Chapter 20

MAGNETISM, TERRESTRIAL,the science which has for its province the study of the magnetic phenomena of the earth.

§ 1. Terrestrial magnetism has a long history. Its early growth was slow, and considerable uncertainty prevails as to its earliest developments. The properties of the magnet (seeMagnetism) were to some small extent known toHistorical.the Greeks and Romans before the Christian era, and compasses (seeCompass) of an elementary character seem to have been employed in Europe at least as early as the 12th century. In China and Japan compasses of a kind seem to have existed at a much earlier date, and it is even claimed that the Chinese were aware of the declination of the compass needle from the true north before the end of the 11th century. Early scientific knowledge was usually, however, a mixture of facts, very imperfectly ascertained, with philosophical imaginings. When an early writer makes a statement which to a modern reader suggests a knowledge of the declination of the compass, he may have had no such definite idea in his mind. So far as Western civilization is concerned, Columbus is usually credited with the discovery—in 1492 during his first voyage to America—that the pointing of the compass needle to the true north represents an exceptional state of matters, and that adeclinationin general exists, varying from place to place. The credit of these discoveries is not, however, universally conceded to Columbus. G. Hellmann6Aconsiders it almost certain that the departure of the needle from the true north was known in Europe before the time of Columbus. There is indirect evidence that the declination of the compass was not known in Europe in the early part of the 15th century, through the peculiarities shown by early maps believed to have been drawn solely by regard to the compass. Whether Columbus was the first to observe the declination or not, his date is at least approximately that of its discovery.

The next fundamental discovery is usually ascribed to Robert Norman, an English instrument maker. InThe Newe Attractive(1581) Norman describes his discovery made some years before of theinclinationordip. The discovery was made more or less by accident, through Norman’s noticing that compass needles which were truly balanced so as to be horizontal when unmagnetized, ceased to be so after being stroked with a magnet. Norman devised a form of dip-circle, and found a value for the inclination in London which was at least not very wide of the mark.

Another fundamental discovery, that of the secular change of the declination, was made in England by Henry Gellibrand, professor of mathematics at Gresham College, who described it in hisDiscourse Mathematical on the Variation of the Magneticall Needle together with its Admirable Diminution lately discovered(1635). The history of this discovery affords a curious example of knowledge long delayed. William Borough, in hisDiscourse on the Variation of the Compas or Magneticall Needle(1581), gave for the declination at Limehouse in October 1580 the value 11°¼ E. approximately. Observations were repeated at Limehouse, Gellibrand tells us, in 1622 by his colleague Edmund Gunter, professor of astronomy at Gresham College, who found the much smaller value 6° 13′. The difference seems to have been ascribed at first to error on Borough’s part, and no suspicion of the truth seems to have been felt until 1633, when some rough observations gave a value still lower than that found by Gunter.It was not until midsummer 1634 that Gellibrand felt sure of his facts, and yet the change of declination since 1580 exceeded 7°. The delay probably arose from the strength of the preconceived idea, apparently universally held, that the declination was absolutely fixed. This idea, it would appear, derived some of its strength from the positive assertion made on the point by Gilbert of Colchester in hisDe magnete(1600).

A third fundamental discovery, that of the diurnal change in the declination, is usually credited to George Graham (1675-1751), a London instrument maker. Previous observers,e.g.Gellibrand, had obtained slightly different values for the declination at different hours of the day, but it was natural to assign them to instrumental uncertainties. In those days the usual declination instrument was the compass with pivoted needles, and Graham himself at first assigned the differences he observed to friction. The observations on which he based his conclusions were made in 1722; an account of them was communicated to the Royal Society and published in thePhilosophical Transactionsfor 1724.

The movements of the compass needle throughout the average day represent partly a regular diurnal variation, and partly irregular changes in the declination. The distinction, however, was not at first very clearly realized. Between 1756 and 1759 J. Canton observed the declination-changes on some 600 days, and was thus able to deduce their general character. He found that the most prominent part of the regular diurnal change in England consisted of a westerly movement of the north-pointing pole from 8 or 9 a.m. to 1 or 2 p.m., followed by a more leisurely return movement to the east. He also found that the amplitude of the movement was considerably larger in summer than in winter. Canton further observed that in a few days the movements were conspicuously irregular, and that aurora was then visible. This association of magnetic disturbance and aurora had, however, been observed somewhat before this time, a description of one conspicuous instance being contributed to the Royal Society in 1750 by Pehr Vilhelm Wargentin (1717-1783), a Swede.

Another landmark in the history of terrestrial magnetism was the discovery towards the end of the 18th century that the intensity of the resultant magnetic force varies at different parts of the earth. The first observations clearly showing this seem to be those of a Frenchman, Paul de Lamanon, who observed in 1785-1787 at Teneriffe and Macao, but his results were not published at the time. The first published observations seem to be those made by the great traveller Humboldt in tropical America between 1798 and 1803. The delay in this discovery may again be attributed to instrumental imperfections. The method first devised for comparing the force at different places consisted in taking the time of oscillation of the dipping needle, and even with modern circles this is hardly a method of high precision. Another discovery worth chronicling was made by Arago in 1827. From observations made at Paris he found that the inclination of the dipping needle and the intensity of the horizontal component of the magnetic force both possessed a diurnal variation.

§ 2. Whilst Italy, England and France claim most of the early observational discoveries, Germany deserves a large share of credit for the great improvement in instruments and methods during the first half of the 19th century. Measurements of the intensity of the magnetic force were somewhat crude until Gauss showed how absolute results could be obtained, and not merely relative data based on observations with some particular needle. Gauss also devised the bifilar magnetometer, which is still largely represented in instruments measuring changes of the horizontal force; but much of the practical success attending the application of his ideas to instruments seems due to Johann von Lamont (1805-1879), a Jesuit of Scottish origin resident in Germany.

The institution of special observatories for magnetic work is largely due to Humboldt and Gauss. The latter’s observatory at Göttingen, where regular observations began in 1834, was the centre of the Magnetic Union founded by Gauss and Weber for the carrying out of simultaneous magnetic observations and it was long customary to employ Göttingen time in schemes of international co-operation.

In the next decade, mainly through the influence of Sir Edward Sabine (1788-1883), afterwards president of the Royal Society, several magnetic observatories were established in the British colonies, at St Helena, Cape of Good Hope, Hobarton (now Hobart) and Toronto. These, with the exception of Toronto, continued in full action for only a few years; but their records—from their widely distributed positions—threw much fresh light on the differences between magnetic phenomena in different regions of the globe. The introduction of regular magnetic observatories led ere long to the discovery that there are notable differences between the amplitudes of the regular daily changes and the frequency of magnetic disturbances in different years. The discovery that magnetic phenomena have a period closely similar to, if not absolutely identical with, the “eleven year” period in sun-spots, was made independently and nearly simultaneously about the middle of the 19th century by Lamont, Sabine and R. Wolf.

The last half of the 19th century showed a large increase in the number of observatories taking magnetic observations. After 1890 there was an increased interest in magnetic work. One of the contributory causes was the magnetic survey of the British Isles made by Sir A. Rücker and Sir T. E. Thorpe, which served as a stimulus to similar work elsewhere; another was the institution by L. A. Bauer of a magazine.Terrestrial Magnetism, specially devoted to the subject. This increased activity added largely to the stock of information, sometimes in forms of marked practical utility; it was also manifested in the publication of a number of papers of a speculative character. For historical details the writer is largely indebted to the works of E. Walker1and L. A. Bauer.3

§ 3. All the more important magnetic observatories are provided with instruments of two kinds. Those of the first kind give the absolute value of the magnetic elements at the time of observation. The unifilar magnetometer (q.v.), forObservational Methods and Records.instance, gives the absolute values of the declination and horizontal force, whilst the inclinometer (q.v.) or dip circle gives the inclination of the dipping needle. Instruments of the second kind, termed magnetographs (q.v.), are differential and self-recording, and show the changes constantly taking place in the magnetic elements. The ordinary form of magnetograph records photographically. Light reflected from a fixed mirror gives a base line answering to a constant value of the element in question; the light is cut off every hour or second hour so that the base line also serves to make the time. Light reflected from a mirror carried by a magnet gives a curved line answering to the changes in position of the magnet. The length of the ordinate or perpendicular drawn from any point of the curved line on to the base line is proportional to the extent of departure of the magnet from a standard position. If then we know the absolute value of the element which corresponds to the base line, and the equivalent of 1 cm. of ordinate, we can deduce the absolute value of the element answering to any given instant of time. In the case of the declination the value of 1 cm. of ordinate is usually dependent almost entirely on the distance of the mirror carried by the magnet from the photographic paper, and so remains invariable or very nearly so. In the case of the horizontal force and vertical force magnetographs—these being the two force components usually recorded—the value of 1 cm. of ordinate alters with the strength of the magnet. It has thus to be determined from time to time by observing the deflection shown on the photographic paper when an auxiliary magnet of known moment, at a measured distance, deflects the magnetograph magnet. Means are provided for altering the sensitiveness, for instance, by changing the effective distance in the bifilar suspension of the horizontal force magnet, and by altering the height of a small weight carried by the vertical force magnet. It is customary to aim at keeping the sensitiveness as constant as possible. A very common standard is to have 1 cm. of ordinate corresponding to 10′ of arc in the declination and to 50γ (1γ ≡ 0.00001 C.G.S.) in the horizontal and vertical force magnetographs.As an example of how the curves are standardized, suppose that absolute observations of declination are taken four times a month, and that in a given month the mean of the observed values is 16° 34′.6 W. The curves are measured at the places which correspond to the times of the four observations, and the mean length of the four ordinates is, let us say, 2.52 cms. If 1 cm. answers to 10′, then 2.52 cms. represents 25′.2, and thus the value of the base line—i.e.the value which the declination would have if the curve came down to the base line—is for the month in question 16° 34′.6 less 25′.2 or16° 9′.4. If now we wish to know the declination at any instant in this particular month all we have to do is to measure the corresponding ordinate and add its value, at the rate of 10′ per cm., to the base value 16° 9′.4 just found. Matters are a little more complicated in the case of the horizontal and vertical force magnetographs. Both instruments usually possess a sensible temperature coefficient,i.e.the position of the magnet is dependent to some extent on the temperature it happens to possess, and allowance has thus to be made for the difference from a standard temperature. In the case of the vertical force an “observed” value is derived by combining the observed value of the inclination with the simultaneous value of the horizontal force derived from the horizontal force magnetograph after the base value of the latter has been determined. In themselves the results of the absolute observations are of minor interest. Their main importance is that they provide the means of fixing the value of the base line in the curves. Unless they are made carefully and sufficiently often the information derivable from the curves suffers in accuracy, especially that relating to the secular change. It is from the curves that information is derived as to the regular diurnal variation and irregular changes. In some observatories it is customary to publish a complete record of the values of the magnetic elements at every hour for each day of the year. A useful and not unusual addition to this is a statement of the absolutely largest and smallest values of each element recorded during each day, with the precise times of their occurrence. On days of large disturbance even hourly readings give but a very imperfect idea of the phenomena, and it is customary at some observatories,e.g.Greenwich, to reproduce the more disturbed curves in the annual volume. In calculating the regular diurnal variation it is usual to consider each month separately. So far as is known at present, it is entirely or almost entirely a matter of accident at what precise hours specially high or low values of an element may present themselves during an individual highly disturbed day; whilst the range of the element on such a day may be 5, 10 or even 20 times as large as on the average undisturbed day of the month. It is thus customary when calculating diurnal inequalities to omit the days of largest disturbance, as their inclusion would introduce too large an element of uncertainty. Highly disturbed days are more than usually common in some years, and in some months of the year, thus their omission may produce effects other than that intended. Even on days of lesser disturbance difficulties present themselves. There may be to and fro movements of considerable amplitude occupying under an hour, and the hour may come exactly at the crest or at the very lowest part of the trough. Thus, if the reading represents in every case the ordinate at the precise hour a considerable element of chance may be introduced. If one is dealing with a mean from several hundred days such “accidents” can be trusted to practically neutralize one another, but this is much less fully the case when the period is as short as a month. To meet this difficulty it is customary at some observatories to derive hourly values from a freehand curve of continuous curvature, drawn so as to smooth out the apparently irregular movements. Instead of drawing a freehand curve it has been proposed to use a planimeter, and to accept as the hourly value of the ordinate the mean derived from a consideration of the area included between the curve, the base line and ordinates at the thirty minutes before and after each hour.§ 4. Partly on account of the uncertainties due to disturbances, and partly with a view to economy of labour, it has been the practice at some observatories to derive diurnal inequalities from a comparatively small number of undisturbed or quiet days. Beginning with 1890, five days a month were selected at Greenwich by the astronomer royal as conspicuously quiet. In the selection regard was paid to the desirability that the arithmetic mean of the five dates should answer to near the middle of the month. In some of the other English observatories the routine measurement of the curves was limited to these selected quiet days. At Greenwich itself diurnal inequalities were derived regularly from the quiet days alone and also from all the days of the month, excluding those of large disturbance. If a quiet day differed from an ordinary day only in that the diurnal variation in the latter was partly obscured by irregular disturbances, then supposing enough days taken to smooth out irregularities, one would get the same diurnal inequality from ordinary and from quiet days. It was found, however, that this was hardly ever the case (see §§ 29 and 30). The quiet day scheme thus failed to secure exactly what was originally aimed at; on the other hand, it led to the discovery of a number of interesting results calculated to throw valuable sidelights on the phenomena of terrestrial magnetism.The idea of selecting quiet days seems due originally to H. Wild. His selected quiet days for St Petersburg and Pavlovsk were very few in number, in some months not even a single day reaching his standard of freedom from disturbance. In later years the International Magnetic Committee requested the authorities of each observatory to arrange the days of each month in three groups representing the quiet, the moderately disturbed and the highly disturbed. The statistics are collected and published on behalf of the committee, the first to undertake the duty being M. Snellen. The days are in all cases counted from Greenwich midnight, so that the results are strictly synchronous. The results promise to be of much interest.§ 5. The intensity and direction of the resultant magnetic force at a spot—i.e.the force experienced by a unit magnetic pole—are known if we know the three components of force parallel to any set of orthogonal axes. It is usual to take for these axes the vertical at the spot and two perpendicular axes in the horizontal plane; the latter are usually taken in and perpendicular to the geographical meridian. The usual notation in mathematical work is X to the north, Y to the west or east, and Z vertically downwards. The international magnetic committee have recommended that Y be taken positive to the east, but the fact that the declination is westerly over most of Europe has often led to the opposite procedure, and writers are not always as careful as they should be in stating their choice. Apart from mathematical calculations, the more usual course is to define the force by its horizontal and vertical components—usually termed H and V—and by the declination or angle which the horizontal component makes with the astronomical meridian. The declination is sometimes counted from 0° to 360°, 0° answering to the case when the so-called north pole (or north seeking pole) is directed towards geographical north, 90° to the case when it is directed to the east, and so on. It is more usual, however, to reckon declination only from 0° to 180°, characterizing it as easterly or westerly according as the north pole points to the east or to the west of the geographical meridian. The force is also completely defined by H or V, together with D the declination, and I the inclination to the horizon of the dipping needle. Instead of H and D some writers make use of N the northerly component, and W the westerly (or E the easterly). The resultant force itself is denoted sometimes by R, sometimes by T (total force). The following relationships exist between the symbolsX ≡ N, Y ≡ W or E, Z ≡ V, R ≡ T,H ≡ √(X² + Y²), R ≡ √(X² + Y² + Z²),tan D = Y / X, tan I = V / H.The termmagnetic elementis applied to R or any of the components, and even to the angles D and I.

§ 3. All the more important magnetic observatories are provided with instruments of two kinds. Those of the first kind give the absolute value of the magnetic elements at the time of observation. The unifilar magnetometer (q.v.), forObservational Methods and Records.instance, gives the absolute values of the declination and horizontal force, whilst the inclinometer (q.v.) or dip circle gives the inclination of the dipping needle. Instruments of the second kind, termed magnetographs (q.v.), are differential and self-recording, and show the changes constantly taking place in the magnetic elements. The ordinary form of magnetograph records photographically. Light reflected from a fixed mirror gives a base line answering to a constant value of the element in question; the light is cut off every hour or second hour so that the base line also serves to make the time. Light reflected from a mirror carried by a magnet gives a curved line answering to the changes in position of the magnet. The length of the ordinate or perpendicular drawn from any point of the curved line on to the base line is proportional to the extent of departure of the magnet from a standard position. If then we know the absolute value of the element which corresponds to the base line, and the equivalent of 1 cm. of ordinate, we can deduce the absolute value of the element answering to any given instant of time. In the case of the declination the value of 1 cm. of ordinate is usually dependent almost entirely on the distance of the mirror carried by the magnet from the photographic paper, and so remains invariable or very nearly so. In the case of the horizontal force and vertical force magnetographs—these being the two force components usually recorded—the value of 1 cm. of ordinate alters with the strength of the magnet. It has thus to be determined from time to time by observing the deflection shown on the photographic paper when an auxiliary magnet of known moment, at a measured distance, deflects the magnetograph magnet. Means are provided for altering the sensitiveness, for instance, by changing the effective distance in the bifilar suspension of the horizontal force magnet, and by altering the height of a small weight carried by the vertical force magnet. It is customary to aim at keeping the sensitiveness as constant as possible. A very common standard is to have 1 cm. of ordinate corresponding to 10′ of arc in the declination and to 50γ (1γ ≡ 0.00001 C.G.S.) in the horizontal and vertical force magnetographs.

As an example of how the curves are standardized, suppose that absolute observations of declination are taken four times a month, and that in a given month the mean of the observed values is 16° 34′.6 W. The curves are measured at the places which correspond to the times of the four observations, and the mean length of the four ordinates is, let us say, 2.52 cms. If 1 cm. answers to 10′, then 2.52 cms. represents 25′.2, and thus the value of the base line—i.e.the value which the declination would have if the curve came down to the base line—is for the month in question 16° 34′.6 less 25′.2 or16° 9′.4. If now we wish to know the declination at any instant in this particular month all we have to do is to measure the corresponding ordinate and add its value, at the rate of 10′ per cm., to the base value 16° 9′.4 just found. Matters are a little more complicated in the case of the horizontal and vertical force magnetographs. Both instruments usually possess a sensible temperature coefficient,i.e.the position of the magnet is dependent to some extent on the temperature it happens to possess, and allowance has thus to be made for the difference from a standard temperature. In the case of the vertical force an “observed” value is derived by combining the observed value of the inclination with the simultaneous value of the horizontal force derived from the horizontal force magnetograph after the base value of the latter has been determined. In themselves the results of the absolute observations are of minor interest. Their main importance is that they provide the means of fixing the value of the base line in the curves. Unless they are made carefully and sufficiently often the information derivable from the curves suffers in accuracy, especially that relating to the secular change. It is from the curves that information is derived as to the regular diurnal variation and irregular changes. In some observatories it is customary to publish a complete record of the values of the magnetic elements at every hour for each day of the year. A useful and not unusual addition to this is a statement of the absolutely largest and smallest values of each element recorded during each day, with the precise times of their occurrence. On days of large disturbance even hourly readings give but a very imperfect idea of the phenomena, and it is customary at some observatories,e.g.Greenwich, to reproduce the more disturbed curves in the annual volume. In calculating the regular diurnal variation it is usual to consider each month separately. So far as is known at present, it is entirely or almost entirely a matter of accident at what precise hours specially high or low values of an element may present themselves during an individual highly disturbed day; whilst the range of the element on such a day may be 5, 10 or even 20 times as large as on the average undisturbed day of the month. It is thus customary when calculating diurnal inequalities to omit the days of largest disturbance, as their inclusion would introduce too large an element of uncertainty. Highly disturbed days are more than usually common in some years, and in some months of the year, thus their omission may produce effects other than that intended. Even on days of lesser disturbance difficulties present themselves. There may be to and fro movements of considerable amplitude occupying under an hour, and the hour may come exactly at the crest or at the very lowest part of the trough. Thus, if the reading represents in every case the ordinate at the precise hour a considerable element of chance may be introduced. If one is dealing with a mean from several hundred days such “accidents” can be trusted to practically neutralize one another, but this is much less fully the case when the period is as short as a month. To meet this difficulty it is customary at some observatories to derive hourly values from a freehand curve of continuous curvature, drawn so as to smooth out the apparently irregular movements. Instead of drawing a freehand curve it has been proposed to use a planimeter, and to accept as the hourly value of the ordinate the mean derived from a consideration of the area included between the curve, the base line and ordinates at the thirty minutes before and after each hour.

§ 4. Partly on account of the uncertainties due to disturbances, and partly with a view to economy of labour, it has been the practice at some observatories to derive diurnal inequalities from a comparatively small number of undisturbed or quiet days. Beginning with 1890, five days a month were selected at Greenwich by the astronomer royal as conspicuously quiet. In the selection regard was paid to the desirability that the arithmetic mean of the five dates should answer to near the middle of the month. In some of the other English observatories the routine measurement of the curves was limited to these selected quiet days. At Greenwich itself diurnal inequalities were derived regularly from the quiet days alone and also from all the days of the month, excluding those of large disturbance. If a quiet day differed from an ordinary day only in that the diurnal variation in the latter was partly obscured by irregular disturbances, then supposing enough days taken to smooth out irregularities, one would get the same diurnal inequality from ordinary and from quiet days. It was found, however, that this was hardly ever the case (see §§ 29 and 30). The quiet day scheme thus failed to secure exactly what was originally aimed at; on the other hand, it led to the discovery of a number of interesting results calculated to throw valuable sidelights on the phenomena of terrestrial magnetism.

The idea of selecting quiet days seems due originally to H. Wild. His selected quiet days for St Petersburg and Pavlovsk were very few in number, in some months not even a single day reaching his standard of freedom from disturbance. In later years the International Magnetic Committee requested the authorities of each observatory to arrange the days of each month in three groups representing the quiet, the moderately disturbed and the highly disturbed. The statistics are collected and published on behalf of the committee, the first to undertake the duty being M. Snellen. The days are in all cases counted from Greenwich midnight, so that the results are strictly synchronous. The results promise to be of much interest.

§ 5. The intensity and direction of the resultant magnetic force at a spot—i.e.the force experienced by a unit magnetic pole—are known if we know the three components of force parallel to any set of orthogonal axes. It is usual to take for these axes the vertical at the spot and two perpendicular axes in the horizontal plane; the latter are usually taken in and perpendicular to the geographical meridian. The usual notation in mathematical work is X to the north, Y to the west or east, and Z vertically downwards. The international magnetic committee have recommended that Y be taken positive to the east, but the fact that the declination is westerly over most of Europe has often led to the opposite procedure, and writers are not always as careful as they should be in stating their choice. Apart from mathematical calculations, the more usual course is to define the force by its horizontal and vertical components—usually termed H and V—and by the declination or angle which the horizontal component makes with the astronomical meridian. The declination is sometimes counted from 0° to 360°, 0° answering to the case when the so-called north pole (or north seeking pole) is directed towards geographical north, 90° to the case when it is directed to the east, and so on. It is more usual, however, to reckon declination only from 0° to 180°, characterizing it as easterly or westerly according as the north pole points to the east or to the west of the geographical meridian. The force is also completely defined by H or V, together with D the declination, and I the inclination to the horizon of the dipping needle. Instead of H and D some writers make use of N the northerly component, and W the westerly (or E the easterly). The resultant force itself is denoted sometimes by R, sometimes by T (total force). The following relationships exist between the symbols

X ≡ N, Y ≡ W or E, Z ≡ V, R ≡ T,H ≡ √(X² + Y²), R ≡ √(X² + Y² + Z²),tan D = Y / X, tan I = V / H.

The termmagnetic elementis applied to R or any of the components, and even to the angles D and I.

§ 6. Declination is the element concerning which our knowledge is most complete and most reliable. With a good unifilar magnetometer, at a fixed observatory distant from the magnetic poles, having a fixed mark ofCharts.known azimuth, the observational uncertainty in a single observation should not exceed 0′.5 or at most 1′.0. It cannot be taken for granted that different unifilars, even by the best makers, will give absolutely identical values for the declination, but as a matter of fact the differences observed are usually very trifling. The chief source of uncertainty in the observation lies in the torsion of the suspension fibre, usually of silk or more rarely of phosphor bronze or other metal. A very stout suspension must be avoided at all cost, but the fibre must not be so thin as to have a considerable risk of breaking even in skilled hands. Near a magnetic pole the directive force on the declination magnet is reduced, and the effects of torsion are correspondingly increased. On the other hand, the regular and irregular changes of declination are much enhanced. If an observation consisting of four readings of declination occupies twelve minutes, the chances are that in this time the range at an English station will not exceed 1′, whereas at an arctic or antarctic station it will frequently exceed 10′. Much greater uncertainty thus attaches to declination results in the Arctic and Antarctic than to those in temperate latitudes. In the case of secular change data one important consideration is that the observations should be taken at an absolutely fixed spot, free from any artificial source of disturbance. In the case of many of the older observations of which records exist, the precise spot cannot be very exactly fixed, and not infrequently the site has become unsuitable through the erection of buildings not free from iron. Apart from buildings, much depends on whether the neighbourhood is free from basaltic and other magnetic rocks. If there are no local disturbances of this sort, a few yards difference is usually without appreciable influence, and even a few miles difference is of minor importance when one is calculating the mean secular change for a long period of years. When, however, local disturbances exist, even a few feet difference in the site may be important, and in the absence of positive knowledge to the contrary it is only prudent to act as if the site were disturbed. Near a magnetic pole the declination naturally changes very rapidly when one travels in the direction perpendicular to the lines of equal declination, so that the exact position of the site of observation is there of special importance.


Back to IndexNext