“Come out into the light of things;Let Nature be your teacher.”—W. Wordsworth.
“Come out into the light of things;Let Nature be your teacher.”—W. Wordsworth.
“Come out into the light of things;Let Nature be your teacher.”—W. Wordsworth.
“Come out into the light of things;
Let Nature be your teacher.”
—W. Wordsworth.
“In matters that really interest him, man cannot support the suspense of judgment which science so often has to enjoin. He is too anxious to feel certain to have time to know. So that we see of the sciences, mathematics appearing first, then astronomy, then physics, then chemistry, then biology, then psychology, then sociology—but always the new field was grudged to the new method, and we still have the denial to sociology of the name of science.”—W. Trotter,Instincts of the Herd in Peace and War.
“In matters that really interest him, man cannot support the suspense of judgment which science so often has to enjoin. He is too anxious to feel certain to have time to know. So that we see of the sciences, mathematics appearing first, then astronomy, then physics, then chemistry, then biology, then psychology, then sociology—but always the new field was grudged to the new method, and we still have the denial to sociology of the name of science.”—W. Trotter,Instincts of the Herd in Peace and War.
There are many facile comparisons to be drawn between the facts of biology and of sociology. The most obvious is that between a whole civilized community and one of the higher animals. Shakespeare employed an age-old fable in Menenius Agrippa’s Tale of the Belly and the Members inCoriolanus. With Darwin, and the establishment of evolutionary biology on a sound footing, matters took a new turn. Man was now seen to be connected with the rest of life not merely by analogies of his own mind’s weaving, but by the living bonds of genetic descent; and it was at once perceived that a more rigid force than had hitherto been suspected might inhere in the comparisonsbetween State and Organism. For, as Spencer argued, was not the State in a true sense an organism—a single biological unit composed of individual human beings just as a metazoan animal was a single biological unit composed, in the first instance, of individual cells? Further, the investigation of the evolutionary process seemed to reveal certain general laws of its march: beings of the same original constitution, exposed to the environmental forces of the same planet, had reacted in similar ways, developing along parallel lines, and arriving at similar types of organization as end-result. Thus it might reasonably be supposed that we should find the same general organization and mode of development in one type of organism as in another, in human society as in a vertebrate.
On these bases, Spencer and his followers drew elaborate comparisons of the two, and apparently believed that they were reaching the same degree of accuracy as that found in comparative anatomy when they compared the circulatory system of a mammal with the transport facilities of a State, or drew parallels between the brain and the cabinet.
It was speedily seen, however, that such generalizations were so broad and vague as not to be of much service: that the resemblances were in fact often no more than symbolical or metaphorical, instead of being based upon detailed similarity of constitution or of evolutionary development. Withthis, evolutionary theorizing on sociological matters fell somewhat into disrepute. The earlier jubilant certainty gave place to later doubt; and the half-century whose beginnings had roused Haeckel and Herbert Spencer to their imaginative flights closed suitably enough with that remarkable document, T. H. Huxley’s Romanes Lecture, in which the greatest protagonist of Darwinism confesses to seeing between man and the rest of the cosmic process, in spite of man’s genesis from that same cosmic process, an insuperable and essential opposition, a difference of aim or direction which had turned the original bridge into a barrier.[18]
As a result, not only did the particular comparison between society and an organism fall into disrepute, but also all attempts to draw far-reaching conclusions from biology to human affairs.
But the original contention still remains, and is logically unassailable. Man is an organism descended from lower organisms; his communities are composed of units bound together for mutual good in a division of labour in the same way as are the cells of a metazoan: he can no more escape the effects of his terrestrial environment than can other organisms. Thereistherefore reason to suppose that the processes of evolution in man and man’s societies on the one hand, and in lower organisms on the other,must have something important and indeed fundamental in common, something which if we could but unravel would help us in the study of both.
The correlation of biology with sociology is important not only in itself, but also as part of a more general correlation of all the sciences. The correlation of the sciences is of particular importance to-day for a double set of reasons. The rise of evolutionary biology and of modern psychology have not only changed our outlook on specially human problems, but have altered the whole balance, if I may so put it, of science. There was a time when the basic studies of physics and chemistry seemed not only basic but somehow more essentially scientific than the sciences dealing with life. Distinctions were drawn between the experimental and the observational sciences—often half-consciously implying a distinction between accurate, scientific, self-respecting sciences and blundering, hit-or-miss, tolerated bodies of knowledge. Biological phenomena are now, however, seen to be every whit as susceptible of accurate and experimental analysis; and indeed to present so many problems to the physicist and chemist that in fifty years or so, I venture to prophesy, the wise virgins in those basic sciences will be those who have laid in a store of biological oil.
But the main point is this—the study of evolution, of animal behaviour and of human psychology makes it clear that in the higher forms of animals at least we are dealing with a category not touched onat all by the physicist and chemist—the category of mind and mental process. Sir Charles Sherrington, with admirable lucidity, drew for us, in his recent address to the British Association, the problem of the relation between mind and matter as it presents itself to the biologist.
The great change that has come over science in the last half century, or so it seems to me, is the recognition that mind is not to be explained away as a mere epiphenomenon, but is to be studied as a phenomenon. From this point of view, biology will always be the connecting link between physico-chemical science on the one hand, and psychology on the other. There is every reason to suppose and no reason to doubt that life, which we know to be composed of the same material elements and to work by the same energy as non-living matter, actually arose from it during the evolution of this planet. There is, in the behaviour of the lower organisms, nothing which by itself would make us postulate mind: but in the higher insects, molluscs, and vertebrates, the last in particular, mental process is not only clearly present, but clearly of great biological importance; and finally the mind of man, according to innumerable converging lines of evidence, has evolved from the mind of some non-human mammal.
The principle of continuity makes us postulate that this new category of phenomena has not sprung up during the course of evolution absolutelyde novo, but that it is in some sense universally present inall phenomena. It is merely that we have not yet found a method for the direct detection of mental processes as we have, say, for electrical processes; but something of the same general nature, the same category as mind must, if we wish to preserve our scientific sanity, our belief in the orderliness of the world, be present in lower organisms and in the lifeless matter from which they originally sprang.
In the present state of our knowledge, the study of physics and chemistry can be pursued without any reference to mental processes. But the study of biology cannot: and that is one reason why the centre of gravity of science as a whole is shifting—it is shifting for exactly the same reason that the centre of gravity of a house shifts during its construction—because the foundations have to be built first.
Our second reason is as follows. Biology is once more the link between root and flower, between physics and chemistry and human affairs, in regard to evolution. I say evolution: it would be better to broaden the idea by saying the directional processes to be seen in the universe. So far as a main direction is to be observed in physics and chemistry, it is, as all authorities are agreed, towards the degradation of energy and a final state in which not only life but all activity whatsoever will be reduced to nothing, all the waters of energy run down into a single dead level of moveless ocean. Biology, on the other hand, presents us with the spectacle of an evolutionin which the main direction is the raising of the maximum level of certain qualities of living beings, such as efficiency of organs, co-ordination, size, accuracy and range of senses, capacity for knowledge, memory and educability, emotional intensity,—qualities which in one way or another lead to a more efficient control by the organism over the external world, and to its greater independence.
A direction towards more mind is visible; and this development of greater mental powers has been in all the later stages the chief instrument of acquiring control and independence. More and more of matter is embodied in living organisms, more and more becomes subservient to life.
Thus, while in physics and chemistry we see a tendency towards the extinction of life and activity, in biology we see a tendency towards more life and more activity; and this latter tendency is accompanied and largely made possible by the evolution of greater intensity of mental process—of something, that is to say, of which we cannot as yet take account in physics and chemistry.
The biologist may well ask himself the question—“Is it not possible that this evolving mind, of whose achievements on its new level in man we are only seeing the beginning, may continue to find more and more ways of subordinating the inorganic to itself, and that it may eventually retard or even prevent the attainment of this complete degradation of energy prophesied by physico-chemical science?Is it not possible that this great generalization only applies to phenomena in their purely material aspect, and that when we learn to detect and measure the mental aspects of phenomena we may find reason to modify the universal applicability of this law of degradation?” We do not know the answer to that question: but it is clearly a legitimate and useful question to ask. In any event, we constatate two chief directions in the universe; that seen in biology is in many ways opposed to that seen in physics and chemistry; and both must be taken into account.
I have spent, I fear, a great deal of time on what will appear to many as very irrelevant prolegomena. But the complete breakdown of the older views about nature and man, of the philosophies and theologies based not on observation but on an authority which is no authority, on unverifiable speculation, on superstition, and on what we would like to be so rather than on what happens to be so—the breakdown of all the commonly accepted basis for man’s view of himself and the universe, has made it necessary to go back to fundamentals if we are to see where we stand. Secondly, the progress of the biological and psychological sciences, as I have already pointed out, has considerably altered the outlook of those who pin their faith to the newer or scientific view of nature, the view which attempts constantly to refer speculations to reality, and to build on foundations which have been tested by experiment.
The orthodox evolutionary view was thatphenomena received in some degree an explanation if their origin from simpler phenomena could be demonstrated. As a matter of fact, reflection makes it clear that such an explanation is never complete. It is a very incomplete explanation of the properties of water to discover that it is composed of oxygen and hydrogen; or of those of humanity to discover that it is derived from lower forms of life. A precisely similar mistake is made by most psycho-analysts, who consider that an “explanation” of adult psychology is given by tracing in it effects of the events of childhood. In all such cases it is true that analysis is helped, but we are by no means exempted from further study of the later (and more complex) phenomena in and for themselves. Just as adult psychology is qualitatively different in various respects from childish psychology, so is man qualitatively different from lower organisms. Very few attempts have been made to carry over conceptions derived from sociology into biology.[19]But the converse, as we have seen, has often been true, and numerous writers—largely because purely biological are simpler than human phenomena—have been obsessed with the idea that the study of biology as such will teach us principles which can be applied directly and wholesale to human problems.
What we have just been saying shows us the correct path. Through psychology and biology,sociology can become attached to the general body of science; and in so doing it can both receive and give. Since man is but a single species of organism, and, biologically speaking, a very young one; since moreover he presents a peculiar type of organization, it is clear that the broad principles underlying physiology and evolution can best be studied on other organisms and later applied to man. On the other hand, man is the highest existing organism; thus a study of the causes to which he owes his pre-eminence will be important as adding to and crowning the principles derived from non-human biology. Furthermore, not only are man’s mental powers on a different level from those of other animals, but psychology can at present make by far its greatest contributions by a study of human mind, so that the psychological side of biology will for the present derive its chief information from man.
Our first affair, therefore, is to see in what important respects man is qualitatively unlike the rest of the organic world; then to investigate what general rules or principles apply equally to him and to the others; and finally to see what corrections, so to speak, must be made before these principles can be applied to the one or to the other.
The qualitative difference between man and other organisms is a cardinal fact with orthodox biology has tended to slur over or to neglect, whereas philosophy has too often tried to magnify it unduly so as to make man frankly incommensurable with hislower relatives, a creature not only unique but disparate.
Man is obviously and undoubtedly an organism of the same general nature as other organisms. He possesses the same general system of organs, working in the same way as a dog, a horse, a bird, a crocodile, or a frog; he passes through the same type of developmental cycle; he is built on the same detailed plan as other mammals; and numerous indications betray his descent from a particular branch of the mammalian stock.
But in his mode of life and type of social organization he is unique. All detailed comparisons between the communities of man and those of bees and ants are as unprofitable in the working-out as they are easy in the making. It is futile to direct the sluggard or any other human being to the ant, since the whole physical and psychical construction of ants is different from that of man, the whole organization of their communities from that of his.
His mode of life is unique because his psycho-neural mechanism is built on a new plan, new modes of connection between parts of the brain being associated with new possibilities of mind. Let us briefly run over the biologically most important points in which he differs from the lower organisms.
In the first place, he is capable of speech, and possesses a true language—not a mere repertory of sounds or signs associated with different states of mind, as in some higher organisms, but a languagecomprising special symbols for particular external objects, and thus making it possible to have a much more detailed knowledge and classification of the outer world. In the second place, he can frame abstract ideas or concepts, and is thus enabled to extract the general kernel from the husk of innumerable separate and different particulars. As a result of these two faculties, he possesses what we may call a new, accessory form of inheritance. True biological inheritance takes place by means of the reproductive cells. In some birds and mammals, the behaviour of the young is modified by what they learn from their parents, so that they profit by the experience of their elders; however, this profiting by experience is not cumulative, but must be repeated afresh in each generation. In man, on the other hand, speech and writing make it possible to construct a continuous tradition, by means of which experience may be actually accumulated from generation to generation. There are thus two forms of inheritance in man, two hereditary streams—biological inheritance, by means of germ-cells or detached portions of the organism, in which favourable mutations may be accumulated by selection, and “experience-inheritance,” by means of tradition, in which useful experience may be accumulated by the activity of mind. By means of tradition-inheritance, man is virtually enabled to “inherit acquired characters”; thus the environment in which the latter stages of his development are passed through, andconsequently his adult self, the end-product of that development, can be altered far more rapidly than in any other organism. Finally, it is possible, as is being increasingly realized, thus to accumulate experience relating to the alteration of biological inheritance, and so eventually to substitute conscious purpose for blind natural selection in man’s future evolution.
Next point: by means of speech, tradition, and invention, man has been enabled to extend his biological environment—in other words, that part of the cosmos with which he stands in relation—till it has reached an enormously greater size than that of any other organism. He is learning ever more facts about the celestial bodies, studying stars that are at an inconceivable distance from him. He is able to travel at will to all parts of the globe. He can penetrate by means of tradition to remote periods of the past: as Mr. Wells has forcibly put it, a modern Englishman can know more of the world in the Classical Epoch than could the most learned Greek or Roman. And even when he can no more get into contact with ideas, he can still unravel facts: flint implements help him to the history of man, fossils to that of life, rocks to that of the globe, stars to that of the solar system. In time, as well as in space, his environment enlarges to a size that is for practical purposes infinite, whereas no other organism can penetrate beyond its own memories, or, at most, do more than profit by those of the generation immediately beforeit. Professor Keyser,[20]in a suggestive article, has characterized this unique attribute of man by calling him “the time-binder.”
Speech and reasoning, with all their consequences, have only been rendered possible through another important qualitative change in the human brain, which in its turn has led to other new potentialities of life being realized in man and in man alone—its flexibility.
In some of the lowest forms of life, such as Paramecium, there are but one or two possible modes of reaction—reactions which it attempts in response to any one of the myriad changes that may occur in the outer world. As we ascend the scale, we find two chief types of alterations: in the first place an increase in the number of hereditarily-given modes of reaction, and in the second an increased power of “learning,” of altering behaviour in adjustment to experience. In the insects, the first is chiefly in evidence. Although many insects undoubtedly can profit by experience to a limited degree, yet most of their behaviour is instinctive, in the sense that it unrolls itself automatically and efficiently in the absence of previous experience or of any possible instruction. In the vertebrates, on the other hand, we see as we pass from the lower to the higher groups a definite, steady increase in the power of learning by experience, from the fish that takes weeks to associate a given colour with a given event such asfeeding-time, to the dog or monkey capable of learning elaborate tricks after a couple of trials. But even in the most “intelligent” of birds or mammals, the power of image-formation is very probably absent,[21]and the power of concept-formation, of generalizing, certainly so. This fact (quite apart from the absence of tradition, although this too operates in the same direction) means that the associations of animals can only be arbitrary and individual: a rook in one country (to choose a somewhat far-fetched example) may happen to associate danger with fire-arms, one in another with bows and arrows. Life, for the animals, is a cinema, different for each individual, in which one event may be associated with another in the most diverse and haphazard ways. With the advent of the human type of brain, however, experience can be sorted out and properly docketed; the mere cinematographic record is converted into a drama full of significance, the diary into a card-index. By this means, and by tradition, it is possible for man to obtain a much more accurate and more complete grasp of the relationships of the objects that compose the outer world than is possible for any other animal. Through knowledge, as ever, comes power: and as a result, man has been enabled to invent tools and machinery, and so to enlarge enormously his control over his environment. Just as his “range,” in the zoogeographical sense, is extended to an unprecedented degree both inspace and time, so tools represent, biologically speaking, an extension of himself as an operator. While man is using a tool, he and the tool together constitute but a single unit in the struggle for existence. As various writers have put it, tools and machines are temporary organs of man, which have the additional merit of being replaceable if lost or damaged.
But this is not all: the great power of association possessed by man, together with his faculty of generalization and of speech, makes it possible for him tolearnhis rôle in the community, instead of being born with it as are the bee and the ant. Great educability instead of differentiated instinct, infinite possibility, at the expense of the pains of learning, instead of an effortless but limited stock of inborn modes of behaviour—in this again man represents a qualitatively new organic type.
By this means he can escape what has always been a necessity with lower forms: by means of education and machinery he can play a specialized part in the community life, and so build up a community with a high degree of division of labour, without being born specialized. He could not thus learn his rôle if he were not educable, nor if he could not manufacture tools. An ant or a duck or a dog possesses admirable tools for its particular job: but they are living parts of the organism’s own body. A worker ant cannot lay down its serviceable carpentering mandibles and become a soldier by picking up alarge and warlike pair:—once a worker, always a worker; once a soldier, always a soldier—that is the rule for ants, but not for men.
The efficiency and biological success of communities depends on the degree and accuracy of the division of labour and co-ordination between the units of which they are built up. This is true of cell-communities and the second-grade individuals or metazoa or multicellular animals and plants to which they give rise,[22]and also of the communities of metazoa and the third-grade individuals to which they give rise, whether the members of such communities of higher grade are physically bound together, as in a Hydroid or a Portuguese Man-o’-War, or united only by mental bonds, as are the communities of ants and bees and termites. As we have seen, the individuals are differentiated structurally for the different functions which they have to perform.
This is not so in human species: a man is not born cross-legged to be a tailor, or broad-thumbed to be a miller, or big-armed to be a blacksmith. Even in the hereditary castes of India, the trade or profession is determined by tradition, and not by inborn structural adaptations.
Still another consequence flows from this educability, this flexible and elastic mental organization. A man can pass from one occupation to another.He can be specialized for several, or combine a high degree of professional skill in one with the generalized knowledge of an amateur in another. It is this obvious but fundamental fact which is at the bottom of many of the failures to apply biological ideas to sociology.
Another human distinction is the increase of the part played by environment in man as opposed to animals (in determining his biologically effective nature). Environment plays not merely a large part, but a preponderating one, in his development after the first year or so of his life. Tradition provides a special environment, made by man for man’s own development; and men brought up in markedly different traditions arrive at different end-results just as surely and obviously as do men of markedly different hereditary tendencies arrive at different end-results even though exposed to similar traditions. Traditions are infinitely complex things: there are world traditions, national traditions broad and narrow, class traditions and traditions of profession and trade, traditions of predilection, of art, of religion: and men may be exposed in their development to the combined influence of a number of these. But the net result of the diversity of tradition is an extraordinary diversity of end-result. “Nihil humanum alienum a me puto”—Terence could only say this with truth in the sense that there are certain fundamental emotions and instincts found in all men, and also certain aspects of environment shared by allhumanity—the sun and moon, earth, water, and fire, space and time, parents and society, and so on and so forth.
I make no apologies for the length of this preliminary analysis, since it is precisely by the neglect of preliminary analysis that most attempts to correlate biology and sociology have failed. The salient fact emerges that with man there has been a radical change in evolutionary method.
As space is limited, I am here only proposing to consider three of the chief contributions which biology can make to sociology—on the idea of progress, on the relation between individual and community, and on the applicability of the doctrine of the struggle for existence to man.
As regards the idea of progress, biology can make a clear and unequivocal contribution: whereas man is biologically so young, his evolution is yet so chaotic and divergently directed, that it is very hard to arrive at definite conclusions from the study of his history alone. It has been a source of constant surprise to me that more use has not been made of biological data in the controversy over this question. In the little book recently edited by Mr. Marvin on various aspects of the concept of Progress, there was no article dealing with biological progress; and even in Professor Bury’s notable book,The Idea of Progress, biology was as little and as unsatisfactorily drawn upon as in Dean Inge’s writings on the subject.
We have already seen that a certain direction obtains in organic evolution. Into the details of this process I have not here the time to go; we must be content with the brief enumeration which has already been given of the qualities of organisms whose maximum level, and to a lesser degree whose average, have increased during evolution.
So far so good. But a process may be going in a definite direction and yet not be satisfactory.
This road leads to London; this other to Puddlington Parva. We all know people who are obviously headed for success, while it is on record that Mr. Mantalini’s direction was towards “the demnition bow-wows.”
But we know that we ourselves consciously findvaluein things, in objects and aims, in directions and processes. In this we are unique among organisms, and as a matter of fact a large part of our life is determined by the relative values we set on objects. On the whole, however, there is a reasonable amount of agreement among different individuals, at any rate in one country at one epoch, as to what they call good and what they call bad. There are very few western Europeans who find dirt or untruthfulness good, knowledge or bravery bad.
When we look into the trend of biological evolution, we find as a matter of fact that it has operated to produce on the whole what we find good, to bring into being more and more things on which we can set positive value. This is not to say that progressis an inevitable “law of nature,” but that it has actually occurred, and that its occurrence provides an external sanction for many of our subjective human hopes and ideals.
True that we are ourselves a product of the evolutionary process and might therefore be thought biased. None the less, it is clear that if a degenerate animal like a tapeworm, or one inevitably specialized like a hermit-crab, could possess and enunciate values, they would be of a very different nature from our own. But we should further find that the direction of the evolutionary process which led to the former was directly opposed to the main trend, that of the latter more or less at right angles to it. The general coincidence of the main observable trend and of our own concepts of value warrants us in calling the one progressive, and in feeling that the other is no mere isolated flicker in an alien or hostile world, but finds a sanction and a resting-place in being part of something vastly bigger than itself. The remarkable and important fact for man is to find, in spite of all the apparently fundamental differences between his organization and his evolutionary methods and those of lower organisms, in spite of the widespread degeneration and “blind-alleyism” to be seen in evolution, that the direction in which he desires to go coincides with the resultant, the main direction of organic evolution. There are no ideals, there is no purpose, in fish or ant or tree: but man’s ideals and purposes are the outcome of the blind interplayof forces in which fish and ant and tree play their unwitting rôles. True again that further analysis shows that the methods of evolutionary progress are often crude, wasteful, and slow: that some of our values are unreal or artificial: but this does not destroy the main fact, and only means that each side can here learn something from the other.
The main fact abides—that progress is an evolutionary reality, and that an analysis of the modes of biological progress may often help us in our quest for human progress.
The next great problem on which biology has something to say to sociology is that eternal one of the relation between individual and community. As it is sometimes put, Does the individual exist for the State, or the State for the individual? In all non-human biological aggregates—cell-colonies, second-grade aggregates or metazoan organisms, third-grade aggregates like Siphonophora and insect communities—the very existence of the aggregate as a unit, its biological efficiency and success, depend upon a permanent division of labour between its members, upon their thoroughgoing specialization. This always and inevitably involves a sacrifice of certain of their potentialities to greater efficiency in one of a few actual functions, and in evolution a progressive subordination of the smaller unit to the aggregate.
At first sight, biological principles seem to contradict themselves on this subject. On the one hand, the human individual is, or, we had better say, hasthe potentiality of being the highest type of organism in existence—far higher, biologically speaking, not only than any human community now in existence, but than any which we could possibly imagine as coming into existence in the future. When we remember the general agreement of biological progress with our human values, it is clear that to degrade the individual for the benefit of the community is wrong—a biological crime.
On the other hand, human progress depends and will always depend to an extent scarcely to be overrated upon the proper organization of the community. So long as present competition continues, the very survival of a nation may easily depend upon the efficiency of its organization as a community. Biological as well as human experience makes it perfectly plain that such success, in a unit which is itself an aggregate of smaller units, depends upon the degree of specialization of these constituent units and the division of labour and co-operation between them.
Biology here then lays down that human individuals should become more and more specialized if progress is to continue; but since specialization implies the sacrifice of many potentialities for the good of the whole, this apparently contradicts what we have just inculcated above.
This is where our human flexibility comes in. Man should neither live whole-heartedly for himself, nor throw his individuality, ant-like, beneath the wheelsof the community Juggernaut. He can escape from the dilemma by passing from one state to the other. For part of his time, he can apply his energies as a specialized unit—for the rest, he can be a complete individual, realizing the various potentialities of his many-sided nature, with the community contributing to his development, not he to the community’s. And not only can he, but he should act thus.
Be it noted, to avoid misapprehension, that I have here been using the community to denote the single aggregate unit which from the beginning has played such an important part biologically in human evolution, not merely as denoting the sum of individuals considered separately.
Thus biology gives a definite answer to this question too. Pure individualism is condemned, and so is what we may call ant-and-bee socialism. Some form of the “dual day,” to use a current phrase, or at least of the “dual life,” is the method which seems to be in accord with the enduring principles of biology, although the precise details are not and cannot be the biologist’s concern, and particular lives, such as that of the creative artist, who moves on a different plane of reality, escape his analysis.
I have reserved to the close that biological principle which has been most often and most seriously misapplied in sociology and politics—the struggle for existence. Never was the proverb about the Devil’s quoting Scripture better exemplified than in this matter. This fundamental idea of Darwin’s hasbeen used as justification for three totally different and indeed incompatible political doctrines. In England, it has served chiefly to bolster uplaissez-faireindividualism and free competition. In Germany in the years immediately succeeding the publication of theOrigin of Species, it was seized upon by the Socialists as implying equal opportunity for all as against feudalism or hereditary aristocracy. Later in the same country (and to a certain extent elsewhere) it was abundantly employed as a theoretical support for militarism.
As a matter of fact, the use of it as sole principle governing the interrelation of biological units is wholly unjustified. As has been shown by a number of writers, among whom may especially be mentioned Darwin himself, Ritchie in hisDarwinism and Politics, and Kropotkin in hisMutual Aid, the struggle for existence is onlyoneof two possibilities in this relationship: the other is that of co-operation, of mutual aid, which is especially well marked in the building up of higher-grade units from a multiplicity of smaller lower-grade ones. Two of the most important steps in the whole evolutionary process have been based on the co-operation of units—the origin of multicellular from unicellular organisms, and the development of true man, with his social life, from his pre-human ancestor. It is also prominent in the lives of many species of the highest groups—insects, mammals, and birds: witness the ants and bees, the rook, the wild dog, theelephant, the baboon. In fact, once the bodily specialization of units has reached a certain pitch, progress, as we have seen, is only possible through mental development, and this in the great majority of cases brings about aggregation into some sort of community, held together by mental bonds.
Besides aggregation of similar units, there has frequently been co-operation between units of unlike character and origin—witness symbiosis, as in lichens; the relation between many insects and flowers; the formation of flocks consisting of two or more species, as with jackdaws and rooks, and many other cases.
Competition and co-operation both occur throughout the whole of evolution: but co-operation comes to play an ever more considerable part in higher forms. In lower organisms enormous overproduction is of no great consequence; their organization is simple, and, given favourable conditions, they can turn inorganic matter into their own specific substance at a great rate. But higher forms are more complex, more delicately balanced, and longer lived. Accordingly, waste of life is of greater consequence to them, and methods by which a struggle on the grand scale can be minimized tend to be more and more adopted. We find regularly, for instance, a reduction of the number of offspring in higher groups together with greater parental care.
Thus co-operation, for still fresh reasons, is biologically important for the higher groups. Theproblem is becoming increasingly pressing for the human race, since the time is in sight when the whole habitable area of the globe will be colonized, up to a certain level of density and efficiency, by members of the more advanced races. Biologically speaking, it is perfectly clear that some co-operative system, involving federation in one form or another, is the proper system to adopt; and that the “world-state”—not necessarily organized after the plan of our present highly specialized nationalist-industrialist states, which appear happily to represent only a temporary phase of evolution, but none the less an organic reality, a co-operative unit—that the “world-state” is not merely a figment of unpractical dreamers, but an obviously desirable aim for humanity. Kant, a century and a half ago even, had seen clearly enough that some universal society was a necessity for the unfolding of human possibility; and had gone further and pointed out that there were indications of a movement of civilization in that direction. In our time, this movement has been retarded by the extraordinary and mushroom growth of Nationalism, in which to the average man his “Country” (reallyNation) has become his most real God. In the last hundred years, Nationalism has usurped the place of Religion as the most important super-individual interest of individuals—has indeed in some sense become a religion. It is leading the world into an impasse, as do all incomplete and partial conceptions; but, in the Hague Court and the League ofNations, has already generated the seeds of what will in time devour it.[23]
To sum up, we may say that the crude application to human affairs of the doctrine of the struggle for existence, torn from its biological context, isolated and over-emphasized, is wholly unwarranted. On the other hand, a struggle does continue, both of the direct and indirect type defined by Darwin: and there is no prospect of it ceasing to play an important part in human biology. Co-operation is not, any more than competition, to be taken as the sole desirable principle. Panaceas of this sort do not exist, except to make bubble reputations and quack fortunes. Even within such a highly organized co-operative unit as the mammalian body a struggle continues—the different tissues are in competition with each other for food, and if the available supply diminishes below the necessary level, some tissues will be drawn upon by other more successful competitors, and the struggle will lead to an end-result in which the proportion of the various kinds of cells comes to be very different from what they were in the normal well-nourished body.[24]That is a purely biological example. In man, since the unification of the community is of a low order, it is inevitable that individuals and sections will continue in some form of competition with each other: not only this,however, but the additional fact that man’s mental organization reacts strongly to the stimulus of competition make it probable that a “struggle” of some sort will not only be inevitable but up to a point beneficial in any form of society. What is more, once co-operation exists, competition between the co-operative units is necessary to bring out the full efficiency of their combination.
All that the biologist can do is to point out that neither the one-sided application of the principle of struggle nor of that of co-operation is biologically sound. But, as everywhere else in human conduct, after the broad principles have been grasped, success lies always in a delicate, continuous adjustment of conflicting claims, in what one may call a personal conscious effort. Struggle is universal: but by itself it can only lead to a certain stage of evolutionary progress.
The half-baked moralist may lay down the law about right and wrong with the most positive assurance; but, by not paying attention to the necessity for sweet reasonableness, give-and-take, unselfishness, for thought about the thousand and one details of daily conduct, he may be making himself and his wife thoroughly unhappy, ruining his family’s chances, and, as a matter of fact, be thoroughly immoral without once suspecting it.
It is in a very similar way that the militarist, for instance, fortifying himself in the doctrine of the struggle for existence with what he regards as animpregnable sanction for his theories, is in reality acting immorally because not attempting to envisage the whole problem.
There is one very interesting evolutionary point which well illustrates the difference between pure biology and pure sociology, and yet emphasizes the natural connection between the two. Once again it has a connection with the greater flexibility of human mind. As we have seen, in the lowest animals behaviour is for the most part unvarying, hereditarily determined: the organism is capable of a number of definite reactions, and if these do not suffice to extricate it from difficulties, it perishes. The first step towards gaining is the power of learning. “Once bitten, twice shy” is applicable to all higher vertebrates; and it is not only the burnt child who dreads the fire (although a study of moths and candles will convince us that “Lepidopteran” cannot be substituted as subject of the proverb).
When, as in the higher mammals, the power of learning by experience is rapid, the individual organism is better able to adjust itself to the dangers of life, and once more there is less sacrifice of individuals in the struggle. The same organism persists: but of two possible types of behaviour, the unmodified innate type is eliminated, the type modified by experience survives. If we like to put it in a way which is perhaps not wholly justifiable, there comes into being, besides the struggle for existence between individuals, a struggle for existence betweendifferent possible modes of reaction of one and the same organism.
With the advent of man upon the scene, still new possibilities arise. First of all, he is capable of ideas, which, biologically speaking, are to be regarded as potentialities of behaviour. There is no evidence at present that even the highest animals possess ideas or even images.[25]Secondly, these ideas are transmissible by speech and writing, and accordingly tradition has come into being, so that modification of behaviour by experience can be operative not only within the individual life, not only from one generation to the next immediately succeeding, as in many mammals, but for an indefinite period. The experience of Moses, Archimedes, or Charlemagne, of Jesus, Newton, or James Watt is modifying our behaviour to-day.
The result, both for individuals and communities, is that a selection of ideas instead of a selection of organic units can to an ever greater extent take place; and thus the actual extinction of living matter be increasingly avoided. For instance, we find the substitution of judicial procedure, in which the ideas of two disputants about the matter in dispute are weighed and a selection made in favour of one, for various forms of violence and combat in which one or other of the actual disputants was often eliminated. Or again, in struggles between communities,even though warfare is still resorted to, yet it does not operate in the same way as in earlier stages of human evolution. A salient example of this is afforded by the result of the recent war to Germany; although an equally good instance can be seen, for example, in the Boer War. In primitive wars, the defeated tribe was wherever possible exterminated or enslaved: it ceased to exist as an independent unit, and the great majority of its male members were killed. This is impossible under present conditions: and all those who preserve, or have ever possessed, any political sanity aim, for instance, neither at the physical nor the economic destruction or subordination of Germany, but—to use one of those attractive catchwords that sounded so well in war-time—at her “change of heart”—in other words, the extermination, not of a nation, but of a national tradition.
To what extent this substitution of mental for physical will continue it is hard to say; already, to take another field, the multiplication of cheap books has led to an ever increasing number of men and women finding most of their adventure and romance in books instead of in the life that we are accustomed to call real. But that would lead us away from our main point—enough to have indicated another great difference between processes above and below the human level.
There are numerous important questions concerning our right to apply biological ideas of heredity directly to human beings which I would have likedto touch upon. But for one thing I have not the time, and for another, Mr. Carr-Saunders in his recent book on the Population Problem has dealt so fully with the relation between biological inheritance and what may be called tradition-inheritance, that I omit them with a good conscience.
In this brief treatment I have had to ask you to take conclusions on trust, without presenting the evidence on which they are based; this, however, is inevitable when transferring ideas from one science to another. I have attempted to show, first, that biology can profit by incorporating certain conclusions of sociology and so rounding off and completing certain of its own principles: on the other hand, I have put before you my belief that there are certain basic biological principles which must be taken into account by the sociologist—principles which hold good in sociology because man too is an organism.
By now, however, we can see more clearly the way in which the various sciences with which we are concerned, of whose relations we had something to say at the beginning of this essay, properly interlock.
They interlock thus. The physico-chemical sciences are basic to biology. Organisms are made of the same substances as are non-living compounds; their processes are therefore conformable to certain physico-chemical laws, such as the indestructibility of matter, the conservation of energy, and so forth; and in so far as we analyse the material aspect of life, physico-chemical concepts areadequate. On theother hand, physico-chemical concepts—or at least our present ones—are notall-sufficient. In the first place, the very complicated arrangement of matter which is found in living substance has not been yet sufficiently analysed by physics and chemistry: accordingly we find many processes occurring in biology—such as the directional changes in evolution of which we have spoken—which could not have been foretold on our present physico-chemical knowledge, but must be investigated separately as adding to our store of facts and principles, in the confident hope that a synthesis will one day be possible. Secondly, a whole new category of phenomena, the psychological, is first met with in biology, and to this we cannot as yet apply physical or chemical ideas at all.
For a combination of these two reasons, biology deals with certain concepts which are not implicit in current physico-chemical ideas. Physics and chemistry are basic for biology, but they are not exhaustive.
In a very similar way, biology is basic for sociology, but again not exhaustive. Certain limits are set to human life through man’s organic nature. Certain of his activities can be completely analysed in terms of biology. But other of his activities, especially those concerned with his new type of mental organization, find no counterpart in the rest of the biological kingdoms, and must be studied in and for themselves.
Bergson would have us believe that evolution iscreative. It is better to say, with Lloyd Morgan, that it is emergent. With new degrees of complexity, new qualitative differences emerge. Thus the sciences are a hierarchy, the subject-matter of one constituting the foundation for the next in the series. All that biology can do for sociology is to help her to build her foundations solidly and correctly: but we all know that without good foundations no building is safe.
Bury, J. B., ’20. “The Idea of Progress.” London, 1920.Carr-Saunders, A. M., ’22. “The Population Problem.” Oxford, 1922.Hobhouse, L. T., ’01. “Mind in Evolution.” London, 1901.Huxley, J. S., ’12. “The Individual in the Animal Kingdom.” Cambridge, 1912.Keyser, ’21. “Science” (N.S.) New York, 1921.Kropotkin, Prince, ’08. “Mutual Aid, A Factor in Evolution.” London, 1908.Lloyd Morgan, C., ’23. “Emergent Evolution.” London, 1923.Marvin, F. S. “Progress and History” (5th Imp.). Oxford, 1921.Radl, E., ’09. “Geschichte der biologischen Theorien,” vol. ii. Leipzig, 1909.Ritchie, ’01. “Darwinism in Politics” (4th Ed.). London, 1901.Roberts, Morley, ’20. “Warfare in the Human Body.” London, 1920.Roux, W., ’81. “Der Kampf der Teile im Organismics.” 1881.Sherrington, ’22. “The Advancement of Science, 1922.” London, 1922.Spencer, Herbert. “First Principles,” “Principles of Biology,” “Principles of Sociology.”Thorndike, E. L., ’11. “Animal Intelligence.” New York, 1911.Trotter, W., ’19. “Instincts of the Herd in Peace and War” (2nd Ed.). London, 1919.Wells, H. G., ’21. “The Outline of History.” London, 1921.
Bury, J. B., ’20. “The Idea of Progress.” London, 1920.
Carr-Saunders, A. M., ’22. “The Population Problem.” Oxford, 1922.
Hobhouse, L. T., ’01. “Mind in Evolution.” London, 1901.
Huxley, J. S., ’12. “The Individual in the Animal Kingdom.” Cambridge, 1912.
Keyser, ’21. “Science” (N.S.) New York, 1921.
Kropotkin, Prince, ’08. “Mutual Aid, A Factor in Evolution.” London, 1908.
Lloyd Morgan, C., ’23. “Emergent Evolution.” London, 1923.
Marvin, F. S. “Progress and History” (5th Imp.). Oxford, 1921.
Radl, E., ’09. “Geschichte der biologischen Theorien,” vol. ii. Leipzig, 1909.
Ritchie, ’01. “Darwinism in Politics” (4th Ed.). London, 1901.
Roberts, Morley, ’20. “Warfare in the Human Body.” London, 1920.
Roux, W., ’81. “Der Kampf der Teile im Organismics.” 1881.
Sherrington, ’22. “The Advancement of Science, 1922.” London, 1922.
Spencer, Herbert. “First Principles,” “Principles of Biology,” “Principles of Sociology.”
Thorndike, E. L., ’11. “Animal Intelligence.” New York, 1911.
Trotter, W., ’19. “Instincts of the Herd in Peace and War” (2nd Ed.). London, 1919.
Wells, H. G., ’21. “The Outline of History.” London, 1921.
[18]For a remarkable critical history of biological thought during this period, see Radl, ’09.
[19]Morley Roberts is a recent exception. See his interesting book,Warfare in the Human Body.
[20]Science, September 1921.
[21]See Thorndike, ’11.
[22]See J. S. Huxley, ’12, for a discussion of the grades of biological individuality.
[23]See, e.g., Wells, ’21, pp. 558, 666.
[24]See Roux, ’81, for a discussion of this important extension of Darwinism.
[25]See Thorndike,op. cit.; Washburn,The Animal Mind. New York, 1913.
THE BIRDS