WATER.

Water covers such a large proportion of the earth's surface and is such an important factor in the economy of nature that it becomes a matter of interest to study the process of its distribution. Water is to our globe what blood is to our bodies. A constant circulation must be kept up or all animal and vegetable life would suffer. Here, as in every other operation of nature, the sun is the great heart and motive power that is active in the distribution of moisture over the face of the globe.

The total annual rainfall on the whole surface of the earth amounts to about 28,000 cubic miles of water. Only about one-fourth of this amount ever reaches the ocean, but it is either absorbed for a time by animal and vegetable life or lifted through the process of evaporation into the air as invisible moisture, when it is carried over the region of rainfall and there condensed into water and falls backupon the earth—only to go through the same operation again. The whole surface of the earth is divided into drainage areas that lead either directly through rivulets and rivers to the ocean, or into some land-locked basin, where it either finds an outlet under ground or is kept within bounds through the process of evaporation, the same as is the case with our great oceans. In North America the amount of drainage area that has no outlet to the ocean amounts to about 3 per cent. of the whole surface. In other countries the percentage of inland drainage is much larger. The great Salt Lake in Utah is an instance where there is no outlet for the water except through the medium of evaporation. Inasmuch as all rivers and streams contain a certain proportion of salt,—especially in such strongly alkaline land regions as the Great Basin of the North American continent,—these inland lakes in time become saturated with this and other mineral substances.

Salt is constantly being carried into the lake by the water of the stream that feeds it, and the water is continually being evaporated, leaving the salt behind. This process has been going on in the valley of Utah for so long a period that 17 per cent. of the contents of the lake is salt. The Humboldt River in Nevada, which empties into a small lake of the same name, and lies at the foot of the HumboldtMountains, is said to have an underground outlet. This must be the case, because the area of the lake is very small as compared with Salt Lake, while the river that feeds the latter is very small compared with the one that flows into the former. That is to say, in the one case a very small stream empties into a large lake, while in the other case a much larger stream feeds a very small lake. Besides, Humboldt Lake, unlike the Great Salt Lake, is said to be a fresh-water lake; if it had no outlet it would become in time saturated with salt. The largest body of water in the world having no outlet to the ocean is the Caspian Sea, on the border between Asia and Russia in Europe, it being 180,000 square miles in extent.

Where rivers empty into large bodies of water, such as the great chain of lakes on the northern border of the United States (and these lakes have an outlet connecting one with the other, and finally by a river to the ocean) a constant circulation is being kept up, and the water remains fresh. Owing to the fact, however, of the great evaporating surface that these lakes afford, there is a greater disproportion between the rainfall upon the drainage area tributary to these lakes, and the amount of discharge through the St. Lawrence River, than would be the case with a river that was not connected with a system oflakes. The amount of rainfall upon the area drained by the Mississippi River during one year amounts to about 614 cubic miles of water, while the discharge at the mouth of the Mississippi River is only about 154 cubic miles. The difference between the two figures has been carried up by the process of evaporation or stored in vegetation. These figures vary considerably, however, with different years.

The proportion of rainfall to discharge will vary greatly in different rivers from other causes than having a large evaporating surface. This variation is due to the difference in the ability of the soil to retain water after a rainfall. In some drainage areas the ground is more or less impermeable to water, and in this case the water runs readily off, causing a sudden rise in the river; and as suddenly it reaches the low-water mark. In other drainage areas the ground is very permeable to water, so that the rain penetrates to a greater depth into the earth, where it is held, and by a slow process drains into the rivers, while much more of it is carried off by evaporation and into vegetation than is the case in the drainage district before mentioned.

The courses of rivers are determined by the topography of the country through which they flow. The sinuous windings, that are found to be a characteristic of nearly all rivers, arecaused by the water, through the force of gravity, seeking the lowest level, and avoiding obstructions, which they can flow around more easily than remove.

Great rivers often change their courses, especially where they flow through a region of made earth, such as is the case with the lower Mississippi River, and in other great rivers of the world. The loose earth is continually shifted by the current, and where the current is not very strong it will often hold the water back to such an extent of accumulated weight that the flood will break over at some weak point on its banks and make a new course for itself.

One of the great rivers of China—the Hwangho—often causes dire destruction to life and property owing to change in its bed from time to time. It is estimated that between the years of 1851-66 this river caused the loss of from 30,000,000 to 40,000,000 lives through drowning and famine by the destruction of crops.

Floods in rivers are occasioned from various causes. Of course the primary cause is the same in all cases, that is, from precipitation of moisture in the form of rain or snow. Some rivers are so related to the area of rainfall and to the permeability of the soil that there is but little variation in the amount of discharge throughout the year. The greatriver of South America, the Amazon, is an instance of a river of this class. A certain number of the smaller rivers that feed it lie in the area of rainfall during the whole of the year; for instance, the streams of the upper Amazon are being fed by rains at one season of the year, when those feeding the river lower down are at the lowest stage. When the rainy season prevails in the upper section of the river the dry season prevails farther down, while at another season of the year these conditions are reversed. Therefore, though the Amazon has a larger drainage basin than any other river in the world, and in some parts the yearly rainfall is 280 inches, there is no very great fluctuation in the stages of water. The Orinoco River, which flows through Venezuela, and whose drainage area is largely covered with mountains, has a greater fluctuation than any other river, the difference between high and low water amounting to seventy feet.

The River Nile has an annual rise of from fourteen to twenty-six feet. This river is the sole dependence of the inhabitants of lower Egypt, and their sustenance depends upon the height to which the river rises; if it does not rise high enough the agricultural lands are not sufficiently irrigated, and if it rises too high their crops are destroyed by the floods. In this section they depend entirely upon the overflow of the Nile for irrigation, and notupon the rainfall. There is scarcely ever a rainfall in lower Egypt except about once a year on the coast of the Mediterranean. After ascending the river for a short distance we come into an area of no rain for a distance of 1500 miles along the river. Egypt has a superficial area of about 115,200 square miles, and only about one-twelfth of this area is in a position to be cultivated.

As there is no rainfall in this region, the sole dependence for agricultural purposes is from the River Nile when it rises to a sufficient height to admit of irrigation. The river brings down quantities of rich earth which during the overflow is deposited, and thus the agricultural regions are refertilized annually.

The River Nile is what is called a tropical river and is fed by the rains in upper Egypt caused by the monsoon winds that prevail in that section of Africa during the summer season, as they do in India. As has been explained in a former chapter, the monsoon winds blow steadily for about six months from off the southern ocean. These winds are highly charged with moisture, which is not precipitated till it strikes the mountainous regions of the interior. Here the high mountains, which are often snow-capped, cause a profuse precipitation, which runs off into the various feeders of the Nile, causing a gradual rise in the river that reaches the highest pointabout September of each year. If the Nile should dry up, or if the annual floods should materially change in height, it would make a desert region of all that portion of Egypt now so productive.

The great rivers of China, the Yang-tse-Kiang and the Hwangho, are also tropical rivers and have an annual flood. Sometimes the rise is as much as fifty-six feet. These annual floods are also caused by the monsoon winds that carry moisture from the ocean, which is condensed and precipitated in the mountains of central Asia. The conditions are substantially the same as those which prevail at the sources of the Nile in Africa.

Rivers are produced from all sorts of causes, some of them flowing only during the rainy season, while others are fed by melting snow from the higher mountains, and as the snow is rarely melted away entirely during the summer, in the high mountains, there is a continual flow from this source. The snow forms a system of storage, so that the water is held back and is gradually given up as it melts. If this were not true mountainous regions would be subjected to disastrous floods. If the precipitation were always in the form of rain it would immediately run off instead of being distributed over a whole season. The Platte is an instance of a river largely fed by the melting snows—of the Rocky Mountains.

In the region of glaciers in the mountains of Alaska and Switzerland rivers are fed by the melting ice. These rivers are usually of a milky color occasioned by the pulverization of rock caused by the grinding of the great glaciers as they flow down the gulches in the mountain side. In some regions these glacial rivers have a diurnal variation. This is caused by the fact that the glacier is so situated that it freezes at night, which checks the flow, and thaws in the daytime, which increases it.

Rivers are to the globe what the veins are to the animal organization. They pick up the surplus moisture not needed in the growth of vegetation and for the sustenance of animal life, and carry it on, together with the débris that it gathers in its course, to the great reservoirs, the seas and oceans, where it is redistilled and purified by the action of the sun's rays. From here it is carried back in the form of invisible moisture and again precipitated in the purified state, to help carry on the great operations of growth—animal and vegetable. The vaporized moisture that is carried back by the winds and redistributed corresponds to the blood, after it has been purified and is carried back through the arteries to the extremities and capillary vessels which feed and nourish the bodily organs.

Anyone who has spent a summer at the seashore has observed that the water level of the ocean changes twice in about twenty-four hours, or perhaps it would be a better statement to say that it is continually changing and that twice in twenty-four hours there is a point when it reaches its highest level and another when it reaches its lowest. It swings back and forth like a pendulum, making a complete oscillation once in twelve hours. When we come to study this phenomenon closely we find that it varies each day, and that for a certain period of time the water will reach a higher level each succeeding day until it culminates in a maximum height, when it begins to gradually diminish from day to day until it has reached a minimum. Here it turns and goes over the same round again. It will be further observed that the time occupied between one high tide and the next one is a trifle over twelve hours. That is to say, the two ebbs and flows that occur each day requirea little more than twenty-four hours, so that the tidal day is a little longer than the solar day. It corresponds to what we call the lunar day.

As all know, the moon goes through all its phases once in twenty-eight days. The tide considered in its simplest aspect is a struggle on the part of the water to follow the moon. There is a mutual attraction of gravitation between the earth and the moon. Because the water of the earth is mobile it tends to pile up at a point nearest the moon. But the earth as a whole also moves toward the moon, and more than the water does, keeping its round shape, while its movable water (practically enveloping it) is piled up before it toward the moon and left accumulated behind it away from the moon. So that in a rough way it is a solid sound earth, surrounded by an oval body of water: the long axis of the oval representing the high tides, which, as they follow the moon, slide completely around the earth once in every twenty-four hours. Thus, there are really two high tides and two low tides moving around the earth at the same time; and this accounts for the two daily tides.

We have accounted for the time when they occur in the fact that the water attempts to follow the moon, but this does not account for the gradual changes in the amount of fluctuation from day to day. The problem is complicatedby the fact that the sun also has an attraction for the earth as well as the moon. But from the fact that the sun is something like 400 times further from the earth than the moon is, and also the fact that the attraction of one body for another varies inversely as the square of the distance, the moon has an immense advantage over the sun, although so much smaller. If the power of the moon were entirely suspended, or if the moon were blotted out of existence, there would still be a tide. The fluctuation between high and low tide would not be nearly so great as it is at present, but it would occur at the same time each day, because it would be wholly a product of the sun.

It will be easily seen that these two forces acting upon the water at the same time will cause a complicated condition in the movement of the waters of the ocean. There will come a time once in twenty-eight days when the sun and the moon will act conjointly, and both will pull in the same direction at the same time upon the water. This joint action of the sun and moon produces the highest tide, which is called the "spring" tide. From this point, however, the tides will grow less each day, because the relation of the sun and moon is constantly changing, owing to the fact that it requires 365 days for the sun to complete his apparent revolution around the earth,while the moon does her actual course in twenty-eight days. When the sun and moon have changed their relative positions so that they are at right angles to each other with reference to the earth—at a quarter-circle apart—the sun and moon will be pulling against each other; at least this is the point where the moon is at the greatest disadvantage with reference to its ability to attract the water.

Because one-quarter around the earth the sun is creating his own tide, which to that extent counteracts the effect produced by the moon, the tide under the moon at this point is at its lowest point and is called the "neap" tide. When the moon has passed on around the earth to a point where it is opposite to that of the sun—at a half-circle apart—there will be another spring tide, and then another neap tide when it is on the last quarter, and from that point the tide will increase daily until it reaches the point where the sun and moon are in exact line with reference to the earth's center, when another spring tide occurs. From this it will be seen that there are two spring tides and two neap tides in each twenty-eight days. This is the fundamental law governing tides.

There are many other conditions that modify tidal effects. Neither the sun nor the moon is always at the same distance from theearth. So that there will be a variation at times in high and low tides. For instance, it will happen sometimes that when both the sun and moon are acting conjointly they will both be at their nearest point to the earth, and when this is the case the spring tide will be much higher than usual.

For many years the writer has observed that artesian wells, made by deep borings of small diameter into the earth to a water supply, have a daily period of ebb and flow, as well as a neap and spring tide, the same as the tides of the ocean, except that the process is reversed. The time of greatest flow of an artesian well will occur at low tide in the ocean. This might be accounted for from the fact that when the tide is at its height the moon is also pulling upon the crust of the earth, which would tend to take the pressure off the sand rock which lies one or two thousand feet below the surface and through which the flow of water comes, and thus slacken the flow. When the moon is in position for low tide, the crust of the earth would settle back and thus produce a greater pressure upon the water-bearing rock. This is the only theory that has suggested itself to the writer that would seem to account for these phenomena.

Looked at from one standpoint, it is easy to account for tidal action. But when we attempt to make up a table giving the hour andminute as well as the height of the tide at that particular time we find that we have a very complicated mathematical problem. However, tables are made out so that we know at just what time in the day a tide will occur every day in the year.

Before entering upon the great subject of water and ice—two of the most tremendous factors in world-building—let us consider a small matter, so far as its permanent effects are concerned, yet one which enters largely into the comfort and health of mankind, and which, though an animal, may be discussed where it belongs—under "Water."

There are few things more familiar about the ordinary household than a piece of sponge, and yet, perhaps, there are but few things about which there is so little known. The sponge had been in use many, many years before it was given a place in either the animal or vegetable kingdom. The casual observer, because he saw it attached to a rock, jumped to the conclusion that it was of vegetable origin. But after being kicked back and forth, so to speak, from one kingdom to the other, even by what are called well-educated people, it has finally been received into the family of animals; a dignity in which the sponge itself seems to take but little interest.

The sponge is found in the bottom of the sea; at no very great depth, however. It is usually attached to a rock or some other substance and it is due to this fact chiefly that it has been classed as a vegetable. At least one scientist has attempted to give it a place between the two kingdoms, but this only adds confusion without giving any satisfactory explanation of its origin. It seems to belong to a very low order of animal life. It breathes water instead of air, but probably, like many other water animals, it absorbs the oxygen from the air which is more or less contained in the water. There is a process of oxidation going on within the sponge in a manner somewhat as we find it in ordinary animal life, and like the animal it expels carbon dioxide. All this, however, is carried on apparently without any lungs or any digestive organs, or in fact any of the organs that are common to the animals of the higher order. The sponge, however, as we see it in our bathrooms, is only the framework, bony structure, or skeleton of the animal.

The sponge is exceedingly porous and readily absorbs water or any fluid by the well-known process of capillary attraction. The sponge fiber is very tough and is not like anything known to exist in the vegetable kingdom. The substance analyzes almost the same as ordinary silk, which all know is an animalproduct. If we burn a piece of sponge it exhibits very much the same phenomena as the burning of hair or wool, and the smell is very much the same.

The structure of a piece of sponge when examined under a microscope is a wonderfully complicated fabric. Under the microscope it shows a network of interlacing filaments running in every direction in a system of curved lines intersecting and interlacing with each other in a manner to leave capillary openings.

It is a wonderful structure, and one that a mechanical engineer could get many valuable lessons from. It will stand a strain in one direction as well as another. There are no special laminations or lines of cleavage; it is very resilient or elastic, and readily yields to pressure, but as readily comes back to its normal position when the pressure is relieved. If we examine the body of a sponge we shall notice that there are occasional large openings into it, but everywhere surrounded by smaller ones. If we should capture a live sponge and place it in an aquarium with sea water, where we could study it, we should find a circulation constantly going on, and that water was constantly sucked in at the smaller openings all over the outside of the sponge and as continuously ejected from the large openings. This process constitutes what corresponds in the higher order of animals to both respirationand blood circulation, combined. The sponge feeds upon substances that are gathered up from the sea water, and breathes the air contained in the same, so that it breathes, eats, and drinks through the same set of organs.

When we first capture a live sponge from the sea it has a slimy, dirty appearance, and is very heavy. The sponge is found to be filled with a glutinous substance that is the fleshy part of the animal. It is very soft and jelly-like, and after the sponge is dead it is readily squeezed out, by a process which is called "taking the milk out," which leaves simply the skeleton, the only useful part as an article of commerce. This fleshy substance, in life, has somewhat the appearance and composition of the white of an egg.

The mechanical process by which the sponge takes its nourishment is exceedingly interesting. There are small globe-shaped cells with openings through them that are lined with little hairlike projections that move in such a manner as to suck the water in at one side of the cell and push it out at the other. These little fibers are technically called "cilia." We might describe them as little suction pumps that are located at many points in the sponge, all acting conjointly to produce a circulation through the finer openings or capillary vessels and finally discharging into the larger chambers which carry off the residue. If we shouldanalyze the water as it is sucked into the sponge and that which issues from it through the larger openings, we should find a difference between the two. The expelled water would contain more or less carbon dioxide.

There are many different varieties of sponge, and, while they all possess certain characteristics in common, they are still very different in many respects. Some of them are large and coarse, while others are exceedingly soft and velvety. What is called a single sponge is a colony of animals rather than a single animal; at least they are so regarded by zoölogists. This can hardly be true if we regard the sponge itself as a part of the animal. If the sponge is simply regarded as the house in which the animal lives then it becomes a great tenement with numerous occupants. But it is a tenement upon which the life of the sponge depends, and is a part of it.

The sponge could not breathe without the fibrous structure in the cells containing the machinery for producing the circulation. It will be seen that the sponge, while it is an animal, is of the very simplest variety, so far as its organs are concerned. True, its framework is very complicated, but the organs for sustaining the life of the animal are the simplest possible. The little self-acting pumps pull the water into the sponge through the smaller openings, where it appropriates thefood substance from the water and where a chemical action takes place which builds up the fleshy substance of the animal, and then expels the residue which is not needed to support its life.

Simple as it is, however, as a mechanical structure, the life and growth of the sponge is as mysterious as that of the most highly organized animal or even the soul of man. We can study out the structure of a plant or animal; we can analyze it and tell what are the elements of which it is composed; we can describe the mechanical operations that are carried on and the chemical combinations that take place, but no man has ever yet solved the mystery of life, even in the lowest form—whether animal or vegetable.

The sponge, whether considered as a single or compound animal, has the power to reproduce itself, and here the mystery of life is as much hidden as it is in God's highest creation. It has been stated that every sponge contains a large number of separate cells which carry on the operation of circulation and respiration, and may be likened to the heart and lungs of an animal of a higher creation. Zoölogists claim that each one of these cells represents a separate animal, living in a common structure. However this may be, it is an interesting fact that the sponge has the power of secreting ova that grow in large numbersin little sacks until they have reached a certain stage of progress, when they are expelled from the mother sponge and turned adrift in the great ocean to struggle for their own existence. These eggs do not differ much in their structure and composition from an ordinary hen's egg, except that there is no shell, only a skin provided with little fibers called cilia, that project from it, and by the movement of these the embryo sponge is able to propel itself through the water. It thus lives until it has reached a certain stage of development, when it seeks out a pebble or rock, to which it attaches itself at one end—preparation for which has been made by its peculiar structure during its life when it was free to float around through the water. It is now a prisoner and chained to the rock it has selected for the foundation of its home. Having no longer any use for the little cilia, which enabled it to swim through the water, it now loses them. Here is a beautiful illustration of how nature provides for the necessities of the smallest things, and how when the necessity that demanded a certain condition passes by the condition passes with it. The embryo begins to show a fibrous development, which is the beginning of the framework of a new sponge. Evolution goes on, every step of which is as mysterious as a miracle, until the growing thing is a full-grown sponge, equipped withthe means for respiration, circulation, feeding, digestion, and reproduction.

Sponges grow in the bottom of the sea at different depths. They are obtained by divers who make a business of gathering them. The best sponges are called the Turkish sponge, which are very soft and velvety, and may be bleached until they are nearly white by subjecting them to the action of certain acids. The divers become very expert, but they do not have the modern equipments of a diving suit. The Syrian divers in the Mediterranean go down naked with a rope attached to their waists and a stone attached to the rope to cause them to sink, together with a bag for carrying the sponges. They have trained themselves until they can remain under water from a minute to a minute and a half, and in that time can gather from one to three dozen sponges. The ordinary depth to which they descend is from eight to twelve fathoms. But a very expert diver will go down as far as forty fathoms. The better class of sponges are said to grow in the deeper waters. The coarse inferior sponges are called the Bahama sponge. This sponge is of a peculiar shape, growing more like a brush, with long bristly fiber.

The trade in sponges is quite large. The consumption in Great Britain alone amounts to about $1,000,000 per annum.

The sponge as an animal possesses many advantagesover his more aristocratic neighbor, man. He breathes but he has no lungs, and therefore cannot have pneumonia. He digests his food, but he has no stomach, and therefore never has dyspepsia, gastritis, or any of the many ailments that belong to that much abused organ. He has no intestines, and therefore cannot have appendicitis or Asiatic cholera or any of the long train of diseases incident to those complicated organs. He has no nervous system—oh, happy sponge!—therefore he cannot have nervous prostration, hysteria, or epilepsy. He has no use for doctors, and therefore has no unpleasant discussions with his neighbors about the relative merits of the different schools of medicine. If he has any predilections in the way of "pathies" we should say that he is a hydropath. While he is a great drinker, he is not at all convivial—he drinks only water, and takes that in solitary silence. He sows all his wild oats when he is very young, while he has the freedom to roam at will. He soon tires of this, however, for he selects the rock that is to be the foundation of his future home and there settles down for life, "wrapt in the solitude of his own originality." He is not troubled with wars or rumors of wars. His eyes are never startled or his nerves shaken by the scare headlines of yellow journalism. The one sensation of his life, if sensation heever has, is when a great ugly creature of some Oriental clime comes down to his home and tears him away from his native rock, carries him to the surface, and there literally "squeezes the life out of him." He finally dies of the "grip," and here he sinks to the level of his more aristocratic neighbor.

But there is another side to our philosophy. If the sponge is exempt from all these ills that we have enumerated it is because he is incapable of suffering and is therefore incapable of enjoyment. Those beings that have the ability to suffer most have also the ability to enjoy most. The higher the type of civilization the greater possibilities it offers for real enjoyment—also for real misery. This being true, it should be the aim of highly civilized people to eliminate as far as possible those things that make for misery, and cultivate those things that make for happiness in the highest and best sense.

We now have entered upon a subject that is of intense interest, studied from the standpoint of facts as they exist to-day and of history as we read it in the rocks and bowlders that we find distributed over the face of the earth.

The whole northern part of the United States extending to a point south of Cincinnati was at one time covered with a great ice-sheet, traces of which are plainly visible to anyone who has made anything of a study of this subject. The glaciers now to be seen in British Columbia and Alaska, great as they seem to one viewing them to-day, are by comparison with what once existed simply microscopic specks of ice. Glaciers, like rivers, flow by gravity, following the lowest bed and lines of least resistance; the difference being that in the one case the flow is rapid, while in the other it is scarcely visible, except by measurement from day to day. Before entering upon a description of the law that governs the flow of glaciers, let us stop and give a littlestudy to the phenomena of water as exhibited when it is at the freezing point. Water is such a large factor in the make-up of our globe and the air that surrounds it that it becomes a very interesting and important study to anyone who wishes to understand the phenomena of nature that are closely related to it.

As all know, pure water is a compound of two gases, oxygen and hydrogen, combined in the proportion of two atoms of hydrogen and one of oxygen.

Let us now study this fluid in its relation to heat. The reader is referred to the chapters on heat in Vol. II., where it is stated that heat is a mode of motion. It is also stated that heat is a form of energy, and that energy is indestructible, that an unvarying amount of it exists in some form or another throughout the universe. It is not always manifested as heat or electricity, although both of these are always in evidence as active agents of force. Much of the energy is simply stored—all the time possessing the ability to do work or to be converted into any of its known forms, such as heat, light, electricity, or mechanical motion. A weight that is wound up has required a certain amount of energy to elevate it to the position that it occupies. While in its elevated position it possesses energy, although not active. Energy in this form is called potential(possible) energy, and has the power to do work if released. Active energy is called kinetic (moving) energy, and the sum of these two energies is a constant quantity.

We will now study energy as it is related to water in the form of heat. There is a kind of heat called "latent heat," which is not heat at all, but stored energy, waiting to be turned into heat, or light, or some other active form. Properly speaking, heat is a movement of the atoms of matter, the intensity of which is measurable in degrees, and called its temperature. To use the term latent heat as meaning concealed heat, which must reappear as heat, is a misnomer and is very misleading. If it is proper to call a wound-up spring or weight latent heat then its present use is a correct one. What was formerly termed latent heat is simply a form of potential energy. When sensible heat that is measurable, as temperature, disappears in the performance of some sort of work, especially in connection with certain phenomena relating to water, we call it—or rather miscall it—latent heat: but the phrase would better be "stored energy."

The action of water under heat is very peculiar, and in order to get a correct understanding of the phenomena exhibited in glacial action we also need to understand the phenomena of water at the freezing point. As is well known, fresh water freezes at 32 degreesFahrenheit, and at the moment of freezing there is a sudden expansion to such an extent that a cubic foot of ice will occupy a much larger space than it will in the form of water; and because it occupies so much larger space it is lighter than the same bulk of water would be, and therefore it floats in water.

At the point of freezing, the thermometer if placed on the ice will register 32 degrees. If the ice is allowed to melt, the water at the moment of liquefaction would be found to register the same degree of temperature as the ice when first frozen. And yet there has been a vast expenditure of energy between the points of liquefaction and congelation, notwithstanding the temperature of ice may be lowered, after it is formed, many degrees, which is measurable by the thermometer. Suppose we take a piece of ice which is 10 degrees below the freezing point and insert in it a thermometer. If now we apply heat to this ice the thermometer will gradually rise until it reaches the melting point at 32 degrees Fahrenheit, where it will stand until all the ice is melted. The application of heat is going on steadily, but there are no indications of movement in the mercury until the last trace of ice with which it is in contact has been liquefied. After the ice is all melted, if the application of heat to the body of liquefied ice be continued, the column of mercury will resume its movementupward until it reaches the boiling point, where it is again arrested. And no matter how much heat is applied to the boiling water, if in an open vessel, the thermometer remains the same until all the water is evaporated. Here are two curious facts, and they are facts that, if we can master them, will serve as a key to the understanding of much that is mysterious in nature.

It will be our endeavor to give the reader a mental picture of what is taking place during the time the ice is melting and the thermometer is stationary. Do not suppose that you can understand this, even so far as it is understandable, by a casual reading without thought. No man was ever yet able to present a picture to the mind of another, however clearly and simply it may be done, unless that other mind is receptive. When a photographer trains his camera upon an object, however intense the light may be and however clean-cut the picture that is thrown upon the plate in the camera, unless that plate is properly sensitized so that the picture may be impressed upon it, all of the other conditions are in vain. The reader is always a part of the book he is reading.

In our last chapter we traced the upward movement in the mercury of the thermometer from 10 degrees below the freezing point up to the boiling point of water. We found that the thermometer was arrested at 32 degrees and remained stationary at that point until all the ice was melted, notwithstanding the fact that heat was being constantly applied. After the ice is all melted the mercury moves upward until it reaches the boiling point of water, where the movement is again arrested, and although the heat is being continuously applied, it remains stationary until all the water is evaporated. If we push the process still further, with a sufficient application of energy we can separate the vapor molecules into their original elements, oxygen and hydrogen.

Let us go back now to the freezing point of water and see what is becoming of the heat that is consumed in melting the cake of ice, and still does not produce any effect upon the mercury in the thermometer. Sensible heat,as before stated, is a movement of the atoms of matter, and temperature, as it affects the thermometer, is a measure of the intensity of motion exhibited by these atoms.

In the experiment of the block of ice that in the beginning is 10 degrees below the freezing point, as shown by the thermometer, the molecules have a definite intensity of motion. The intensity of this motion increases when heat is applied until it reaches 32 degrees, when it remains stationary until all of the ice is melted. At this point there is a rearrangement of the molecules of water as it assumes the liquid state. To perform this rearrangement requires a certain amount of work done, which is analogous to the winding up of a weight to a certain distance. There has been energy used in winding up the weight, but that energy now is not destroyed, nor still in the form of heat, but is in the potential state—ready to do some other kind of work. So, the heat that has been applied to the melting ice has been utilized during the process of its liquefaction in rearranging the water molecules and putting them in a state of strain, so to speak, like the weight that is wound up to a certain height. There is a certain amount of potential energy that is stored in the molecules of water that will be given up and become active energy in the form of heat, if the water is again frozen. To melt a cubicfoot of ice requires as much heat as it would to raise a cubic foot of water 144 degrees Fahrenheit. But, as we have seen, while all of this energy is absorbed as heat, it is not lost as energy. It ceases to be kinetic or active and becomes potential energy. This (let us repeat) has been called latent heat. The term grew out of the old idea that heat was a fluid and that when it became latent it hid itself away somewhere in the interatomic spaces of matter and ceased to be longer sensible heat. It came into existence in the same manner and occupies the same place in the science of heat that the word "current" does in the science of electricity: both of them are misnomers.

When the ice is all melted potential energy is no longer stored, but is manifested in the sensible heating of water, the degree of which is measurable by the thermometer, until it reaches the boiling point, where it is again arrested. All of the surplus heat above that temperature is consumed in rending the liquid water into moisture globules that float away into the air, each one of them charged with a store of potential energy. Let us follow this vapor spherule as it floats into the upper regions of the atmosphere. Myriads of its fellows travel with it until it reaches a point where condensation takes place, when it collapses and unites with other vapor particles to form water again. In doing this the heat thatwas expended upon it to disengage it (whether the heat was artificial or that of the sun's rays) now reappears either as sensible heat or as electricity, or both. And this is what is meant in meteorology by latent heat becoming sensible heat at the time of condensation; in fact, it is stored or "potential" energy becoming active or kinetic, and assumes the form of heat or electricity, as before stated. We have thus reviewed the matter of the foregoing chapter in order to follow the course of the stored energy from the melting of the ice to the vapor, and back again to water: to doubly impress the fact that the energy used was not consumed, but still exists and is ready for further work.

During the progress of a hailstorm, it has been stated, one of the factors that is active to produce this phenomenon is the intense ascensional force that is given to the moisture-laden air, caused by intense heat at the surface of the earth. This condition forces the moisture vapor to higher regions of the atmosphere than is the case with the ordinary thunderstorm. Another factor that is undoubtedly active in producing hail under these circumstances is that when condensation takes place in the higher regions, and is therefore more energetic on account of the intenser cold, the potential energy that is set free by the moisture spherules takes, in a larger degree, the formof electricity rather than heat, as is the case under more ordinary circumstances. While in the end this electrical energy becomes active heat, it does not for the time being, and thus favors the ready congelation of the condensed moisture into hailstones. Hailstorms are always attended by incessant thunder and lightning, and this fact favors the theory advanced above.

It will be easily seen from a study of the foregoing what a wonderful factor evaporation (which is a product of the sun's rays) is, in the play of celestial dynamics. It ascends from the surface of the earth or ocean laden with a stored energy, the power of which no man can compute, and beside which gravitation is a mere point. In the upper regions of atmosphere this potential force under certain conditions is released and becomes an active factor, not only in the formation of cloud and the precipitation of rain, hail, and snow, but it disturbs the equilibrium of the air and sets that in motion.

Certain physicists deny that evaporation has anything to do with atmospheric electricity. They tell us that it is caused by the arrest of the energy of the sunbeam by the clouds and vapor in the upper atmosphere. We admit that a part of the energy is so arrested, and is stored, for the time, in moisture globules by a process of cloud evaporation to transparentvapor again. Yet this does not hinder the same process from going on at the surface of the earth wherever there is water or moisture. But they tell us that the electroscope does not show any signs of electrification in the evaporated moisture. Of course it does not. The electroscope is not made to detect the presence of energy except when set free as electricity.

A wound-up spring does not seem to be electrified, but if it is released the energy stored in it will be transformed into electricity if the conditions are right. Just so, the energy required to put the moisture spherule into a state of strain is latent until some power releases it, when it reappears as active energy of some form.

We have now followed the relation of heat to water from a point 10 degrees below freezing up to where it was forced into its original gases, oxygen and hydrogen. These gases have stored in them a wonderful amount of potential energy. When one pound of hydrogen and eight pounds of oxygen unite to form water the mechanical value of the energy given up at that time in the form of heat is represented by 47,000,000 pounds raised to one foot in height. And this is the measure of the energy that was put into nine pounds of water to force it from a state of vapor into its constituent gases. After the combination of the gases into a state of vapor the temperaturesinks to that of boiling water. The amount of energy given up in condensing the nine pounds of vapor into nine pounds of water is equal to 6,720,000 foot-pounds. If this nine pounds of water is now cooled from the boiling point to 32 degrees Fahrenheit we come to the final fall, where the potential energy that is stored in the operation of melting ice is given up suddenly at the moment of freezing, which in nine pounds of water is 993,546 foot pounds.

Professor Tyndall, in speaking of the amount of energy that is given up between the points where the constituent gases unite to form nine pounds of water and the point where it congeals as ice, says: "Our nine pounds of water, at its origin and during its progress, falls down three precipices—the first fall is equivalent in energy to the descent of a ton weight down a precipice 22,320 feet high-over four miles; the second fall is equal to that of a ton down a precipice 2900 feet high, and the third is equal to a fall of a ton down a precipice 433 feet high. I have seen the wild stone avalanches of the Alps, which smoke and thunder down the declivities with a vehemence almost sufficient to stun the observer. I have also seen snowflakes descending so softly as not to hurt the fragile spangles of which they are composed. Yet to produce from aqueous vapor a quantity which a child could carry of that tender material demands an exertion ofenergy competent to gather up the shattered blocks of the largest stone avalanche I have ever seen and pitch them to twice the height from which they fell."

When we contemplate the foregoing facts as related to so small an amount of water as nine pounds, and multiply this result by the amount of snow- and rainfall each year and the amount of ice that is congealed and again liquefied by the power of the sun's rays, we are appalled, and shrink from the task of attempting to reduce the amount of energy expended in a single year to measurable units.

Having considered water in its relation to heat in the preceding chapters, we will now take up the subject of water in its relation to ice and snowfall and the phenomena exhibited in ice rivers, commonly called glaciers.

When water is under pressure the freezing point is reduced several degrees below 32 degrees Fahrenheit. This fact has been determined by confining water in a close vessel and putting it under pressure and subjecting it to a freezing mixture, and by this means determining the freezing point under such conditions. By putting a bullet or something of that nature into the water that is subjected to pressure one can tell by shaking it when the freezing point is reached. If water is put under pressure and cooled to a point below 32 degrees, and yet stillremains in the liquid state, it may be suddenly congealed by taking off the pressure; this shows that the pressure helps to hold the molecules in the position necessary for the liquid state, and prevents the rearrangement of them that takes place at the moment of freezing. When the water molecules are arranged for the liquid condition they may be compared to a spring that is wound up and held in position by the heat energy that is stored in the water. And when this energy is given up to a certain degree the power that holds the spring wound up is suddenly released, when it unwinds and occupies a larger space. There is a force that we may call polar force, which is constantly tending to push the molecules of water into an arrangement such as we see when crystallization takes place—as it always does in the act of freezing. These polar forces cannot act so long as the energy in the form of heat is sufficient to hold the water in the fluid state. But the moment this energy, which tends to hold it in the fluid state, falls below that which tends to rearrange it into the crystalline form, it is overcome by the superior power of the latter force, and we have the phenomenon of solidified water.

A very interesting experiment may be performed with a block of ice by anyone when the ice is near the melting point. If a wire is put around the ice and a sufficient weight is suspendedto it, the pressure of the wire on the ice will gradually liquefy that portion immediately under the wire, which allows it to sink into the ice slowly, and as this process goes on the ice freezes together again behind the wire, so that in time the wire will pass entirely through the block and leave it still a solid block, as it was before the experiment began.

This is an interesting fact which it will be well to remember when we come to explain glacial action, or rather the law that governs glacial action. If we take two pieces of melting ice and bring them together they immediately congeal at the point of contact. This phenomenon is called "regelation." Ice has some of the properties of a viscous substance. It will yield slowly to pressure, especially when near the melting point, but if put under a tensional strain it will break, as any brittle substance will, so that it has the properties of both viscosity and brittleness. Ordinarily we are in the habit of treating water as a fluid and ice as a solid, but from what has gone before the reader must understand that in a certain sense ice should be treated as having semi-fluidic properties.

Nature is full of surprises. By a long series of experimental investigations you think you have established a law that is as unalterable as those of the Medes and Persians. But once in a while you stumble upon phenomena that seem to contradict all that has gone before.

These, however, may be only the exceptions that prove the rule. It is recognized as a fundamental law that heat expands and cold contracts; that the atom when in a state of intense motion (which is the condition producing the effect that we call "heat") requires more room than when its motions are of a less amplitude. In other words, an increase in the amplitude of atomic motion is heating, while a decrease is cooling. It follows from the above statement that the colder a body becomes the smaller will be its dimensions. There are two or three, and perhaps more, exceptions to this rule, and the most notable one is that of water. Water follows the same law that all other substances do under the actionof heat and cold, within certain limits only. If we take water, say, at 50 degrees Fahrenheit and subject it to cold it will gradually contract in bulk until it reaches 39 degrees Fahrenheit. At this point, very curiously, contraction ceases, and here we find the maximum density of water. If the temperature is still lowered we find the bulk is gradually increasing instead of diminishing (as is the rule with other fluids), and when it reaches the freezing point there is a sudden and marked expansion, so much so that a cubic foot of ice, which is solidified water, will not weigh as much as a cubic foot of water before it freezes—hence it floats.

Let us try an experiment. Take a small glass flask, terminating in a long neck, say of four to six inches, and of small diameter. Suppose the water in the glass to be at 50 degrees Fahrenheit. Fill the flask with water until it stands halfway up the neck at 50 degrees temperature. Now immerse the flask gradually in hot water, and observe the effect. For a moment the water will lower in the neck of the tube, but this is due to the fact that the glass expands before the heat is communicated to the water and enlarges its capacity. But immediately the water will begin to rise as the heat is communicated to it, and will continue to expand up to the boiling point. Now take the flask out of the hotwater and gradually introduce it into a freezing mixture made of broken ice and salt. Immediately the water will begin to fall in the tube, showing that it is contracting under the cold, and it will continue to contract until it reaches a temperature of 39 degrees Fahrenheit, when it will come to a standstill and then proceed to expand as the temperature of the water lowers. When it reaches the freezing point the fluid can no longer rise in the neck of the flask, which is broken by the sudden expansion that takes place at this point.

To show what an irresistible power resides in the atoms of which the body is made, let us take an iron flask with walls one-half inch or more in thickness; fill it with water and seal it up by screwing on the neck an iron cap; now plunge it into the freezing mixture, and the first effect will be to contract the water unless it is already below 39 degrees Fahrenheit, but when it reaches that point expansion sets in, which continues to the freezing point, when a greatly increased expansion takes place suddenly. The walls of the iron flask, although a half-inch in thickness, are no longer able to resist the combined efforts of the billions upon billions of the atoms of which the water is made up, in their individual clamor for more room, hence the flask is shivered into pieces.

There are one or two other substances which are exceptions to the general rule, but we willmention only one, which is the metal bismuth. If we should melt a sufficient amount to fill an iron flask, such as we have described, and subject it to the same freezing process, the flask will be broken the same as in the experiment made with the water.

A query arises, Why this phenomenon? Why does water follow a different law in cooling from that of nearly all other substances?

This is a case where it is much easier to ask a question than to answer it. When water solidifies at the moment of freezing, crystallization sets in. But what is crystallization? Crystallization is a peculiar arrangement of the molecules of matter, which takes place in some substances when they pass from the liquid to the solid form. The molecules assume definite forms and shapes, according to the nature of the substance. When water assumes the solid form under the action of cold the molecules arrange themselves according to certain definite and fixed laws, the result of which is to increase the bulk to a considerable extent over that which the same number of molecules would occupy at a temperature of 39 degrees Fahrenheit. Hence, as has been heretofore stated, a given block of solidified water is lighter than the same bulk would be in the fluid state, and this is the reason why ice floats.

What would happen in case nature did not make this exception to the laws of expansion and contraction by heat and cold, in the case of water? First, our lakes would freeze from the bottom upward; as soon as the surface became frozen, or even colder than the water underneath, it would drop to the bottom, the warmer water below coming up by a well-known law—that the warmer fluid rises and the colder falls. This circulation would continue until ice began to form, which would immediately drop to the bottom, and this process would go on until the whole mass were frozen solid. In the same way our rivers in the northern climates would freeze from the bottom, and in time our valleys would fill up with ice to a thickness that the summer's sun would never melt, and gradually all north of a certain zone would become a great glacier, rendering not only the lakes and rivers but also the surface of the earth unfitted for animal life.

Those who believe that the laws of nature are the creations of a beneficent and all-wise Intelligence will see in this exception to the general law in the case of freezing water a striking evidence of design. But those who have no such belief will say it is a most fortunate though fortuitous circumstance (a saying they will have to make, regarding thousands of other things in nature), and go onfloundering in the interminable sea of "I don't know."

The atom when it is acting under the direction of a fixed law is a giant in strength. And when its individual strength is multiplied by billions upon billions the combined energy exerted produces a power that is irresistible. Not only has nature endowed these atoms with this wonderful power, but she has also willed that they arrange themselves in lines of beauty. In confirmation of this we need only to study the work of the frost upon our window panes. As we lie in our beds on a cold night and exhale moisture from our lungs it settles upon the window panes of our bedrooms, where Nature—that wonderful artist—forms it into beautiful pictures that gladden our eyes when we awake:


Back to IndexNext