[77]Reaumur, tom. 6, mem. 14.
[77]Reaumur, tom. 6, mem. 14.
As M. Bonnet[78]has attempted to give a theory of these various changes, the following extract from it will, I hope, prove agreeable to the reader; it will at least tend to render his ideas of this wonderful subject clearer, and will probably open to his mind many new sources of contemplation.
[78]Bonnet Considerations sur les Corps organises. Contemplation of Nature, &c.
[78]Bonnet Considerations sur les Corps organises. Contemplation of Nature, &c.
An insect that must cast off its exuvia, or moult five times before it attains the pupa state, may be considered as composed of five organized bodies, inclosed within each other, and nourishedby common viscera, placed in the center: what the bud of the tree is to the invisible buds it contains, such is the exterior part of the caterpillar to the interior bodies it conceals in its bosom. Four of these bodies have the same essential structure, namely, that which is peculiar to the insect in its larva or caterpillar state: the fifth body is that of the pupa. The respective state of these bodies is in proportion to their distance from the center of the animal; those that are farthest off have most consistence, or unfold themselves soonest. When the exterior body has attained its full growth, that interior one which is next in order is considerably unfolded; it is then lodged in too narrow a compass, therefore it stretches on all sides the sheath which covers it; the vessels which nourish the external covering, are broken by this violent distension, and ceasing to act, the skin wrinkles and dries up; at length it opens, and the insect is cloathed with a new skin, and new organs. The insect generally fasts for a day or two preceding each change; this is probably occasioned by the violent state in which it then is, or it may be necessary to prevent obstructions, &c. let this be as it may, the insect is always very weak after it has changed its skin, the parts being as yet affected by the exertions they have gone through. The scaly parts, as the head and legs, are almost entirely membranaceous, and imbrued with a fluid that insinuates itself between the two skins, and thus facilitates their separation; this moisture evaporates by degrees, all the parts acquire a consistence, and the insect is then in a condition to act.
The first use that some caterpillars which live on leaves make of their new form, is to devour greedily their exuvia: sometimes they do not wait till their jaws have acquired their full strength; some have been seen to gnaw the shell from which they proceeded, and even the eggs of such caterpillars as have not been hatched.
When we have once formed the idea that all the exterior parts are inlaid, or included one within the other, the production of new organs does not appear so embarrassing, being nothing more than a simple developement; but it is more difficult to form any conception of the changes that happen in the viscera before and after the transformation, the various modifications they undergo eluding our researches. We have already observed, that a little before the change the caterpillar rejects the membrane that lines the intestinal bag: this bowel has hitherto digested only gross food, whereas it must hereafter digest that which is very delicate: a fluid that circulates in the caterpillar from the hind part towards the head, circulates a contrary way after transformation. Now if this inversion is as real as observation seems to indicate, how amazing the change the interior parts of the animal must have undergone? When the caterpillar moults, small clusters of the tracheal vessels are cast off with the exuvia, and new ones are substituted in their room; but how is this effected, and how are the lungs replaced by other lungs? The more we endeavour to investigate this subject, the more we find it is enveloped in darkness.
Whilst the powers of life are employed conformable to the laws of Divine Providence, to change the viscera, and give them a new form, they are also unfolding divers other organs, which were useless to the insect while in the larva state, but which are necessary to that which succeeds. That these interior operations of life may be carried on with greater energy, the animal is thrown into a kind of sleep; during this period, the corpus crassum is distributed into all the parts, in order to bring them to perfection, while the evaporation of the superfluous humours makes way for the elements of the fibres to approach each other, and unite more closely. The little wounds in the inside, which have been occasioned by the rupture of the vessels, are graduallyconsolidated; those parts which had been violently exercised, recover their tone, and the circulating fluids insensibly find their new channel. Lastly, many vessels are effaced, and turned into a liquid sediment, which is rejected by the perfect insect.
When these various changes are considered, we are surprized at the singularity of the means theAuthor of naturehas made choice of, in order to bring the different species of animals to perfection; and are apt to ask, why the caterpillar was not born a moth? why it passes through the larva and pupa state? why all insects that are transformed do not undergo the same change? These, and a variety of questions that may be started concerning the constituent substances of those existences which appear before us, derive their solution from the general system which is unknown to us. If all were to arrive at perfection at once, the chain would be broken, the creature unhappy, and man most of all. Let us also consider what riches we should have been deprived of, if the silk-worm had been born in its perfect state.
Amongst insects, some are produced in the state in which they will remain during their whole lives; others come forth inclosed in an egg, and are hatched from this into a form that admits of no variation; many come into the world under a form which differs but little from that which they have when arrived at an age of maturity; some again assume various forms, more or less remote from that which constitutes their perfect state; lastly, some go through part of these transformations in the body of the parent, and are born of an equal size with them. By these various changes, a single individual unites within itself two or three different species, and becomes successively the inhabitant of two or three worlds: and how great is the diversity of its operation in these various abodes!
Since it has been shewn that the larva or caterpillar is really the moth, crawling, eating, and spinning, under the form of the worm, and that the pupa is only the moth swathed up, it is clear that they are not three beings, but that the same individual feels, tastes, sees, and acts by different organs, at different periods of its life, having sensations and wants at one time, which it has not at another; these always bearing a relation to the organs which excite them.
As respiration is one of the most important actions in the life of every animal, great pains have been taken by many naturalists to investigate the nature of this action in insects; to prove its existence, and explain in what manner it is carried on. Malpighi, Swammerdam, Reaumur, and Lyonet have discovered in the caterpillar two air-vessels placed the whole length of the insect, these they have called the tracheæ; they have also shewn that an infinite number of ramifications proceed from these, and are dispersed through the whole body; that the tracheal vessels communicate with particular openings on the skin of the caterpillar, termed spiracula; there are nine of these on each side of the body. These vessels seem calculated for the reception of air; they contain no fluids, are of a cartilaginous nature, and when cut preserve their figure, and exhibit a well-terminated opening. Notwithstanding this discovery, respiration has not been proved to exist in many species of insects, and the mechanism thereof is very obscure in all; nor is the absence of it more surprising in the caterpillar or embryo state of insects, than in that of other animals, where we find that respiration is by no means necessary to existence previous to their birth, though indispensably so afterwards.
Reaumur thought that the air entered by the spiracula into the trachea, but was not expelled by the same orifice, and consequently that the respiration of insects was carried on in a manner totally different from that of other animals; that the air was expired through a number of small holes or pores which are to be found in the skin of the caterpillar, after having been conducted to them through the extremities of the finer ramifications of the tracheal vessels; whereas Bonnet, in consequence of a great variety of experiments, supposed that the inspiration and expiration of the air was through the spiracula, and that there was no expiration of air through the pores of the skin. These experiments were made either by plunging the caterpillars into water, or anointing them with fat and greasy substances, some all over, others only partially. The number of small bubbles which are observed to cover the surface of their bodies, when they are immerged in water, does not arise from the air which is included within, and then proceeding from them, but they are formed by the air which is lodged near the surface of their bodies, in the same manner that it is about all other substances. To render the experiments more accurate, and prevent the air from adhering to the skin, before he plunged the caterpillars in water he always brushed them over with an hair pencil; after this, very few air bubbles were found on their bodies when immerged in water. Caterpillars will remain a considerable time under water, without destroying the principle of life; and they also recover, in general, soon after they are taken out. To know whether a few only of the spiracula might not be sufficient for the purposes of respiration, he plunged some partially in water, so that only two or more spiracula remained in the open air: in these cases the caterpillar did not become torpid as it did when they were all immerged in water. One caterpillar, upon which Bonnet made his experiments, lived eight days suspended in water, with only twoof its anterior spiracula in the air; during this time he observed, that when the insect moved itself, little streams of bubbles issued from the anterior spiracula on the left side; from this, and many other experiments, it appeared to him, that amongst all the eighteen spiracula, the two anterior and the two posterior are of the greatest use in respiration.[79]Sometimes when the apertures of these have been stopped with oil, the caterpillar has fallen into convulsions. If the posterior part had been oiled, that part became paralytic. Notwithstanding these experiments, and many more which have been made, the subject is far from being decided, and many still doubt whether there is any respiration in insects similar to ours, at least at certain periods of their life. This opinion seems to be further confirmed by the experiments of M. Lyonet. He confined several large musk beetles under a glass for more than half an hour, exposed to the fumes of burning sulphur; and, though during their continuance there the vapour was so thick that he could not see them, yet on their being liberated, they did not seem at all effected thereby.[80]
[79]Philos. Trans. vol. xlv. p. 300.[80]Lesser Theologie des Insectes, tom. 1, p. 124. Ibid. p. 126.
[79]Philos. Trans. vol. xlv. p. 300.
[80]Lesser Theologie des Insectes, tom. 1, p. 124. Ibid. p. 126.
Supposing respiration to be absolutely necessary to the existence of the pupæ of different insects, when we reflect on the great solidity of their cases or cones, it is not easy to conceive how they can live several months under the earth, in spaces so confined, and almost impervious to the air: and indeed if they did respire, the same situation seems to preclude a continuance of the operation, as the air would soon be corrupted, and unfit for the offices of life. As the tracheæ are divided and subdivided to a prodigious degree of minuteness, it has been conjectured bysome writers, that they may act as so many sieves, which, by separations properly contrived, filtrate the air, and so furnish it to the body of different degrees of purity and subtilty, agreeable to the purposes and nature of the various parts. The experiments that have been made with the air-pump are by no means conclusive; the injury which the insect sustains when the atmospheric pressure is taken from the body, does not prove that it inspired and expired the air that we have removed; it only shews that an incumbent pressure is necessary to their comfortable existence, as it prevents the fluids from disengaging themselves in an aerial form, and as it counterbalances and re-acts on the principle of life, and, by keeping the action thereof in proper tone and order, confines and regulates its energies.
Though it is difficult to ascertain whether some insects respire, at least at certain periods of their existence, yet there are others to whom the inspiration and expiration of air seems absolutely necessary: there are many aquatic insects which are obliged to keep their tails suspended on the surface of the water for this purpose. To prove this, keep the tail under water, and you will perceive the insect to be agitated and uneasy, and to seek for some opening to expose this part to the air; if it find none, it soon goes to the bottom and dies. Some aquatic beetles resist the trial for a considerable time, while their larvæ can only support it for a few minutes. There is a circumstance which renders all experiments on this subject with insects doubtful and difficult, namely, the vast tenaciousness of the life principle in the lower orders of animated nature, and its dissemination through their whole frame.
Musschenbroeck inclosed the pupa of a moth in a glass tube, very little larger than the moth itself, and of the following figure.
Glass tube
The end A of the tube was drawn out in a capillary form, the other end was covered with a piece of wet bladder to exclude the air; the capillary end B was then plunged in water, which rose to D. He placed the capillary part of the tube before a microscope, on a small micrometer, in order to observe any motion or change in the situation of the water; as it is evident the expiration or inspiration of air by the insect would make it rise or fall alternately. In the first experiment he observed a small degree of motion at distant intervals, not above two or three times in an hour; in a second experiment on another subject, he could observe no motion at all. He then placed some pupæ under the receiver of an air-pump, in water which he had previously purged of its air; on exhausting the air from the receiver, he observed one bubble to arise in a part near the tail, and a few near the wings. The pupæ did not swell under the operation; on the contrary, on letting in the air, it was found to be diminished in a small degree, but in less than a quarter of an hour it recovered its former figure. M. Martinet published at Leyden, in 1753, a dissertation, in which, it is said, he has clearly proved by a number of experiments that the pupæ of caterpillars and some other insects do not respire.
Among the insects in which respiration seems to be most clearly proved, are the larvæ of the musca pendula, Lin. These, while in the worm state, live under water in the mud, to which they affix themselves; the respiration of fresh air in this situationis necessary to their existence; for this purpose they are furnished with a tail, which often appears of an excessive length comparatively with the body, as this is seldom more than three quarters of an inch in length, while the tail is frequently more than four inches; it is composed of two tubes, which run one into the other, something similar to the tubes of a refracting telescope. Besides this, the materials of which the tubes are composed are capable of a great degree of extension. When the tail is at its full length, it is exceeding small, not being larger near the extremity than a horse-hair; there is a little knob at the end, which is furnished with small hairs, to extend on the water, in some measure resembling those at the tail of the musca chamæleon.
In the body of the larva are two large tracheal vessels; these air-vessels extend from the head to the tail, terminate in the respiring tubes, and receive the air from them. The larva quits the water when the time of its transformation approaches, and enters into the earth, where the skin hardens and forms a case in which the pupa is formed; soon after the change, four tubes or horns are seen projecting from the case: these Reaumur supposes to be organs for communicating air to the interior parts of the insect; they are connected with little bladders which are found filled with air, and by which it is conveyed to the spiracula of the pupa. The larvæ of gnats, and other small aquatic insects of the same kind, are furnished with small tubes, that play on the surface of the water, and convey the air from thence to the insect. Many other singularities are to be found amongst the aquatic larvæ.
One of the greatest mysteries in nature is generation, or that power by which the various species of animals, &c. are propagated,enabling one single individual to give birth to thousands, or even millions of individuals like itself; all formed agreeable to proportions which are only known to thatADORABLE WISDOMwhich has established them. We shall never be able to form any adequate conception of this power, till we are acquainted with the principles of life, and can trace their various gradations in different orders of beings. Many ancient philosophers, from a misconception and perversion of the sentiments of the more ancient sages, imagined that insects were produced from corrupt and putrefied substances; that organized bodies, animated with life, and framed in a most wonderful manner, owed their origin to mere chance! Not so the most ancient sages; they taught that every degree of life must proceed from the fountain and source of all life, and that therefore, when manifested, it must be replete with infinite wonders; but then they also shewed, that if in its descent through the higher orders of being it was perverted, it would be manifested in loathsome forms, and with filthy propensities; and that according to the degree of reception of the Divine Goodness and Truth, or the perversion thereof, new forms of life would be occasionally manifested. The gloom of night still wraps this subject in obscurity; will the dawn of day ere long gild the horizon of the scientific world? or is the time of its breaking forth yet far from us? Be this as it may, insects will be found to conform to that general law of order which runs through the whole of animated nature, namely, that the conjunction of the male and female is necessary for the production of their offspring. Where we cannot ascertain causes, we must be content with facts.
Though insects are, like larger animals, distinguished into male and female, yet in some classes there is a kind of mules, partaking of neither sex, though themselves originating from the conjunction of both: many other particularities relative to the sexes canonly be touched upon here. In many insects the male and female are with difficulty distinguished, and in some they differ so widely, that an unskilful person might easily take the male and female of the same insect for different species; as for instance, in the phalæna humuli, piniaria, russula. The dissimilarity is still greater in those insects in which the male has wings and the female none, as in the coccus lampyris, phalæna antiqua, &c. In general the male is smaller than the female. The antennæ of the male are, for the most part, larger than those of the female. In some moths, and other insects which are furnished with feathered antennæ, the feathers of the male fly are large and beautiful, while those of the female are small, and hardly perceptible. Some male beetles are furnished with a horn, which is wanting in the female.
“Pleraque insectorum genitalia sua intra anum habent abscondita, et penes solitarios, sed nonnulla penem habent bifidum: cancri autem et aranei geminos, quemadmodum nonnulla amphibia, et quod mirandum in loco alieno, ut cancer, sub basi caudæ. Araneus mas palpos habet clavatos, qui penes sunt, juxta os utrinque unicum, quæ clavæ sexum nec speciem distinguunt; et fœmina vulvas suas habet in abdomine juxta pectus; heic vero si unquam vere dixeris: res plena timoris amor, si enim procus inauspicato accesserit, fœmina ipsum devorat, quod etiam fit, si non statim se retraxerit. Libellula fœmina genitale suum sub apice gerit caudæ, et mas sub pectore, adeo ut cum mas collum fœmina forcipe caudæ arripit, illa caudam suam pectori ejus adplicet, sicque peculiari ratione connexæ volitent.”
Insects are either oviparous or viviparous; or, in other words, the species is perpetuated either by their laying of eggs, or bringing forth their young alive. The former is the more general case; there are but few instances of the latter. Those insectswhich pass through the different transformations already described, cannot propagate till they arrive at their imago or perfect state; and we believe there is seldom any conjunction of the sexes in other classes till they have moulted, or put off their last skin, the cancri and monoculi excepted.
To form a just idea of the ovaries of insects, I could wish the reader to consult the description that Swammerdam has given of that of the queen bee, and to take a view of the elegant figure that accompanies it, a figure that speaks to the eyes, and by them to the imagination. Malpighi has given a description of the ovaries of the silk-worm moth.
Reaumur mentions six or seven species of two-winged flies that are viviparous, bringing forth worms, which are afterwards transformed into flies. The womb of one of these is singularly curious; it is formed of a band rolled up in a spiral form, and about two inches and an half in length; so that it is seven or eight times longer than the body of the fly, and composed of worms placed one on the side of the other with wonderful art: they are many thousands in number.[81]
[81]Reaumur Mem. des Insectes, tom. 4, p. 415.
[81]Reaumur Mem. des Insectes, tom. 4, p. 415.
These are a species of insects that have opened new views of the œconomy of animated beings; they belong to the hemiptera class. The rostrum is inflected, the antennæ are longer than the thorax; some have four erect wings, others are entirety without them. Towards the end of the abdomen there are two tubes ejecting that most delicate juice called honey-dew. Various names have been applied to them, the proper one is aphis, that bywhich they are most generally known, is puceron; they are also frequently called vine-fretters or plant-lice: many among the genera are both oviparous and viviparous, bringing forth their young alive in summer, but in autumn depositing their eggs upon the branches and bark of trees. The different aphides are very curious objects for the microscope: they are a very numerous genus, Linnæus has enumerated thirty-three different species, whose trivial names are taken from the plant which they inhabit, though it is probable the number is much larger, as the same plant is often found to support two or three different sorts of them. Their habits are very singular: an aphis or puceron, brought up in the most perfect solitude from the very moment of its birth, in a few days will be found in the midst of a numerous family; repeat the experiment on one of the individuals of this family, and you will find this second generation will multiply like its parent; and this you may pursue through many generations.
M. Bonnet had repeated experiments of this kind, as far as the sixth generation, which all uniformly presented the observer with fruitful virgins, when he was engaged in a series of new and tedious experiments, from a suspicion imparted by M. Trembley in a letter to him, who thus expresses himself: “I have formed the design of rearing several generations of solitary pucerons, in order to see if they would all equally bring forth young. In cases so remote from usual circumstances, it is allowed to try all sorts of means; and I argued with myself, Who knows but that one copulation might serve for several generations?” This “WHO KNOWS” persuaded M. Bonnet that he had not sufficiently pursued his investigations. He therefore now reared to the tenth generation his solitary aphides, having the patience to keep an exact account of the days and hours of the birth of each generation. The result of this pursuit was, his discovering both males and females among them, whose amours were not in the leastequivocal; the males are produced only in the tenth generation, and are but few in number; these soon arriving at their full growth, copulate with the females, and the virtue of this copulation serves for ten successive generations; all these generations, except the first from fecundated eggs, are produced viviparous, and all the individuals are females, except those of the last generation, among whom some males appear, to lay the foundation of a fresh series.
In order to give a further insight into the nature of these insects, I shall insert an extract of a description of their different generations, by Dr. Richardson, as published in the Philosophical Transactions for the year 1771.
The great variety of species which occur in the insects now under consideration, may make an inquiry into their particular natures seem not a little perplexing, but by reducing them under their proper genera, the difficulty is considerably diminished. We may reasonably suppose all the insects, comprehended under any distinct genus, to partake of one general nature; and, by diligently examining any particular species, may thence gain some insight into the nature of all the rest. With this view Dr. Richardson chose out of the various sorts of aphides the largest of those found on the rose-tree, not only as its size makes it the more conspicuous, but as there are few others of so long a duration. This sort appears early in the spring, and continues late in the autumn; while several are limited to a much shorter term, in conformity to the different trees and plants from whence they draw their nourishment.
If at the beginning of February the weather happen to be so warm, as to make the buds of the rose-tree swell and appear green, small aphides are frequently to be found on them, thoughnot larger than the young ones in summer, when first produced. It will be found, that those aphides which appear only in spring, proceed from small black oval eggs, which were deposited on the last year’s shoots; though when it happens that the insects make too early an appearance, the greater part suffers from the sharp weather that usually succeeds; by which means the rose-trees are some years in a manner freed from them. The same kind of animal is then at one time of the year viviparous, and at another, oviparous. Those aphides which withstand the severity of the weather seldom come to their full growth before the month of April, at which time they usually begin to breed, after twice casting off their exuvia, or outward covering. It appears that they are all females, which produce each of them a numerous progeny, and that without having intercourse with any male insect; they are viviparous, and what is equally singular, the young ones all come into the world backwards. When they first come from the parent, they are enveloped by a thin membrane, having in this situation the appearance of an oval egg; these egg-like appearances adhere by one extremity to the mother, while the young ones contained in them extend the other, by that means gradually drawing the ruptured membrane over the head and body to the hind feet. During this operation, and for some time after, the fore part of the head adheres, by means of something glutinous, to the vent of the parent. Being thus suspended in the air, it soon frees itself from the membrane in which it was confined; and after its limbs are a little strengthened, is set down on some tender shoots, and left to provide for itself.
In the spring months there appear on the rose-trees but two generations of aphides, including those which proceed immediately from the last year’s eggs; the warmth of the summer adds so much to their fertility, that no less than five generations succeedone another in the interval. One is produced in May, which casts off its covering; while the months of June and July each supply two more, which cast off their coverings three or four times, according to the different warmth of the season. This frequent change of their outward coat is the more extraordinary, because it is repeated more often when the insects come the soonest to their growth, which sometimes happens in ten days, where warmth and plenty of nourishment conspired.
Early in the month of June, some of the third generation, which were produced about the middle of May, after casting off their last covering, discover four erect wings, much longer than their bodies; and the same is observable in all the succeeding generations which are produced during the summer months, but still without any diversity of sex; for some time before the aphides come to their full growth, it is easy to distinguish which will have wings, by a remarkable fullness of the breast, which in the others is hardly to be distinguished from the body. When the last covering is rejected, the wings, which were before folded up in a very narrow compass, are gradually extended in a surprizing manner, till their dimensions are at last very considerable.
The increase of these insects in the summer time is so very great, that by wounding and exhausting the tender shoots, they would frequently suppress all vegetation, had they not many enemies to restrain them. Notwithstanding these insects have a numerous tribe of enemies, they are not without friends, if those may be considered as such, who are officious in their attendance for the good things they expect to reap thereby. The ant and the bee are of this kind, collecting the honey in which the aphides abound, but with this difference, that the ants are constant visitors, the bee only when flowers are scarce; the ants will suckin the honey while the aphides are in the act of discharging it, the bees only collect it from the leaves on which it has fallen.
In the autumn three more generations of aphides are produced, two of which generally make their appearance in the month of August, and the third before the middle of September. The two first differ in no respect from those which are found in summer; but the third differs greatly from all the rest. Though all the aphides which have hitherto appeared were females, in this tenth generation several male insects are found, but not by any means so numerous as the females.
The females have at first the same appearance with those of the former generations, but in a few days their colour changes from a green to a yellow, which is gradually converted into an orange before they come to their full growth; they differ also in another respect from those which occur in summer, for all these yellow females are without wings. The male insects are, however, still more remarkable, their outward appearance readily distinguishing them from this and all other generations. When first produced, they are not of a green colour like the rest, but of a reddish brown, and have afterwards a dark line along the back; they come to their full growth in about three weeks, and then cast off their last covering, the whole insect being after this of a bright yellow colour, the wings only excepted; but after this change to a deeper yellow, and in a very few hours to a dark brown, if we except the body, which is something lighter coloured, and has a reddish cast. The males no sooner come to maturity than they copulate with the females, who in a day or two after their intercourse with the males lay their eggs, generally near the buds. Where there are a number crowded together, they of course interfere with each other, in which case theywill frequently deposit their eggs on other parts of the branches. It is highly probable that the aphides derive considerable advantages by living in society; the reiterated punctures of a great number of them may attract a larger quantity of nutritious juices to that part of the tree or plant where they have taken up their abode.
The aphides are very injurious to trees and vegetables of almost every kind; the species is so numerous, and all endued with so much fertility, that if they were not destroyed by a numerous host of enemies, the leaves, the branches, and the stem of every plant would be covered with them. On almost every leaf inhabited by aphides, a small worm is to be found, that feeds not upon the leaves, but upon these insects, devouring them with incredible rapacity: Reaumur supplied a single worm with above one-hundred aphides, every one of which it devoured in less than three hours. Indeed myriads of insects seem to be produced for no other purpose than to destroy them.
The bee belongs to the hymenoptera order, the mouth is furnished with two jaws, and a proboscis protected by a double sheath, see Fig. 3.Plate XIII.They have four wings; when these are at rest, the two foremost cover those behind. There is a sting in the tail of the working and female bee. Of the bee kind fifty-five species are enumerated by Linnæus. Our present observations are confined to the common or domestic bee.
In the natural history of insects new objects of surprize are continually rising before the observer: however singular the preceding account of the production of the aphides may appear, that of bees is not less so. This little republic has at all times gaineduniversal esteem and admiration; and, though they have attracted the attention of the most ingenious and laborious inquirers into nature, yet the mode of propagating their species seems to have baffled the ingenuity of ages, and rendered all attempts to discover it abortive; even the labours and scrupulous attention of Swammerdam were unsuccessful. He spent one month entirely in examining, describing, and representing their intestines; and many months on other parts; employing whole days in making observations, and whole nights in registering them, till at last he brought his treatise of bees to the wished for perfection; a work which, from the commencement of natural history to our own times, has not its equal. Reaumur, however, thought he had in some measure removed the veil, and explained their manner of generating: he supposes the queen bee to be the only female in the hive, and the mother of the next generation; that the drones are the males, by which she is fecundated, and that the working bees, or those that collect wax on the flowers, that knead it, and form from it the combs and cells, which they afterwards fill with honey, are of neither sex. The queen bee is known by its size, being generally much larger than the working bee or the drone.
M. Schirach, a German naturalist, affirms that all the common bees are females in disguise, in which the organs that distinguish the sex, and particularly the ovaria, are obliterated, or at least from their extreme minuteness have escaped the observer’s eye; that every one of these bees, in the earlier period of its existence, is capable of becoming a queen bee, if the whole community should think it proper to nurse it in a particular manner, and raise it to that rank: in short, that the queen bee lays only two kinds of eggs, those that are to produce the drones, and those from which the working bees are to proceed. Schirach made his experiments not only in the early spring months, but even as late as November. He cut off from an old hive a piece of the brood-comb,taking care that it contained worms which had been hatched about three days. He fixed this in an empty hive, together with a piece of honey-comb, for food to his bees, and then introduced a number of common bees into the hive. As soon as these found themselves deprived of their queen and their liberty, a dreadful uproar took place, which lasted for the space of twenty-four hours. On the cessation of this tumult, they betook themselves to work, first proceeding to the construction of a royal cell, and then taking the proper methods for feeding and hatching the brood inclosed with them; sometimes even on the second day the foundation of one or more royal cells were to be perceived; the view of which furnished certain indications that they had elected one of the inclosed worms to the sovereignty. The bees may now be left at liberty. The final result of these experiments is, that the colony of working bees being thus shut up with a morsel of brood-comb, not only hatch, but at the end of eighteen or twenty days produce from thence one or two queens, to all appearance proceeding from worms of the common sort, converted by them into a queen merely because they wanted one.[82]From experiments of the same kind, varied and often repeated, Schirach concludes that all the common working bees were originally of the female sex; but that if they are not fed, lodged, and brought up in a particular manner while they are in the larva state, their organs are not developed; and that it is to this circumstance attending the bringing up the queen, that the extension of the female organs is effected, and the difference in her form and size produced.
[82]Schirach Histoire Naturelle des Abeilles.
[82]Schirach Histoire Naturelle des Abeilles.
Mr. Debraw has carried the subject further, by discovering the impregnation of the eggs by the males, and the difference of thesize among the drones or males; though indeed this last circumstance was not unknown to Mess. Maraldi and Reaumur. Mr. Debraw watched the glass hives with indefatigable attention, from the moment the bees, among which he took care there should be a large number of drones, were put into them, to the time of the queen’s laying her eggs, which generally happens on the fourth or fifth day; he observed, that on the first or second day, always before the third from the time the eggs are placed in the cells, a great number of bees, fastening themselves to one another, hung down in the form of a curtain, from the top to the bottom of the hive; they had done the same at the time the queen deposited her eggs, an operation which seems contrived on purpose to conceal what is transacting; however, through some parts of this veil he was enabled to see some of the bees inserting the posterior part of their bodies each into a cell, and sinking into it, but continuing there only a little while. When they had retired, it was easy to discover a whitish liquor left in the angle of the basis of each cell, which contained an egg. In a day or two this liquor was absorbed into the embryo, which on the fourth day assumes its worm or larva state, to which the working bees bring a little honey for nourishment, during the first eight or ten days after its birth. When the bees find the worm has attained its full growth, they leave off bringing it food, they know it has no more need of it; they have still, however, another service to pay it, in which they never fail; it is that of shutting it up in its cell, where the larva is inclosed for eight or ten days: here a further change takes place; the larva, which was heretofore idle, now begins to work, and lines its cell with fine silk, while the working bee incloses it exteriorly with a wax covering. The concealed larva then voids its excrement, quits its skin, and assumes the pupa; at the end of some days the young bee acquires sufficient strength to quit the slender covering of thepupa, tears the wax covering of its cell, and proceeds a perfect insect.
To prove further that the eggs are fecundated by the males, and that their presence is necessary at the time of breeding, Mr. Debraw made the following experiments. They consist in leaving in a hive the queen, with only the common or working bees, without any drones, to see whether the eggs she laid would be prolific. To this end he took a swarm, and shook all the bees into a tub of water, leaving them there till they were quite senseless; by which means he could distinguish the drones without any danger of being stung: he then restored the queen and working bees to their former state, by spreading them on a brown paper in the sun; after this he replaced them in a glass hive, where they soon began to work as usual. The queen laid eggs, which, to his great surprize, were impregnated, for he imagined he had separated all the drones or males, and therefore omitted watching them; at the end of twenty days he found several of his eggs had, in the usual course of changes, produced bees, while some had withered away, and others were covered with honey. Hence he inferred, that some of the males had escaped his notice, and impregnated part of the eggs. To convince himself of this, he took away all the brood-comb that was in the hive, in order to oblige the bees to provide a fresh quantity, being determined to watch narrowly their motions after new eggs should be laid in the cells. On the second day after the eggs were deposited, he perceived the same operation that was mentioned before, namely, that of the bees hanging down in the form of a curtain, while others thrust the posterior part of their bodies into the cells. He then introduced his hand into the hive, broke off a piece of the comb, in which there were two of these insects; he found in neither of them any sting, a circumstance peculiar to the drones; upon dissection,with the assistance of a microscope, he discovered the four cylindrical bodies which contain the glutinous liquor of a whitish colour, as observed by Maraldi in the large drones. He was therefore now under the necessity of repeating his experiments, in destroying the males, and even those that might be suspected to be such. He once more immersed the same bees in water, and when they appeared in a senseless state, he gently pressed every one, in order to distinguish those armed with stings from those which had none, and which of course he supposed to be males: of these last he found fifty-seven, and replaced the swarm in a glass hive, where they immediately applied again to the work of making cells, and on the fourth or fifth day, very early in the morning, he had the pleasure to see the queen bee deposit her eggs in those cells: he continued watching most part of the ensuing days, but could discover nothing of what he had seen before.
The eggs, after the fourth day, instead of changing in the manner of caterpillars, were found in the same state they were in the first day, except that some were covered with honey. A singular event happened the next day, about noon; all the bees left their own hive, and were seen attempting to get into a neighbouring one, on the stool of which the queen was found dead, being no doubt slain in the engagement. This event seems to have arisen from the great desire of perpetuating their species, and to which end the concurrence of the males seems so absolutely necessary; it made them desert their habitations, where no males were left, in order to fix a residence in a new one, in which there was a good stock of them. To be further satisfied, Mr. Debraw took the brood-comb, which had not been impregnated, and divided it into two parts; one he placed under a glass bell, No. 1, with honey-comb for the bees food, taking care to leave a queen,but no drones, among the bees confined in it; the other piece of the brood-comb he placed under another glass bell, No. 2, with a few drones, a queen, and a proportionable number of common bees. The result was, that in the glass, No. 1, there was no impregnation, the eggs remaining in the same state they were in when put into the glass; and on giving the bees their liberty on the seventh day, they all flew away as was found to be the case in the former experiment; whereas in the glass, No. 2, the very day after the bees had been put into it, the eggs were impregnated by the drones, and the bees did not leave their hive on receiving their liberty.
The editor of the Cyclopædia says, that the small drones are all dead before the end of May, when the larger species appear, and supersede their use; and that it is not without reason that a modern author suggests, that a small number of drones are reserved to supply the necessities of the ensuing year; but that they are very little, if any, larger than the common bee.
It does not enter into our plan to notice further in this place the wonders of this little society. A bee-hive is certainly one of the finest objects that can offer itself to the eyes of the beholder. It is not easy to be weary of contemplating those workshops, where thousands of labourers are constantly engaged in different employments.[83]