threads, 2a the distance between their upper points of attachment, and 2b that between the lower points, then, approximately, MH = P(ab/l) sin θ. It is often sufficient to find the ratio of the moment of one magnet to that of another. If two magnets having moments M, M′ are arranged at right angles to each other upon a horizontal support which is free to rotate, their resultant R will set itself in the magnetic meridian. Let θ be the angle which the standard magnet M makes with the meridian, then M′/R = sin θ, and M/R = cos θ, whence M′ = M tan θ.

A convenient and rapid method of estimating a magnetic moment has been devised by H. Armagnat.18The magnet is laid on a table with its north pole pointing northwards, A compass having a very short needle is placed on the line which bisects the axis of the magnet at right angles, and is moved until a neutral point is found where the force due to the earth’s field H is balanced by that due to the magnet. If 2l is the distance between the poles m and −m, d the distance from either pole to a point P on the line AB (fig. 5), we have for the resultant force at P

R = −2 cos θ × m / d² = −2lm / d³ = -M / d³.

When P is the neutral point, H is equal and opposite to R; therefore M = Hd³, or the moment is numerically equal to the cube of the distance from the neutral point to a pole, multiplied by thehorizontal intensity of the earth’s force. The distance between the poles may with sufficient accuracy for a rough determination be assumed to be equal to five-sixths of the length of the magnet.

Measurement of Magnetization and Induction.—The magnetic condition assumed by a piece of ferromagnetic metal in different circumstances is determinable by various modes of experiment which may be classed as magnetometric, ballistic, and traction methods. When either the magnetization I or the induction B corresponding to a given magnetizing force H is known, the other may be found by means of the formula B = 4πI + H.

Magnetometric Methods.—Intensity of magnetization is most directly measured by observing the action which a magnetized body, generally a long straight rod, exerts upon a small magnetic needle placed near it. The magnetic needle may be cemented horizontally across the back of a little plane or concave mirror, about ¼ or3⁄8in. in diameter, which is suspended by a single fibre of unspun silk; this arrangement, when enclosed in a case with a glazed front to protect it from currents of air, constitutes a simple but efficient magnetometer. Deflections of the suspended needle are indicated by the movement of a narrow beam of light which the mirror reflects from a lamp and focusses upon a graduated cardboard scale placed at a distance of a few feet; the angular deflection of the beam of light is, of course, twice that of the needle. The suspended needle is, in the absence of disturbing causes, directed solely by the horizontal component of the earth’s field of magnetic force HE, and therefore sets itself approximately north and south. The magnetized body which is to be tested should be placed in such a position that the force HPdue to its poles may, at the spot occupied by the suspended needle, act in a direction at right angles to that due to the earth—that is, east and west. The direction of the resultant field of force will then make, with that of HE, an angle θ, such that Hp/ HE= tan θ, and the suspended needle will be deflected through the same angle. We have therefore

HP= HEtan θ.

The angle θ is indicated by the position of the spot of light upon the scale, and the horizontal intensity of the earth’s field HEis known; thus we can at once determine the value of HP, from which the magnetization I of the body under test may be calculated.

In order to fulfil the requirement that the field which a magnetized rod produces at the magnetometer shall be at right angles to that of the earth, the rod may be conveniently placed in any one of three different positions with regard to the suspended needle.Fig.6.(1) The rod is set in a horizontal position level with the suspended needle, its axis being in a line which is perpendicular to the magnetic meridian, and which passes through the centre of suspension of the needle. This is called the “end-on” position, and is indicated in fig. 6. AB is the rod and C the middle point of its axis; NS is the magnetometer needle; AM bisects the undeflected needle NS at right angles. Let 2l = the length of the rod (or, more accurately, the distance between its poles), v = its volume, m and −m the strength of its poles, and let d = the distance CM. For most ordinary purposes the length of the needle may be assumed to be negligible in comparison with the distance between the needle and the rod. We then have approximately for the field at M due to the rodHP=m−m= m4dl.(d − l)²(d + l)²(d² − l²)²Therefore2ml = M =(d² − l²)² HP=(d² − l²)² HEtan θ.2d2d(44)AndI =M=(d² − l²)² HEtan θ,v2dv(45)whence we can find the values of I which correspond to different angles of deflection.(2) The rod may be placed horizontally east and west in such a position that the direction of the undeflected suspended needle bisects it at right angles. This is known as the “broadside-on” position, and is represented in fig. 7. Let the distance of each pole of the rod AB from the centre of the magnetometer needle = d. Then, since HP, the force at M due to m and −m, is the resultant of m/d² and −m/d², we haveHP=2lm/d²dorHP=2ml,d³the direction being parallel to AB.AndI =d³HP=d³HEtan θ.vv(46)Fig. 7.Fig. 8.(3) In the third position the test rod is placed vertically with one of its poles at the level of the magnetometer needle, and in the line drawn perpendicularly to the undeflected needle from its centre of suspension. The arrangement is shown in fig. 8, where AB is the vertical rod and M indicates the position of the magnetometer needle, which is supposed to be perpendicular to the plane of the paper. Denoting the distance AM by d1, BM by d2, and AB by l, we have for the force at M due to the magnetism of the rodHP=m− horizontal component ofmd1²d2²= m(1−d1).d1²d2³Thereforem =HP=d1²HEtan θ,(1 / d1²) − (d1/ d2³)1 − (d1/ d2)³andI =ld1² HEtan θ.v {1 − (d1/ d2)³ }(47)This last method of arrangement is called by Ewing the “one-pole” method, because the magnetometer deflection is mainly caused by the upper pole of the rod (Magnetic Induction, p. 40). For experiments with long thin rods or wires it has an advantage over the other arrangements in that the position of the poles need not be known with great accuracy, a small upward or downward displacement having little effect upon the magnetometer deflection. On the other hand, a vertically placed rod is subject to the inconvenience that it is influenced by the earth’s magnetic field, which is not the case when the rod is horizontal and at right angles to the magnetic meridian. This extraneous influence may, however, be eliminated by surrounding the rod with a coil of wire carrying a current such as will produce in the interior a magnetic field equal and opposite to the vertical component of the earth’s field.If the cardboard scale upon which the beam of light is reflected by the magnetometer mirror is a flat one, the deflections as indicated by the movement of the spot of light are related to the actual deflections of the needle in the ratio of tan 2θ to θ. Since θ is always small, sufficiently accurate results may generally be obtained if we assume that tan 2θ = 2 tan θ. If the distance of the mirror from the scale is equal to n scale divisions, and if a deflection θ of the needle causes the reflected spot of light to move over s scale divisions, we shall haves / n = tan 2θ exactly,s / 2n = tan θ approximately.We may therefore generally substitute s/2n for tan θ in the various expressions which have been given for I.Fig.9.Of the three methods which have been described, the first two are generally the most suitable for determining the moment or the magnetization of a permanent magnet, and the last for studying the changes which occur in the magnetization of a long rod or wire when subjected to various external magnetic forces, or, in other words, for determining the relation of I to H. A plan of the apparatus as arranged by Ewing for the latter purpose is shown diagrammatically in fig. 9. The cardboard scale SS is placed above a wooden screen, having in it a narrow vertical slit which permits a beam of light from the lamp L to reach the mirror of the magnetometer M, whence it is reflected upon the scale. A is the upper end of a glass tube, half a metre or so in length, which is clamped in a vertical position behind the magnetometer. The tube is wound over its whole length with two separate coils of insulated wire, the one being outside the other. The inner coil is supplied, through the intervening apparatus, with current from the battery of secondary cells B1; this produces the desired magnetic field inside the tube. The outer coil derives current, through an adjustable resistance R, from aconstant cell B2; its object is to produce inside the tube a magnetic field equal and opposite to that due to the earth’s magnetism. C is a “compensating coil” consisting of a few turns of wire through which the magnetizing current passes; it serves to neutralize the effect produced upon the magnetometer by the magnetizing coil, and its distance from the magnetometer is so adjusted that when the circuit is closed, no ferromagnetic metal being inside the magnetizing coil, the magnetometer needle undergoes no deflection. K is a commutator for reversing the direction of the magnetizing current, and G a galvanometer for measuring it. The strength of the magnetizing current is regulated by adjusting the position of the sliding contact E upon the resistance DF. The current increases to a maximum as E approaches F, and diminishes to almost nothing when E is brought up to D; it can be completely interrupted by means of the switch H.The specimen upon which an experiment is to be made generally consists of a wire having a “dimensional ratio” of at least 300 or 400; its length should be rather less than that of the magnetizing coil, in order that the field H0, to which it is subjected, may be approximately uniform from end to end. The wire is supported inside the glass tube A with its upper pole at the same height as the magnetometer needle. Various currents are then passed through the magnetizing coil, the galvanometer readings and the simultaneous magnetometer deflections being noted. From the former we deduce H0, and from the latter the corresponding value of I, using the formulae H0= 4πin/l andI =d1² HE× s,2nπr² { 1 − (d1/ d2)³ }where s is the deflection in scale-divisions, n the distance in scale-divisions between the scale and the mirror, and r the radius of the wire.Fig.10.The curve, fig. 10, shows the result of a typical experiment made upon a piece of soft iron (Ewing,Phil. Trans.vol. clxxvi. Plate 59), the magnetizing field H0being first gradually increased and then diminished to zero. When the length of the wire exceeds 400 diameters, or thereabouts, H0may generally be considered as equivalent to H, the actual strength of the field as modified by the magnetization of the wire; but if greater accuracy is desired, the value of Hi(=NI) may be found by the help of du Bois’s table and subtracted from H0. For a dimensional ratio of 400, N =0.00028, and therefore H = H0− 0.00028I. This correction may be indicated in the diagram by a straight line drawn from 0 through the point at which the line of I = 1000 intersects that of H = 0.28 (Rayleigh, Phil. Mag. xxii. 175), the true value of H for any point on the curve being that measured from the sloping line instead of from the vertical axis. The effect of the ends of the wire is, as Ewing remarks, to shear the diagram in the horizontal direction through the angle which the sloping line makes with the vertical.Since the induction B is equal to H + 4πI, it is easy from the results of experiments such as that just described to deduce the relation between B and H; a curve indicating such relation is called a curve of induction. The general character of curves of magnetization and of induction will be discussed later. A notable feature in both classes of curves is that, owing to hysteresis, the ascending and descending limbs do not coincide, but follow very different courses. If it is desired to annihilate the hysteretic effects of previous magnetization and restore the metal to its original condition, it may be demagnetized by reversals. This is effected by slowly moving the sliding contact E (fig. 9) from F to D, while at the same time the commutator K is rapidly worked, a series of alternating currents of gradually diminishing strength being thus caused to pass through the magnetizing coil.

In order to fulfil the requirement that the field which a magnetized rod produces at the magnetometer shall be at right angles to that of the earth, the rod may be conveniently placed in any one of three different positions with regard to the suspended needle.

(1) The rod is set in a horizontal position level with the suspended needle, its axis being in a line which is perpendicular to the magnetic meridian, and which passes through the centre of suspension of the needle. This is called the “end-on” position, and is indicated in fig. 6. AB is the rod and C the middle point of its axis; NS is the magnetometer needle; AM bisects the undeflected needle NS at right angles. Let 2l = the length of the rod (or, more accurately, the distance between its poles), v = its volume, m and −m the strength of its poles, and let d = the distance CM. For most ordinary purposes the length of the needle may be assumed to be negligible in comparison with the distance between the needle and the rod. We then have approximately for the field at M due to the rod

Therefore

(44)

And

(45)

whence we can find the values of I which correspond to different angles of deflection.

(2) The rod may be placed horizontally east and west in such a position that the direction of the undeflected suspended needle bisects it at right angles. This is known as the “broadside-on” position, and is represented in fig. 7. Let the distance of each pole of the rod AB from the centre of the magnetometer needle = d. Then, since HP, the force at M due to m and −m, is the resultant of m/d² and −m/d², we have

or

the direction being parallel to AB.

And

(46)

(3) In the third position the test rod is placed vertically with one of its poles at the level of the magnetometer needle, and in the line drawn perpendicularly to the undeflected needle from its centre of suspension. The arrangement is shown in fig. 8, where AB is the vertical rod and M indicates the position of the magnetometer needle, which is supposed to be perpendicular to the plane of the paper. Denoting the distance AM by d1, BM by d2, and AB by l, we have for the force at M due to the magnetism of the rod

Therefore

and

(47)

This last method of arrangement is called by Ewing the “one-pole” method, because the magnetometer deflection is mainly caused by the upper pole of the rod (Magnetic Induction, p. 40). For experiments with long thin rods or wires it has an advantage over the other arrangements in that the position of the poles need not be known with great accuracy, a small upward or downward displacement having little effect upon the magnetometer deflection. On the other hand, a vertically placed rod is subject to the inconvenience that it is influenced by the earth’s magnetic field, which is not the case when the rod is horizontal and at right angles to the magnetic meridian. This extraneous influence may, however, be eliminated by surrounding the rod with a coil of wire carrying a current such as will produce in the interior a magnetic field equal and opposite to the vertical component of the earth’s field.

If the cardboard scale upon which the beam of light is reflected by the magnetometer mirror is a flat one, the deflections as indicated by the movement of the spot of light are related to the actual deflections of the needle in the ratio of tan 2θ to θ. Since θ is always small, sufficiently accurate results may generally be obtained if we assume that tan 2θ = 2 tan θ. If the distance of the mirror from the scale is equal to n scale divisions, and if a deflection θ of the needle causes the reflected spot of light to move over s scale divisions, we shall have

s / n = tan 2θ exactly,

s / 2n = tan θ approximately.

We may therefore generally substitute s/2n for tan θ in the various expressions which have been given for I.

Of the three methods which have been described, the first two are generally the most suitable for determining the moment or the magnetization of a permanent magnet, and the last for studying the changes which occur in the magnetization of a long rod or wire when subjected to various external magnetic forces, or, in other words, for determining the relation of I to H. A plan of the apparatus as arranged by Ewing for the latter purpose is shown diagrammatically in fig. 9. The cardboard scale SS is placed above a wooden screen, having in it a narrow vertical slit which permits a beam of light from the lamp L to reach the mirror of the magnetometer M, whence it is reflected upon the scale. A is the upper end of a glass tube, half a metre or so in length, which is clamped in a vertical position behind the magnetometer. The tube is wound over its whole length with two separate coils of insulated wire, the one being outside the other. The inner coil is supplied, through the intervening apparatus, with current from the battery of secondary cells B1; this produces the desired magnetic field inside the tube. The outer coil derives current, through an adjustable resistance R, from aconstant cell B2; its object is to produce inside the tube a magnetic field equal and opposite to that due to the earth’s magnetism. C is a “compensating coil” consisting of a few turns of wire through which the magnetizing current passes; it serves to neutralize the effect produced upon the magnetometer by the magnetizing coil, and its distance from the magnetometer is so adjusted that when the circuit is closed, no ferromagnetic metal being inside the magnetizing coil, the magnetometer needle undergoes no deflection. K is a commutator for reversing the direction of the magnetizing current, and G a galvanometer for measuring it. The strength of the magnetizing current is regulated by adjusting the position of the sliding contact E upon the resistance DF. The current increases to a maximum as E approaches F, and diminishes to almost nothing when E is brought up to D; it can be completely interrupted by means of the switch H.

The specimen upon which an experiment is to be made generally consists of a wire having a “dimensional ratio” of at least 300 or 400; its length should be rather less than that of the magnetizing coil, in order that the field H0, to which it is subjected, may be approximately uniform from end to end. The wire is supported inside the glass tube A with its upper pole at the same height as the magnetometer needle. Various currents are then passed through the magnetizing coil, the galvanometer readings and the simultaneous magnetometer deflections being noted. From the former we deduce H0, and from the latter the corresponding value of I, using the formulae H0= 4πin/l and

where s is the deflection in scale-divisions, n the distance in scale-divisions between the scale and the mirror, and r the radius of the wire.

The curve, fig. 10, shows the result of a typical experiment made upon a piece of soft iron (Ewing,Phil. Trans.vol. clxxvi. Plate 59), the magnetizing field H0being first gradually increased and then diminished to zero. When the length of the wire exceeds 400 diameters, or thereabouts, H0may generally be considered as equivalent to H, the actual strength of the field as modified by the magnetization of the wire; but if greater accuracy is desired, the value of Hi(=NI) may be found by the help of du Bois’s table and subtracted from H0. For a dimensional ratio of 400, N =0.00028, and therefore H = H0− 0.00028I. This correction may be indicated in the diagram by a straight line drawn from 0 through the point at which the line of I = 1000 intersects that of H = 0.28 (Rayleigh, Phil. Mag. xxii. 175), the true value of H for any point on the curve being that measured from the sloping line instead of from the vertical axis. The effect of the ends of the wire is, as Ewing remarks, to shear the diagram in the horizontal direction through the angle which the sloping line makes with the vertical.

Since the induction B is equal to H + 4πI, it is easy from the results of experiments such as that just described to deduce the relation between B and H; a curve indicating such relation is called a curve of induction. The general character of curves of magnetization and of induction will be discussed later. A notable feature in both classes of curves is that, owing to hysteresis, the ascending and descending limbs do not coincide, but follow very different courses. If it is desired to annihilate the hysteretic effects of previous magnetization and restore the metal to its original condition, it may be demagnetized by reversals. This is effected by slowly moving the sliding contact E (fig. 9) from F to D, while at the same time the commutator K is rapidly worked, a series of alternating currents of gradually diminishing strength being thus caused to pass through the magnetizing coil.

The magnetometric method, except when employed in connexion with ellipsoids, for which the demagnetizing factors are accurately known, is generally less satisfactory for the exact determination of induction or magnetization than the ballistic method. But for much important experimental work it is better adapted than any other, and is indeed sometimes the only method possible.19

Ballistic Methods.—The so-called “ballistic” method of measuring induction is based upon the fact that a change of the induction through a closed linear conductor sets up in the conductor an electromotive force which is proportional to the rate of change. If the conductor consists of a coil of wire the ends of which are connected with a suitable galvanometer, the integral electromotive force due to a sudden increase or decrease of the induction through the coil displaces in the circuit a quantity of electricity Q = δBnsR, where δB is the increment or decrement of induction per square centimetre, s is the area of the coil, n the number of turns of wire, and R the resistance of the circuit. Under the influence of the transient current, the galvanometer needle undergoes a momentary deflection, or “throw,” which is proportional to Q, and therefore to δB, and thus, if we know the deflection produced by the discharge through the galvanometer of a given quantity of electricity, we have the means of determining the value of δB.

The galvanometer which is used for ballistic observations should have a somewhat heavy needle with a period of vibration of not less than five seconds, so that the transient current may have ceased before the swing has well begun; an instrument of the d’Arsonval form is recommended, not only because it is unaffected by outside magnetic influence, but also because the moving part can be instantly brought to rest by means of a short-circuit key, thus effecting a great saving of time when a series of observations is being made. In practice it is usual to standardize or “calibrate” the galvanometer by causing a known change of induction to take place within a standard coil connected with it, and noting the corresponding deflection on the galvanometer scale. Let s be the area of a single turn of the standard coil, n the number of its turns, and r the resistance of the circuit of which the coil forms part; and let S, N and R be the corresponding constants for a coil which is to be used in an experiment. Then if a known change of induction δBainside the standard coil is found to cause a throw of d scale-divisions, any change of induction δB through the experimental coil will be numerically equal to the corresponding throw D multiplied by snRBa/SNrd. For a series of experiments made with the same coil this fraction is constant, and we may write δB = kD. Rowland and others have used an earth coil for calibrating the galvanometer, a known change of induction through the coil being produced by turning it over in the earth’s magnetic field, but for several reasons it is preferable to employ an electric current as the source of a known induction. A primary coil of length l, having n turns, is wound upon a cylinder made of non-conducting and non-magnetic material, and upon the middle of the primary a secondary or induction coil is closely fitted. When a current of strength i is suddenly interrupted in the primary, the increment of induction through the secondary is sensibly equal to 4πin/l units. All the data required for standardizing the galvanometer can in this way be determined with accuracy.

The galvanometer which is used for ballistic observations should have a somewhat heavy needle with a period of vibration of not less than five seconds, so that the transient current may have ceased before the swing has well begun; an instrument of the d’Arsonval form is recommended, not only because it is unaffected by outside magnetic influence, but also because the moving part can be instantly brought to rest by means of a short-circuit key, thus effecting a great saving of time when a series of observations is being made. In practice it is usual to standardize or “calibrate” the galvanometer by causing a known change of induction to take place within a standard coil connected with it, and noting the corresponding deflection on the galvanometer scale. Let s be the area of a single turn of the standard coil, n the number of its turns, and r the resistance of the circuit of which the coil forms part; and let S, N and R be the corresponding constants for a coil which is to be used in an experiment. Then if a known change of induction δBainside the standard coil is found to cause a throw of d scale-divisions, any change of induction δB through the experimental coil will be numerically equal to the corresponding throw D multiplied by snRBa/SNrd. For a series of experiments made with the same coil this fraction is constant, and we may write δB = kD. Rowland and others have used an earth coil for calibrating the galvanometer, a known change of induction through the coil being produced by turning it over in the earth’s magnetic field, but for several reasons it is preferable to employ an electric current as the source of a known induction. A primary coil of length l, having n turns, is wound upon a cylinder made of non-conducting and non-magnetic material, and upon the middle of the primary a secondary or induction coil is closely fitted. When a current of strength i is suddenly interrupted in the primary, the increment of induction through the secondary is sensibly equal to 4πin/l units. All the data required for standardizing the galvanometer can in this way be determined with accuracy.

The ballistic method is largely employed for determining the relation of induction to magnetizing force in samples of the iron and steel used in the manufacture of electrical machinery, and especially for the observation of hysteresis effects. The sample may have the form of a closed ring, upon which are wound the induction coil and another coil for taking the magnetizing current; or it may consist of a long straight rod or wire which can be slipped into a magnetizing coil such as is used in magnetometric experiments, the induction coil being wound upon the middle of the wire. With these arrangements there is no demagnetizing force to be considered, for the ring has not any ends to produce one, and the force due to the ends of a rod 400 or 500 diameters in length is quite insensible at the middle portion; H therefore is equal to H0.

E. Grassot has devised a galvanometer, or “fluxmeter,” which greatly alleviates the tedious operation of taking ballistic readings.20The instrument is of the d’Arsonval type; its coil turns in a strong uniform field, and is suspended in such a manner that torsion is practically negligible, the swings of the coil being limited by damping influences, chiefly electromagnetic. The index therefore remains almost stationary at the limit of its deflection, and the deflection is approximately the same whether the change of induction occurs suddenly or gradually.

E. Grassot has devised a galvanometer, or “fluxmeter,” which greatly alleviates the tedious operation of taking ballistic readings.20The instrument is of the d’Arsonval type; its coil turns in a strong uniform field, and is suspended in such a manner that torsion is practically negligible, the swings of the coil being limited by damping influences, chiefly electromagnetic. The index therefore remains almost stationary at the limit of its deflection, and the deflection is approximately the same whether the change of induction occurs suddenly or gradually.

Induction and Hysteresis Curves.—Some typical induction curves, copied from a paper by Ewing (Proc. Inst. C.E.vol. cxxvi.), are given in figs. 11, 12 and 13. Fig. 11 shows the relation of B to H in a specimen which has never before been magnetized. The experiment may be made in two different ways: (1) the magnetizing current is increased by a series of sudden steps, each of which produces a ballistic throw, the value of B after any one throw being proportional to the sum of that and all the previous throws; (2) the magnetizing current having been brought to any desired value, is suddenly reversed, and the observed throw taken as measuring twice the actual induction. Fig. 12 shows the nature of the course taken by the curve when the magnetizing current, after having been raised to the value corresponding to the point a, is diminished by steps until it is nothing, and then gradually increased in the reverse direction. The downward course of the curve is, owing to hysteresis, strikingly different from its upward course, and when the magnetizing force has been reduced to zero, there is still remaining an induction of 7500 units. If the operation is again reversed, the upward course will be nearly, but not exactly, of the form shown by the line d e a, fig. 13. After a few repetitions of the reversal, the process becomes strictly cyclic, the upward and downward curves always following with precision the paths indicated in the figure. In order to establish the cyclic condition, it is sufficient to apply alternately the greatest positive and negative forces employed in the test (greatest H = about ±5 C.G.S. units in the case illustrated in the figure), an operation which is performed by simply reversing the direction of the maximum magnetizing current a few times.

The closed figure a c d e a is variously called ahysteresis curveordiagramorloop. The area ∫ H dB enclosed by it represents the work done in carrying a cubic centimetre of the iron through the corresponding magnetic cycle; expressed in ergs this work is 1/4π ∫ H dB.21To quote an example given by J. A. Fleming, it requires about 18 foot-pounds of work to make a complete magnetic cycle in a cubic foot of wrought iron, strongly magnetized first one way and then the other, the work so expended taking the form of heat in the mass.

Fig. 14 shows diagrammatically a convenient arrangement described by Ewing (seeProc. Inst. C.E.vol. cxxvi., andPhil. Trans., 1893A, p. 987) for carrying out ballistic tests by which either the simple B-H curve (fig. 11) or the hysteresis curve (figs. 12 and 13) can be determined. The sample under test is prepared in the form of a ring A, upon which are wound the induction and the magnetizing coils; the latter should be wound evenly over the whole ring, though for the sake of clearness only part of the winding is indicated in the diagram. The magnetizing current, which is derived from the storage battery B, is regulated by the adjustable resistance R and measured by the galvanometer G. The current passes through the rocking key K, which, when thrown over to the right, places a in contact with c and b with d, and when thrown over to the left, places a in contact with e and b with f. When the switch S is closed, K acts simply as a commutator or current-reverser, but if K is thrown over from right to left while S is opened, not only is the current reversed, but its strength is at the same time diminished by the interposition of the adjustable resistance R2. The induction coil wound upon the ring is connected to the ballistic galvanometer G2in series with a large permanent resistance R3. In the same circuit is also included the induction coil E, which is used for standardizing the galvanometer; this secondary coil is represented in the diagram by three turns of wire wound over a much longer primary coil. The short-circuit key F is kept closed except when an observation is about to be made; its object is to arrest the swing of the d’Arsonval galvanometer G2. By means of the three-way switch C the battery current may be sent either into the primary of E, for the purpose of calibrating the galvanometer, or into the magnetizing coil of the ring under test. When it is desired to obtain a simple curve of induction, such as that in fig. 11, S is kept permanently closed, and corresponding values of H and B are determined by one of the two methods already described, the strength of the battery-current being varied by means of the adjustable resistance R. When a hysteresis curve is to be obtained, the procedure is as follows: The current is first adjusted by means of R to such a strength as will fit it to produce the greatest + and − values of the magnetizing force which it is intended to apply in the course of the cycle; then it is reversed several times, and when the range of the galvanometer throws has become constant, half the extent of an excursion indicates the induction corresponding to the extreme value of H, and gives the point a in the curve fig. 12. The reversing key K having been put over to the left side, the short-circuit key S is suddenly opened; this inserts the resistance R, which has been suitably adjusted beforehand, and thus reduces the current and therefore the magnetizing force to a known value. The galvanometer throw which results from the change of current measures the amount by which the induction is reduced, and thus a second point on the curve is found. In a similar manner, by giving different values to the resistance R, any desired number of points between a and c in the curve can be determined. To continue the process, the key K is turned over to the right-hand side, and then, while S is open, is turned back, thereby not only reversing the direction of the current, but diminishing its strength by an amount depending upon the previous adjustment of R2. In this way points can be found lying anywhere between c and d of fig. 12, and the determination of the downward limb of the curve is therefore completed. As the return curve, shown in fig. 13, is merely an inverted copy of the other, no separate determination of it is necessary.

Fig. 14 shows diagrammatically a convenient arrangement described by Ewing (seeProc. Inst. C.E.vol. cxxvi., andPhil. Trans., 1893A, p. 987) for carrying out ballistic tests by which either the simple B-H curve (fig. 11) or the hysteresis curve (figs. 12 and 13) can be determined. The sample under test is prepared in the form of a ring A, upon which are wound the induction and the magnetizing coils; the latter should be wound evenly over the whole ring, though for the sake of clearness only part of the winding is indicated in the diagram. The magnetizing current, which is derived from the storage battery B, is regulated by the adjustable resistance R and measured by the galvanometer G. The current passes through the rocking key K, which, when thrown over to the right, places a in contact with c and b with d, and when thrown over to the left, places a in contact with e and b with f. When the switch S is closed, K acts simply as a commutator or current-reverser, but if K is thrown over from right to left while S is opened, not only is the current reversed, but its strength is at the same time diminished by the interposition of the adjustable resistance R2. The induction coil wound upon the ring is connected to the ballistic galvanometer G2in series with a large permanent resistance R3. In the same circuit is also included the induction coil E, which is used for standardizing the galvanometer; this secondary coil is represented in the diagram by three turns of wire wound over a much longer primary coil. The short-circuit key F is kept closed except when an observation is about to be made; its object is to arrest the swing of the d’Arsonval galvanometer G2. By means of the three-way switch C the battery current may be sent either into the primary of E, for the purpose of calibrating the galvanometer, or into the magnetizing coil of the ring under test. When it is desired to obtain a simple curve of induction, such as that in fig. 11, S is kept permanently closed, and corresponding values of H and B are determined by one of the two methods already described, the strength of the battery-current being varied by means of the adjustable resistance R. When a hysteresis curve is to be obtained, the procedure is as follows: The current is first adjusted by means of R to such a strength as will fit it to produce the greatest + and − values of the magnetizing force which it is intended to apply in the course of the cycle; then it is reversed several times, and when the range of the galvanometer throws has become constant, half the extent of an excursion indicates the induction corresponding to the extreme value of H, and gives the point a in the curve fig. 12. The reversing key K having been put over to the left side, the short-circuit key S is suddenly opened; this inserts the resistance R, which has been suitably adjusted beforehand, and thus reduces the current and therefore the magnetizing force to a known value. The galvanometer throw which results from the change of current measures the amount by which the induction is reduced, and thus a second point on the curve is found. In a similar manner, by giving different values to the resistance R, any desired number of points between a and c in the curve can be determined. To continue the process, the key K is turned over to the right-hand side, and then, while S is open, is turned back, thereby not only reversing the direction of the current, but diminishing its strength by an amount depending upon the previous adjustment of R2. In this way points can be found lying anywhere between c and d of fig. 12, and the determination of the downward limb of the curve is therefore completed. As the return curve, shown in fig. 13, is merely an inverted copy of the other, no separate determination of it is necessary.

In fig. 15 (J. A. Fleming,Magnets and Electric Currents, p. 193) are shown three very different types of hysteresis curves, characteristic of the special qualities of the metals from which they were respectively obtained. The distinguishing feature of the first is the steepness of its outlines; this indicates that the induction increases rapidly in relation to the magnetic force, and hence the metal is well suited for the construction of dynamo magnets. The second has a very small area, showing that the work done in reversing the magnetization is small; the metal is therefore adapted for use in alternating current transformers. On the other hand, the form of the third curve, with its large intercepts on the axes of H and B, denotes that the specimen to which it relates possesses both retentiveness and coercive force in a high degree; such a metal would be chosen for making good permanent magnets.

Several arrangements have been devised for determining hysteresis more easily and expeditiously than is possible by the ballistic method. The best known is J. A. Ewing’s hysteresis-tester,22which is specially intended for testing the sheet iron used in transformers. The sample, arranged as a bundle of rectangular strips, is caused to rotate about a central horizontal axis between the poles of an upright C-shaped magnet, which is supported near its middle upon knife-edges in such a manner that it can oscillate about an axis in a line with that about which the specimen rotates; the lower side of the magnet is weighted, to give it some stability. When the specimen rotates, the magnet is deflected from its upright position by an amount which depends upon the work done in a single complete rotation, and therefore upon the hysteresis. The deflection is indicated by a pointer upon a graduated scale, the readings being interpreted by comparison with two standard specimens supplied with the instrument. G. F. Searle and T. G. Bedford23haveintroduced the method of measuring hysteresis by means of an electro-dynamometer used ballistically. The fixed and suspended coils of the dynamometer are respectively connected in series with the magnetizing solenoid and with a secondary wound upon the specimen. When the magnetizing current is twice reversed, so as to complete a cycle, the sum of the two deflections, multiplied by a factor depending upon the sectional area of the specimen and upon the constants of the apparatus, gives the hysteresis for a complete cycle in ergs per cubic centimetre. For specimens of large sectional area it is necessary to apply corrections in respect of the energy dissipated by eddy currents and in heating the secondary circuit. The method has been employed by the authors themselves in studying the effects of tension, torsion and circular magnetization, while R. L. Wills24has made successful use of it in a research on the effects of temperature, a matter of great industrial importance.C. P. Steinmetz (Electrician, 1891, 26, p. 261; 1892, 28, pp. 384, 408, 425) has called attention to a simple relation which appears to exist between the amount of energy dissipated in carrying a piece of iron or steel through a magnetic cycle and the limiting value of the induction reached in the cycle. Denoting by W the work in ergs done upon a cubic centimetre of the metal (= 1/4π ∫ H dB or ∫ H dI), he finds W = ηB1.6approximately, where η is a number, called the hysteretic constant, depending upon the metal, and B is the maximum induction. The value of the constant η ranges in different metals from about 0.001 to 0.04; in soft iron and steel it is said to be generally not far from 0.002. Steinmetz’s formula may be tested by taking a series of hysteresis curves between different limits of B, measuring their areas by a planimeter, and plotting the logarithms of these divided by 4π as ordinates against logarithms of the corresponding maximum values of B as abscissae. The curve thus constructed should be a straight line inclined to the horizontal axis at an angle θ, the tangent of which is 1.6. Ewing and H. G. Klaassen (Phil. Trans., 1893, 184, 1017) have in this manner examined how nearly and within what range a formula of the type W = ηBεmay be taken to represent the facts. The results of an example which they quote in detail may be briefly summarized as follows:—Limits of B.HystereticConstant.ηIndex.ε (= tan θ)Degrees.θ200 to   500...1.962.25500 to  1,000...1.6859.251,000 to  2,000...1.5557.252,000 to  8,0000.011.47555.758,000 to 14,0000.001341.7059.50It is remarked by the experimenters that the value of the index ε is by no means constant, but changes in correspondence with the successive well-marked stages in the process of magnetization. But though a formula of this type has no physical significance, and cannot be accepted as an equation to the actual curve of W and B, it is, nevertheless, the case that by making the index ε = 1.6, and assigning a suitable value to η, a formula may be obtained giving an approximation to the truth which is sufficiently close for the ordinary purposes of electrical engineers, especially when the limiting value of B is neither very great nor very small. Alexander Siemens (Journ. Inst. Eng., 1894, 23, 229) states that in the hundreds of comparisons of test pieces which have been made at the works of his firm, Steinmetz’s law has been found to be practically correct.25An interesting collection of W-B curves embodying the results of actual experiments by Ewing and Klaassen on different specimens of metal is given in fig. 16. It has been shown by Kennelly (Electrician, 1892, 28, 666) that Steinmetz’s formula gives approximately correct results in the case of nickel. Working with two different specimens, he found that the hysteresis loss in ergs per cubic centimetre (W) was fairly represented by 0.00125B1.6and 0.00101B1.6respectively, the maximum induction ranging from about 300 to 3000. The applicability of the law to cobalt has been investigated by Fleming (Phil. Mag., 1899, 48, 271), who used a ring of cast cobalt containing about 96% of the pure metal. The logarithmic curves which accompany his paper demonstrate that within wide ranges of maximum induction W = 0.01B1.6= 0.527I1.62very nearly. Fleming rightly regards it as not a little curious that for materials differing so much as this cast cobalt and soft annealed iron the hysteretic exponent should in both cases be so near to 1.6. After pointing out that, since the magnetization of the metal is the quantity really concerned, W is more appropriately expressed in terms of I, the magnetic moment per unit of volume, than of B, he suggests an experiment to determine whether the mechanical work required to effect the complete magnetic reversal of a crowd of small compass needles (representative of magnetic molecules) is proportional to the 1.6th power of the aggregate maximum magnetic moment before or after completion of the cycle.Fig. 16.a, Fine steel wire 0.257 mm. diam.b, Fine iron wire 0.34 mm. diam.c, Fine iron wire 0.2475 mm. diam.d, Thin sheet iron 0.47 mm. thick.e, Iron wire 0.602 mm. diam.f, Iron wire 0.975 mm. diam.g, Sheet iron 1.95 mm. thick.h, Thin sheet iron 0.367 mm. thick.i. Very soft iron wire.The experiments of K. Honda and S. Shimizu26indicate that Steinmetz’s formula holds for nickel and annealed cobalt up to B = 3000, for cast cobalt and tungsten steel up to B = 8000, and for Swedish iron up to B = 18,000, the range being in all cases extended at the temperature of liquid air.

Several arrangements have been devised for determining hysteresis more easily and expeditiously than is possible by the ballistic method. The best known is J. A. Ewing’s hysteresis-tester,22which is specially intended for testing the sheet iron used in transformers. The sample, arranged as a bundle of rectangular strips, is caused to rotate about a central horizontal axis between the poles of an upright C-shaped magnet, which is supported near its middle upon knife-edges in such a manner that it can oscillate about an axis in a line with that about which the specimen rotates; the lower side of the magnet is weighted, to give it some stability. When the specimen rotates, the magnet is deflected from its upright position by an amount which depends upon the work done in a single complete rotation, and therefore upon the hysteresis. The deflection is indicated by a pointer upon a graduated scale, the readings being interpreted by comparison with two standard specimens supplied with the instrument. G. F. Searle and T. G. Bedford23haveintroduced the method of measuring hysteresis by means of an electro-dynamometer used ballistically. The fixed and suspended coils of the dynamometer are respectively connected in series with the magnetizing solenoid and with a secondary wound upon the specimen. When the magnetizing current is twice reversed, so as to complete a cycle, the sum of the two deflections, multiplied by a factor depending upon the sectional area of the specimen and upon the constants of the apparatus, gives the hysteresis for a complete cycle in ergs per cubic centimetre. For specimens of large sectional area it is necessary to apply corrections in respect of the energy dissipated by eddy currents and in heating the secondary circuit. The method has been employed by the authors themselves in studying the effects of tension, torsion and circular magnetization, while R. L. Wills24has made successful use of it in a research on the effects of temperature, a matter of great industrial importance.

C. P. Steinmetz (Electrician, 1891, 26, p. 261; 1892, 28, pp. 384, 408, 425) has called attention to a simple relation which appears to exist between the amount of energy dissipated in carrying a piece of iron or steel through a magnetic cycle and the limiting value of the induction reached in the cycle. Denoting by W the work in ergs done upon a cubic centimetre of the metal (= 1/4π ∫ H dB or ∫ H dI), he finds W = ηB1.6approximately, where η is a number, called the hysteretic constant, depending upon the metal, and B is the maximum induction. The value of the constant η ranges in different metals from about 0.001 to 0.04; in soft iron and steel it is said to be generally not far from 0.002. Steinmetz’s formula may be tested by taking a series of hysteresis curves between different limits of B, measuring their areas by a planimeter, and plotting the logarithms of these divided by 4π as ordinates against logarithms of the corresponding maximum values of B as abscissae. The curve thus constructed should be a straight line inclined to the horizontal axis at an angle θ, the tangent of which is 1.6. Ewing and H. G. Klaassen (Phil. Trans., 1893, 184, 1017) have in this manner examined how nearly and within what range a formula of the type W = ηBεmay be taken to represent the facts. The results of an example which they quote in detail may be briefly summarized as follows:—

It is remarked by the experimenters that the value of the index ε is by no means constant, but changes in correspondence with the successive well-marked stages in the process of magnetization. But though a formula of this type has no physical significance, and cannot be accepted as an equation to the actual curve of W and B, it is, nevertheless, the case that by making the index ε = 1.6, and assigning a suitable value to η, a formula may be obtained giving an approximation to the truth which is sufficiently close for the ordinary purposes of electrical engineers, especially when the limiting value of B is neither very great nor very small. Alexander Siemens (Journ. Inst. Eng., 1894, 23, 229) states that in the hundreds of comparisons of test pieces which have been made at the works of his firm, Steinmetz’s law has been found to be practically correct.25An interesting collection of W-B curves embodying the results of actual experiments by Ewing and Klaassen on different specimens of metal is given in fig. 16. It has been shown by Kennelly (Electrician, 1892, 28, 666) that Steinmetz’s formula gives approximately correct results in the case of nickel. Working with two different specimens, he found that the hysteresis loss in ergs per cubic centimetre (W) was fairly represented by 0.00125B1.6and 0.00101B1.6respectively, the maximum induction ranging from about 300 to 3000. The applicability of the law to cobalt has been investigated by Fleming (Phil. Mag., 1899, 48, 271), who used a ring of cast cobalt containing about 96% of the pure metal. The logarithmic curves which accompany his paper demonstrate that within wide ranges of maximum induction W = 0.01B1.6= 0.527I1.62very nearly. Fleming rightly regards it as not a little curious that for materials differing so much as this cast cobalt and soft annealed iron the hysteretic exponent should in both cases be so near to 1.6. After pointing out that, since the magnetization of the metal is the quantity really concerned, W is more appropriately expressed in terms of I, the magnetic moment per unit of volume, than of B, he suggests an experiment to determine whether the mechanical work required to effect the complete magnetic reversal of a crowd of small compass needles (representative of magnetic molecules) is proportional to the 1.6th power of the aggregate maximum magnetic moment before or after completion of the cycle.

a, Fine steel wire 0.257 mm. diam.b, Fine iron wire 0.34 mm. diam.c, Fine iron wire 0.2475 mm. diam.d, Thin sheet iron 0.47 mm. thick.e, Iron wire 0.602 mm. diam.f, Iron wire 0.975 mm. diam.g, Sheet iron 1.95 mm. thick.h, Thin sheet iron 0.367 mm. thick.i. Very soft iron wire.

a, Fine steel wire 0.257 mm. diam.

b, Fine iron wire 0.34 mm. diam.

c, Fine iron wire 0.2475 mm. diam.

d, Thin sheet iron 0.47 mm. thick.

e, Iron wire 0.602 mm. diam.

f, Iron wire 0.975 mm. diam.

g, Sheet iron 1.95 mm. thick.

h, Thin sheet iron 0.367 mm. thick.

i. Very soft iron wire.

The experiments of K. Honda and S. Shimizu26indicate that Steinmetz’s formula holds for nickel and annealed cobalt up to B = 3000, for cast cobalt and tungsten steel up to B = 8000, and for Swedish iron up to B = 18,000, the range being in all cases extended at the temperature of liquid air.

The diagram, fig. 17, contains examples of ascending induction curves characteristic of wrought iron, cast iron, cobalt and nickel. These are to be regarded merely as typical specimens, for the details of a curve depend largely upon the physical condition and purity of the material; but they show at a glance how far the several metals differ from and resemble one another as regards their magnetic properties. Curves of magnetization (which express the relation of I to H) have a close resemblance to those of induction; and, indeed, since B = H + 4πI, and 4πI (except in extreme fields) greatly exceeds H in numerical value, we may generally, without serious error, put I = B/4π, and transform curves of induction into curves of magnetization by merely altering the scale to which the ordinates are referred. A scale for the approximate transformation for the curves in fig. 12 is givenat the right-hand side of the diagram, the greatest error introduced by neglecting H/4π not exceeding 0.6%. A study of such curves as these reveals the fact that there are three distinct stages in the process of magnetization. During the first stage, when the magnetizing force is small, the magnetization (or the induction) increases rather slowly with increasing force; this is well shown by the nickel curve in the diagram, but the effect would be no less conspicuous in the iron curve if the abscissae were plotted to a larger scale. During the second stage small increments of magnetizing force are attended by relatively large increments of magnetization, as is indicated by the steep ascent of the curve. Then the curve bends over, forming what is often called a “knee,” and a third stage is entered upon, during which a considerable increase of magnetizing force has little further effect upon the magnetization. When in this condition the metal is popularly said to be “saturated.” Under increasing magnetizing forces, greatly exceeding those comprised within the limits of the diagram, the magnetization does practically reach a limit, the maximum value being attained with a magnetizing force of less than 2000 for wrought iron and nickel, and less than 4000 for cast iron and cobalt. The induction, however, continues to increase indefinitely, though very slowly. These observations have an important bearing upon the molecular theory of magnetism, which will be referred to later.

The magnetic quality of a sample of iron depends very largely upon the purity and physical condition of the metal. The presence of ordinary impurities usually tends to diminish the permeability, though, as will appear later, the addition of small quantities of certain other substances is sometimes advantageous. A very pure form of iron, which from the method of its manufacture is called “steel,” is now extensively used for the construction of dynamo magnets; this metal sometimes contains not more than 0.3% of foreign substances, including carbon, and is magnetically superior to the best commercial wrought iron. The results of some comparative tests published by Ewing (Proc. Inst. C.E., 1896) are given in the accompanying table. Those in the second column are quoted from a paper by F. Lydall and A. W. Pocklington (Proc. Roy. Soc., 1892, 52, 228) and relate to an exceptional specimen containing nearly 99.9% of the pure metal.

To secure the highest possible permeability it is essential that the iron should be softened by careful annealing. When it is mechanically hardened by hammering, rolling or wire-drawing its permeability may be greatly diminished, especially under a moderate magnetizing force. An experiment by Ewing showed that by the operation of stretching an annealed iron wire beyond the limits of elasticity the permeability under a magnetizing force of about 3 units was reduced by as much as 75%. Ewing has also studied the effect of vibration in conferring upon iron an apparent or spurious permeability of high value; this effort also is most conspicuous when the magnetizing force is weak. The permeability of a soft iron wire, which was tapped while subjected to a very small magnetizing force, rose to the enormous value of about 80,000 (Magnetic Induction, § 85). It follows that in testing iron for magnetic quality the greatest care must be exercised to guard the specimen against any accidental vibration.

Low hysteresis is the chief requisite for iron which is to be used for transformer cores, and it does not necessarily accompany high permeability. In response to the demand, manufacturers have succeeded in producing transformer plate in which the loss of energy due to hysteresis is exceedingly small. Tests of a sample supplied by Messrs. Sankey were found by Ewing to give the following results, which, however, are regarded as being unusually favourable. In a valuable collection of magnetic data (Proc. Inst. C.E., cxxvi.) H. F. Parshall quotes tests of six samples of iron, described as of good quality, which showed an average hysteresis loss of 3070 ergs per c.cm. per cycle at an induction of 8000, being 1.6 times the loss shown by Ewing’s specimen at the same induction.

The standard induction in reference to determinations of hysteresis is generally taken as 2500, while the loss is expressed in watts per ℔ at a frequency of 100 double reversals, or cycles, per second. In many experiments, however, different inductions and frequencies are employed, and the hysteresis-loss is often expressed as ergs per cubic centimetre per cycle and sometimes as horse-power per ton. In order to save arithmetical labour it is convenient to be provided with conversion factors for reducing variously expressed results to the standard form. The rate at which energy is lost being proportional to the frequency, it is obvious that the loss at frequency 100 may be deduced from that at any other frequency n by simply multiplying by 100/n. Taking the density of iron to be 7.7, the factor for reducing the loss in ergs per c.cm. to watts per ℔ with a frequency of 100 is 0.000589 (Ewing). Since 1 horse-power = 746 watts, and 1 ton = 2240 ℔, the factor for reducing horse-power per ton to watts per ℔ is 746/2240, or just 1/3. The loss for any induction B within the range for which Steinmetz’s law holds may be converted into that for the standard induction 2500 by dividing it by B1.6/25001.6. The values of this ratio for different values of B, as given by Fleming (Phil. Mag., 1897), are contained in the second column of the annexed table. The third column shows the relative amount of hysteresis deduced by Ewing as a general mean from actual tests of many samples (Journ. Inst. Elec. Eng., 1895). Incidentally, these two columns furnish an undesigned test of the accuracy of Steinmetz’s law: the greatest difference is little more than 1%.

Curves of Permeability and Susceptibility.—The relations of μ (= B/H) to B, and of κ (= I/H) to I may be instructively exhibited by means of curves, a method first employed by H. A. Rowland.27The dotted curve for μ and B in fig. 18 is copied from Rowland’s paper. The actual experiment to which it relates was carried only as the point marked X, corresponding to a magnetizing force of 65, and an induction of nearly 17,000. Rowland, believing that the curve would continue to fall in a straight line meeting the horizontal axis, inferred that the induction corresponding to the point B—about 17,500—was the highestthat could be produced by any magnetizing force, however great. It has, however, been shown that, if the magnetizing force is carried far enough, the curve always becomes convex to the axis instead of meeting it. The full line shows the result of an experiment in which the magnetizing force was carried up to 585,28but though the force was thus increased ninefold, the induction only reached 19,800, and the ultimate value of the permeability was still as much as 33.9.

Ballistic Method with Yoke.—J. Hopkinson (Phil. Trans., 1885, 176, 455) introduced a modification of the usual ballistic arrangement which presents the following advantages; (1) very considerable magnetizing forces can be applied with ordinary means; (2) the samples to be tested, having the form of cylindrical bars, are more easily prepared than rings or wires; (3) the actual induction at any time can be measured, and not only changes of induction. On the other hand, a very high degree of accuracy is not claimed for the results. Fig. 19 shows the apparatus by which the ends of the bar are prevented from exerting any material demagnetizing force, while the permeance of the magnetic circuit is at the same time increased. A A, called the “yoke,” is a block of annealed wrought iron about 18 in. long, 6½ in. wide and 2 in. thick, through which is cut a rectangular opening to receive the two magnetizing coils B B. The test bar C C, which slides through holes bored in the yoke, is divided near the middle into two parts, the ends which come into contact being faced true and square. Between the magnetizing coils is a small induction coil D, which is connected with a ballistic galvanometer. The induction coil is carried upon the end of one portion of the test bar, and when this portion is suddenly drawn back the coil slips off and is pulled out of the field by an india-rubber spring. This causes a ballistic throw proportional to the induction through the bar at the moment when the two portions were separated. With such an arrangement it is possible to submit the sample to any series of magnetic forces, and to measure its magnetic state at the end. The uncertainty with which the results are affected depends chiefly upon the imperfect contact between the bar and the yoke and also between the ends of the divided bar. It is probable that Hopkinson did not attach sufficient importance to the demagnetizing action of the cut (cf. Ewing,Phil. Mag., Sept. 1888, p. 274), and that the values which he assigned to H are consequently somewhat too high. He applied his method with good effect, however, in testing a large number of commercial specimens of iron and steel, the magnetic constants of which are given in a table accompanying his paper. When it is not required to determine the residual magnetization there is no necessity to divide the sample bar, and ballistic tests may be made in the ordinary way—by steps or by reversals—the source of error due to the transverse cut thus being avoided. Ewing (Magnetic Induction, § 194) has devised an arrangement in which two similar test bars are placed side by side; each bar is surrounded by a magnetizing coil, the two coils being connected to give opposite directions of magnetization, and each pair of ends is connected by a short massive block of soft iron having holes bored through it to fit the bars, which are clamped in position by set-screws. Induction coils are wound on the middle parts of both bars, and are connected in series. With this arrangement it is possible to find the actual value of the magnetizing force, corrected for the effects of joints and other sources of error. Two sets of observations are taken, one when the blocks are fixed at the ends of the bars, and another when they are nearer together, the clear length of the bars between them and of the magnetizing coils being reduced to one-half. If H1and H2be the values of 4πin/l and 4πi′[(n/2) / (l/2)] for the same induction B, it can be shown that the true magnetizing force is H = H1− (H2− H1). The method, though tedious in operation, is very accurate, and is largely employed for determining the magnetic quality of bars intended to serve as standards.

Traction Methods.—The induction of the magnetization may be measured by observing the force required to draw apart the two portions of a divided rod or ring when held together by their mutual attraction. If a transverse cut is made through a bar whose magnetization is I and the two ends are placed in contact, it can be shown that this force is 2πI² dynes per unit of area (Mascart and Joubert,Electricity and Magnetism, § 322); and if the magnetization of the bar is due to an external field H produced by a magnetizing coil or otherwise, there is an additional force equal to HI. Thus the whole force, when the two portions of the bar are surrounded by a loosely-fitting magnetizing coil, is

F = 2πI² + HI

expressed as dynes per square centimetre. If each portion of the bar has an independent magnetizing coil wound tightly upon it, we have further to take into account the force due to the mutual action of the two magnetizing coils, which assists the forces already considered. This is equal to H²8π per unit of sectional area. In the case supposed therefore the total force per square centimetre is

The equation F = B²/8π is often said to express “Maxwell’s law of magnetic traction” (Maxwell,Electricity and Magnetism, §§ 642-646). It is, of course, true for permanent magnets, where H = 0, since then F = 2πI²; but if the magnetization is due to electric currents, the formula is only applicable in the special case when the mutual action of the two magnets upon one another is supplemented by the electromagnetic attraction between separate magnetizing coils rigidly attached to them.29

The traction method was first employed by S. Bidwell (Proc. Roy. Soc., 1886, 40, 486), who in 1886 published an account of some experiments in which the relation of magnetization to magnetic field was deduced from observations of the force in grammes weight which just sufficed to tear asunder the two halves of a divided ring electromagnet when known currents were passing through the coils. He made use of the expression

F = Wg = 2πI² + HI,

where W is the weight in grammes per square centimetre of sectional area, and g is the intensity of gravity which was taken as 981. The term for the attraction between the coils was omitted as negligibly small (seePhil. Mag., 1890, 29, 440). The values assigned to H were calculated from H = 2ni/r, and ranged from 3.9 to 585, but inasmuch as no account was taken of anydemagnetizing action which might be due to the two transverse cuts, it is probable that they are somewhat too high. The results, nevertheless, agree very well with those for annealed wrought iron obtained by other methods. Below is given a selection from Bidwell’s tables, showing corresponding values of magnetizing force, weight supported, magnetization, induction, susceptibility and permeability:—

A few months later R. H. M. Bosanquet (Phil. Mag., 1886, 22, 535) experimented on the relation of tractive force to magnetic induction. Instead of a divided ring he employed a divided straight bar, each half of which was provided with a magnetizing coil. The joint was surrounded by an induction coil connected with a ballistic galvanometer, an arrangement which enabled him to make an independent measurement of the induction at the moment when the two portions of the bar were separated. He showed that there was, on the whole, a fair agreement between the values determined ballistically and those given by the formula B = √8πF. The greatest weight supported in the experiments was 14,600 grammes per square cm., and the corresponding induction 18,500 units. Taylor Jones subsequently found a good agreement between the theoretical and the observed values of the tractive force in fields ranging up to very high intensities (Phil. Mag., 1895, 39, 254, and 1896, 41, 153).


Back to IndexNext