In the matter of conservation of national resources here is one of the greatest opportunities open to all civilized nations. What might not be done in the United States with a fund of $57,000,000 annually, the market price of the raw tobacco leaf, and the land, the labor and the capital expended in getting the product to the men who puff, breathe and perspire the noxious product into the air everyone must breathe, and who bespatter the streets, sidewalks, the floor of every public place and conveyance, and befoul the million spittoons, smoking rooms and smoking cars, all unnecessary and should be uncalled for, but whose installation and up-keep the non-user as well as the user is forced to pay, and this in a country of, for and by the people. This costly, filthy, selfish tobacco habit should be outgrown. Let it begin in every new home, where the mother helps the father in refusing to set the example, and let its indulgence be absolutely prohibited to everyone while in public school and to all in educational institutions.
Mr. League had been given a letter of introduction to one of the leading farmers of the village and it chanced that as we reached the entrance way to big home we were met by his son, just returning from the fields with his drill on his shoulder, and it is he standing in the illustration, Fig. 131, holding the letter of introduction in his hand. After we had taken this photograph and another one looking down the narrow street from the same point, we were led to the small open court of the home, perhaps forty by eighty feet, upon which all doors of the one-storied structures opened. It was dry and bare of everything green, but a row of very tall handsome trees, close relatives of our cottonwood, with trunks thirty feet to the limbs, looked down into the court over the roofs of the low thatched houses. Here we met the father and grandfather of the man with the drill, so that, with the boy carrying the baby in his arms, who had met his father in the street gateway, there were four generations of males at our conference. There were women and girls in the household but custom requires them to remain in retirement on such occasions.
A low narrow four-legged bench, not unlike our carpenter's sawhorse, five feet long, was brought into the court as a seat, which our host and we occupied in common. We had been similarly received at the home of Mrs. Wu in Chekiang province. On our right was the open doorway to the kitchen in which stood, erect and straight, the tall spare figure of the patriarch of the household, his eyes still shining black but with hair and long thin straggling beard a uniform dull ashen gray. No Chinese hair, it seems, ever becomes white with age. He seemed to have assumed the duties of cook for while we were there be lighted the fire in the kitchen and was busy, but was always the final oracle on any matter of difference of opinion between the younger men regarding answers to questions. Two sleeping apartments adjoining the kitchen, through whose wide kang beds the waste heat from the cooking was conveyed, as described on page 142, completed this side of the court. On our left was the main street completely shut off by a solid earth wall as high as the eaves of the house, while in front of us, adjoining the street, was the manure midden, a compost pit six feet deep and some eight feet square. A low opening in the street wall permitted the pit to be emptied and to receive earth and stubble or refuse from the fields for composting, Against the pit and without partition, but cut off from the court, was the home of the pigs, both under a common roof continuous with a closed structure joining with the sleeping apartments, while behind us and along the alley-way by which we had entered were other dwelling and storage compartments. Thus was the large family of four generations provided with a peculiarly private open court where they could work and come out for sun and air, both, from our standards, too meagerly provided in the houses.
We had come to learn more of the methods of fertilizing practiced by these people. The manure midden was before us and the piles of earth brought in from the fields, for use in the process, were stacked in the street, where we had photographed them at the entrance, as seen in Fig. 135. There a father, with his pipe, and two boys stand at the extreme left; beyond them is a large pile of earth brought into the village and carefully stacked in the narrow street; on the other side of the street, at the corner of the first building, is a pile of partly fermented compost thrown from a pit behind the walls. Further along in the street, on the same side, is a second large stack of soil where two boys are standing at either end and another little boy was in a near-by doorway. In front of the tree, on the left side of the street, stands a third boy, near him a small donkey and still another boy. Beyond this boy stands a third large stack of soil, while still beyond and across the way is another pile partly composted. Notwithstanding the cattle in the preceding illustration, the donkey, the men, the boys, the three long high stacks of soil and the two piles of compost, the ten rods of narrow street possessed a width of available travelway and a cleanliness which would appear impossible. Each farmer's household had its stack of soil in the street, and in walking through the village we passed dozens of men turning and mixing the soil and compost, preparing it for the field.
The compost pit in front of where we sat was two-thirds filled. In it had been placed all of the manure and waste of the household and street, all stubble and waste roughage from the field, all ashes not to be applied directly and some of the soil stacked in the street. Sufficient water was added at intervals to keep the contents completely saturated and nearly submerged, the object being to control the character of fermentation taking place.
The capacity of these compost pits is determined by the amount of land served, and the period of composting is made as long as possible, the aim being to have the fiber of all organic material completely broken down, the result being a product of the consistency of mortar.
When it is near the time for applying the compost to the field, or of feeding it to the crop, the fermented product is removed in waterproof carrying baskets to the floor of the court, to the yard, such as seen in Fig. 126, or to the street, where it is spread to dry, to be mixed with fresh soil, more ashes, and repeatedly turned and stirred to bring about complete aeration and to hasten the processes of nitrification. During all of these treatments, whether in the compost pit or on the nitrification floor, the fermenting organic matter in contact with the soil is converting plant food elements into soluble plant food substances in the form of potassium, calcium and magnesium nitrates and soluble phosphates of one or another form, perhaps of the same bases and possibly others of organic type. If there is time and favorable temperature and moisture conditions for these fermentations to take place in the soil of the field before the crop will need it, the compost may be carried direct from the pit to the field and spread broadcast, to be plowed under. Otherwise the material is worked and reworked, with more water added if necessary, until it becomes a rich complete fertilizer, allowed to become dry and then finely pulverized, sometimes using stone rollers drawn over it by cattle, the donkey or by hand. The large numbers of stacks of compost seen in the fields between Tsingtao and Tsinan were of this type and thus laboriously prepared in the villages and then transported to the fields, stacked and plastered to be ready for use at next planting.
In the early days of European history, before modern chemistry had provided the cheaper and more expeditious method of producing potassium nitrate for the manufacture of gunpowder and fireworks, much land and effort were devoted to niter-farming which was no other than a specific application of this most ancient Chinese practice and probably imported from China. While it was not until 1877 to 1879 that men of science came to know that the processes of nitrification, so indispensable to agriculture, are due to germ life, in simple justice to the plain farmers of the world, to those who through all the ages from Adam down, living close to Nature and working through her and with her, have fed the world, it should be recognized that there have been those among them who have grasped such essential, vital truths and have kept them alive in the practices of their day. And so we find it recorded in history as far back as 1686 that Judge Samuel Lewell copied upon the cover of his journal a practical man's recipe for making saltpeter beds, in which it was directed, among other things, that there should be added to it "mother of petre", meaning, in Judge Lewell's understanding, simply soil from an old niter bed, but in the mind of the man who applied the maternity prefix,—mother,—it must have meant a vital germ contained in the soil, carried with it, capable of reproducing its kind and of perpetuating its characteristic work, belonging to the same category with the old, familiar, homely germ, "mother" of vinegar. So, too, with the old cheesemaker who grasped the conception which led to the long time practice of washing the walls of a new cheese factory with water from an old factory of the same type, he must have been led by analogies of experience with things seen to realize that he was here dealing with a vital factor. Hundreds, of course, have practiced empyrically, but some one preceded with the essential thought and we feel it is small credit to men of our time who, after ten or twenty years of technical training, having their attention directed to a something to be seen, and armed with compound microscopes which permit them to see with the physical eye the "mother of petre", arrogate to themselves the discovery of a great truth. Much more modest would it be and much more in the spirit of giving credit where credit is due to admit that, after long doubting the existence of such an entity, we have succeeded in confirming in fullness the truth of a great discovery which belongs to an unnamed genius of the past, or perhaps to a hundred of them who, working with life's processes and familiar with them through long intimate association, saw in these invisible processes analogies that revealed to them the essential truth in such fullness as to enable them to build upon it an unfailing practice.
There is another practice followed by the Chinese, connected with the formation of nitrates in soils, which again emphasizes the national trait of saving and turning to use any and every thing worth while. Our attention was called to this practice by Rev. A. E. Evans of Shunking, Szechwan province. It rests upon the tendency of the earth floors of dwellings to become heavily charged with calcium nitrate through the natural processes of nitrification. Calcium nitrate being deliquescent absorbs moisture sufficiently to dissolve and make the floor wet and sticky. Dr. Evans' attention was drawn to the wet floor in his own house, which be at first ascribed to insufficient ventilation, but which be was unable to remedy by improving that. The father of one of his assistants, whose business consisted in purchasing the soil of such floors for producing potassium nitrate, used so much in China in the manufacture of fireworks and gunpowder, explained his difficulty and suggested the remedy.
This man goes from house to house through the village, purchasing the soil of floors which have thus become overcharged. He procures a sample, tests it and announces what he will pay for the surface two, three or four inches, the price sometimes being as high as fifty cents for the privilege of removing the top layer of the floor, which the proprietors must replace. He leaches the soil removed, to recover the calcium nitrate, and then pours the leachings through plant ashes containing potassium carbonate, for the purpose of transforming the calcium nitrate into the potassium nitrate or saltpeter. Dr. Evans learned that during the four months preceding our interview this man had produced sufficient potassium nitrate to bring his sales up to $80, Mexican. It was necessary for him to make a two-days journey to market his product. In addition he paid a license fee of 80 cents per month. He must purchase his fuel ashes and hire the services of two men.
When the nitrates which accumulate in the floors of dwellings are not collected for this purpose the soil goes to the fields to be used directly as a fertilizer, or it may be worked into compost. In the course of time the earth used in the village walls and even in the construction of the houses may disintegrate so as to require removal, but in all such cases, as with the earth brick used in the kangs, the value of the soil has improved for composting and is generally so used. This improvement of the soil will not appear strange when it is stated that such materials are usually from the subsoil, whose physical condition would improve when exposed to the weather, converting it in fact into an uncropped virgin soil.
We were unable to secure definite data as to the chemical composition of these composts and cannot say what amounts of available plant food the Shantung farmers are annually returning to their fields. There can be little doubt, however, that the amounts are quite equal to those removed by the crops. The soils appeared well supplied with organic matter and the color of the foliage and the general aspect of crops indicated good feeding.
The family with whom we talked in the village place their usual yields of wheat at 420 catty of grain and 1000 catty of straw per mow,—their mow was four-thirds of the legal standard mow—the grain being worth 35 strings of cash and the straw 12 to 14 strings, a string of cash being 40 cents, Mexican, at this time. Their yields of beans were such as to give them a return of 30 strings of cash for the grain and 8 to 10 strings for the straw. Small millet usually yielded 450 catty of grain, worth 25 strings of cash, per mow, and 800 catty of straw worth 10 to 11 strings of cash; while the yields of large millet they placed at 400 catty per mow, worth 25 strings of cash, and 1000 catty of straw worth 12 to 14 strings of cash. Stating these amounts in bushels per acre and in our currency, the yield of wheat was 42 bushels of grain and 6000 pounds of straw per acre, having a cash value of $27.09 for the grain and $10.06 for the straw. The soy bean crop follows the wheat, giving an additional return of $23.22 for the beans and $6.97 for the straw, making the gross earning for the two crops $67.34 per acre. The yield of small millet was 54 bushels of seed and 4800 pounds of straw per acre, worth $27.09 and $8.12 for seed and straw respectively, while the kaoliang or large millet gave a yield of 48 bushels of grain and 6000 pounds of stalks per acre, worth $19.35 for the grain, and $10.06 for the straw.
A crop of wheat like the one stated, if no part of the plant food contained in the grain or straw were returned to the field, would deplete the soil to the extent of about 90 pounds of nitrogen, 15 pounds of phosphorus and 65 pounds of potassium; and the crop of soy beans, if it also were entirely removed, would reduce these three plant food elements in the soil to the extent of about 240 pounds of nitrogen, 33 pounds of phosphorus and 102 pounds of potassium, on the basis of 45 bushels of beans and 5400 pounds of stems and leaves per acre, assuming that the beans added no nitrogen to the soil, which is of course not true. This household of farmers, therefore, in order to have maintained this producing power in their soil, have been compelled to return to it annually, in one form or another, not less than 48 pounds of phosphorus and 167 pounds of potassium per acre. The 330 pounds of nitrogen they would have to return in the form of organic matter or accumulate it from the atmosphere, through the instrumentality of their soy bean crop or some other legume. It has already been stated that they do add more than 5000 to 7000 pounds of dry compost, which, repeated for a second crop, would make an annual application of five to seven tons of dry compost per acre annually. They do use, in addition to this compost, large amounts of bean and peanut cake, which carry all of the plant food elements derived from the soil which are contained in the beans and the peanuts. If the vines are fed, or if the stems of the beaus are burned for fuel, most of the plant food elements in these will be returned to the field, and they have doubtless learned how to completely restore the plant food elements removed by their crops, and persistently do so.
The roads made by the Germans in the vicinity of Tsingtao enabled us to travel by ricksha into the adjoining country, and on one such trip we visited a village mill for grinding soy beans and peanuts in the manufacture of oil, and Fig. 136 shows the stone roller, four feet in diameter and two feet thick, which is revolved about a vertical axis on a circular stone plate, drawn by a donkey, crushing the kernels partly by its weight and partly by a twisting motion, for the arm upon which the roller revolves is very short. After the meal had been ground the oil was expressed in essentially the same way as that described for the cotton seed, but the bean and peanut cakes are made much larger than the cotton seed cakes, about eighteen inches in diameter and three to four inches thick. Two of these cakes are seen in Fig. 137, standing on edge outside the mill in an orderly clean court. It is in this form that bean cake is exported in large quantities to different parts of China, and to Japan in recent years, for use as fertilizer, and very recently it is being shipped to Europe for both stock food and fertilizer.
Nowhere in this province, nor further north, did we see the large terra cotta, receptacles so extensively used in the south for storing human excreta. In these dryer climates some method of desiccation is practiced and we found the gardeners in the vicinity of Tsingtao with quantities of the fertilizer stacked under matting shelters in the desiccated condition, this being finely pulverized in one or another way before it was applied. The next illustration, Fig. 138, shows one of these piles being fitted for the garden, its thatched shelter standing behind the grandfather of a household. His grandson was carrying the prepared fertilizer to the garden area seen in Fig. 139, where the father was working it into the soil. The greatest pains is taken, both in reducing the product to a fine powder and in spreading and incorporating it with the soil, for one of their maxims of soil management is to make each square foot of field or garden the equal of every other in its power to produce. In this manner each little holding is made to yield the highest returns possible under the conditions the husbandman is able to control.
From one portion of the area being fitted, a crop of artemisia had been harvested, giving a gross return at the rate of $73.19 per acre, and from another leeks had been taken, bringing a gross return of $43.86 per acre. Chinese celery was the crop for which the ground was being fitted.
The application of soil as a fertilizer to the fields of China, whether derived from the subsoil or from the silts and organic matter of canals and rivers, must have played an important part in the permanency of agriculture in the Far East, for all such additions have been positive accretions to the effective soil, increasing its depth and carrying to it all plant food elements. If not more than one-half of the weight of compost applied to the fields of Shantung is highly fertilized soil, the rates of application observed would, in a thousand years, add more than two million pounds per acre, and this represents about the volume of soil we turn with the plow in our ordinary tillage operations, and this amount of good soil may carry more than 6000 pounds of nitrogen, 2000 pounds of phosphorus and more than 60,000 pounds of potassium.
When we left our hotel by ricksha for the steamer, returning to Shanghai, we soon observed a boy of thirteen or fourteen years apparently following, sometimes a little ahead, sometimes behind, usually keeping the sidewalk but slackening his pace whenever the ricksha man came to a walk. It was a full mile to the wharf. The boy evidently knew the sailing schedule and judged by the valise in front, that we were to take the out-going steamer and that he might possibly earn two cents, Mexican, the usual fee for taking a valise aboard the steamer. Twenty men at the wharf might be waiting for the job, but he was taking the chance with the mile down and back thrown in, and all for less than one cent in our currency, equivalent at the time to about twenty "cash". As we neared the steamer the lad closed up behind but strong and eager men were watching. Twice he was roughly thrust aside and before the ricksha stopped a man of stalwart frame seized the valise and, had we not observed the boy thus unobtrusively entering the competition, he would have had only his trouble for his pains. Thus intense was the struggle here for existence and thus did a mere lad put himself effectively into it. True to breeding and example he had spared no labor to win and was surprised but grateful to receive more than he had expected.
Time is a function of every life process, as it is of every physical, chemical and mental reaction, and the husbandman is compelled to shape his operations so as to conform with the time requirements of his crops. The oriental farmer is a time economizer beyond any other. He utilizes the first and last minute and all that are between. The foreigner accuses the Chinaman of being always "long on time", never in a fret, never in a hurry. And why should he be when he leads time by the forelock, and uses all there is?
The customs and practices of these Farthest East people regarding their manufacture of fertilizers in the form of earth composts for their fields, and their use of altered subsoils which have served in their kangs, village walls and dwellings, are all instances where they profoundly shorten the time required in the field to affect the necessary chemical, physical and biological reactions which produce from them plant food substances. Not only do they thus increase their time assets, but they add, in effect, to their land area by producing these changes outside their fields, at the same time giving their crops the immediately active soil products.
Their compost practices have been of the greatest consequence to them, both in their extremely wet, rice-culture methods, and in their "dry-farming" practices, where the soil moisture is too scanty during long periods to permit rapid fermentation under field conditions. Western agriculturalists have not sufficiently appreciated the fact that the most rapid growth of plant food substances in the soil cannot occur at the same time and place with the most rapid crop increase, because both processes draw upon the available soil moisture, soil air and soluble potassium, calcium, phosphorus and nitrogen compounds. Whether this fundamental principle of practical agriculture is written in their literature or not it is most indelibly fixed in their practice. If we and they can perpetuate the essentials of this practice at a large saving of human effort, or perpetually secure the final result in some more expeditious and less laborious way, most important progress will have been made.
When we went north to the Shantung province the Kiangsu and Chekiang farmers were engaged in another of their time saving practices, also involving a large amount of human labor. This was the planting of cotton in wheat fields before the wheat was quite ready to harvest. In the sections of these two provinces which we visited most of the wheat and barley were sowed broadcast on narrow raised lands, some five feet wide, with furrows between, after the manner seen in Fig. 140, showing a reservoir in the immediate foreground, on whose bank is installed one of the four-man foot-power irrigation pumps in use to flood the nursery rice bed close by on the right. The narrow lands of broadcasted wheat extend back from the reservoir toward the farmsteads which dot the landscape, and on the left stands one of the pump shelters near the canal bank.
To save time, or lengthen the growing season of the cotton which was to follow, this seed was sown broadcast among the grain on the surface, some ten to fifteen days before the wheat would be harvested. To cover the seed the soil in the furrows between the beds had been spaded loose to a depth of four or five inches, finely pulverized, and then with a spade was evenly scattered over the bed, letting it sift down among the grain, covering the seed. This loose earth, so applied, acts as a mulch to conserve the capillary moisture, permitting the soil to become sufficiently damp to germinate the seed before the wheat is harvested. The next illustration, Fig. 141, is a closer view with our interpreter standing in another field of wheat in which cotton was being sowed April 22nd in the manner described, and yet the stand of grain was very close and shoulder high, making it not an easy task either to sow the seed or to scatter sufficient soil to cover it.
When we had returned from Shantung this piece of grain had been harvested, giving a yield of 95.6 bushels of wheat and 3.5 tons of straw per acre, computed from the statement of the owner that 400 catty of grain and 500 catty of straw had been taken from the beds measuring 4050 square feet. On the morning of May 29th the photograph for Fig. 142 was taken, showing the same area after the wheat had been harvested and the cotton was up, the young plants showing slightly through the short stubble. These beds had already been once treated with liquid fertilizer. A little later the plants would be hoed and thinned to a stand of about one plant per each square foot of surface. There were thirty-seven days between the taking of the two photographs, and certainly thirty days had been added to the cotton crop by this method of planting, over what would have been available if the grain had been first harvested and the field fitted before planting, It will be observed that the cotton follows the wheat without plowing, but the soil was deep, naturally open, and a layer of nearly two inches of loose earth had been placed over the seed at the time of planting. Besides, the ground would be deeply worked with the two or four tined hoe, at the time of thinning.
Starting cotton in the wheat in the manner described is but a special case of a general practice widely in vogue. The growing of multiple crops is the rule throughout these countries wherever the climate permits. Sometimes as many as three crops occupy the same field in recurrent rows, but of different dates of planting and in different stages of maturity. Reference has been made to the overlapping and alternation of cucumbers with greens. The general practice of planting nearly all crops in rows lends itself readily to systems of multiple cropping, and these to the fullest possible utilization of every minute of the growing season and of the time of the family in caring for the crops. In the field, Fig. 143, a crop of winter wheat was nearing maturity, a crop of windsor beans was about two-thirds grown, and cotton had just been planted, April 22nd. This field had been thrown into ridges some five feet wide with a twelve inch furrow between them. Two rows of wheat eight inches wide, planted two feet between centers occupied the crest of the ridge, leaving a strip sixteen inches wide, seen in the upper section, (1) for tillage, (2) then fertilization and (3) finally the row of cotton planted just before the wheat was harvested. Against the furrow on each side was a row of windsor beans, seen in the lower view, hiding the furrow, which was matured some time after the wheat was harvested and before the cotton was very large. A late fall crop sometimes follows the windsor beans after a period of tillage and fertilization, making four in one year. With such a succession fertilization for each crop, and an abundance of soil moisture are required to give the largest returns from the soil.
In another plan winter wheat or barley may grow side by side with a green crop, such as the "Chinese clover" (Medicago denticulata, Willd.) for soil fertilizer, as was the case in Fig. 144, to be turned under and fertilize for a crop of cotton planted in rows on either side of a crop of barley. After the barley had been harvested the ground it occupied would be tilled and further fertilized, and when the cotton was nearing maturity a crop of rape might be grown, from which "salted cabbage" would be prepared for winter use.
Multiple crops are grown as far north in Chihli as Tientsin and Peking, these being oftenest wheat, maize, large and small millet and soy beans, and this, too, where the soil is less fertile and where the annual rainfall is only about twenty-five inches, the rainy season beginning in late June or early July, and Fig. 145 shows one of these fields as it appeared June 14th, where two rows of wheat and two of large millet were planted in alternating pairs, the rows being about twenty-eight inches apart. The wheat was ready to harvest but the straw was unusually short because growing on a light sandy loam in a season of exceptional drought, but little more than two inches of rain having fallen after January 1st of that year.
The piles of pulverized dry-earth compost seen between the rows had been brought for use on the ground occupied by the wheat when that was removed. The wheat would be pulled, tied in bundles, taken to the village and the roots cut off, for making compost, as in Fig. 146, which shows the family engaged in cutting the roots from the small bundles of wheat, using a long straight knife blade, fixed at one end, and thrust downward upon the bundle with lever pressure. These roots, if not used as fuel, would be transferred to the compost pit in the enclosure seen in Fig. 147, whose walls were built of earth brick. Here, with any other waste litter, manure or ashes, they would be permitted to decay under water until the fiber had been destroyed, thus permitting it to be incorporated with soil and applied to the fields, rich in soluble plant food and in a condition which would not interfere with the capillary movement of soil moisture, the work going on outside the field where the changes could occur unimpeded and without interfering with the growth of crops on the ground.
In this system of combined intertillage and multiple cropping the oriental farmer thus takes advantage of whatever good may result from rotation or succession of crops, whether these be physical, vito-chemical or biological. If plants are mutually helpful through close association of their root systems in the soil, as some believe may be the case, this growing of different species in close juxtaposition would seem to provide the opportunity, but the other advantages which have been pointed out are so evident and so important that they, rather than this, have doubtless led to the practice of growing different crops in close recurrent rows.
The basal food crop of the people of China, Korea and Japan is rice, and the mean consumption in Japan, for the five years ending 1906, per capita and per annum, was 302 pounds. Of Japan's 175,428 square miles she devoted, in 1906, 12,856 to the rice crop. Her average yield of water rice on 12,534 square miles exceeded 33 bushels per acre, and the dry land rice averaged 18 bushels per acre on 321 square miles. In the Hokkaido, as far north as northern Illinois, Japan harvested 1,780,000 bushels of water rice from 53,000 acres.
In Szechwan province, China, Consul-General Hosie places the yield of water rice on the plains land at 44 bushels per acre, and that of the dry land rice at 22 bushels. Data given us in China show an average yield of 42 bushels of water rice per acre, while the average yield of wheat was 25 bushels per acre, the normal yield in Japan being about 17 bushels.
If the rice eaten per capita in China proper and Korea is equal to that in Japan the annual consumption for the three nations, using the round number 300 pounds per capita per annum, would be:
Population. Consumption.China 410,000,000 61,500,000 tonsKorea 12,000,000 1,800,000 tonsJapan 53,000,000 7,950 000 tons———————————-Total 475,000,000 71,250,000 tons
If the ratio of irrigated to dry land rice in Korea and China proper is the same as that in Japan, and if the mean yield of rice per acre in these countries were forty bushels for the water rice and twenty bushels for the dry land rice, the acreage required to give this production would be:
Area.Water rice, Dry land rice,sq. miles. sq. miles.In China 78,073 4,004In Korea 2,285 117In Japan 12,534 321———- ———Sum 92,892 4,442Total 97,334
Our observations along the four hundred miles of railway in Korea between Antung, Seoul and Fusan, suggest that the land under rice in this country must be more rather than less than that computed, and the square miles of canalized land in China, as indicated on pages 97 to 102, would indicate an acreage of rice for her quite as large as estimated.
In the three main islands of Japan more than fifty per cent of the cultivated land produces a crop of water rice each year and 7.96 per cent of the entire land area of the Empire, omitting far-north Karafuto. In Formosa and in southern China large areas produce two crops each year. At the large mean yield used in the computation the estimated acreage of rice in China proper amounts to 5.93 per cent of her total area and this is 7433 square miles greater than the acreage of wheat in the United States in 1907. Our yield of wheat, however, was but 19,000,000 tons, while China's output of rice was certainly double and probably three times this amount from nearly the same acreage of land; and notwithstanding this large production per acre, more than fifty per cent, possibly as high as seventy-five per cent, of the same land matures at least one other crop the same year, and much of this may be wheat or barley, both chiefly consumed as human food.
Had the Mongolian races spread to and developed in North America instead of, or as well as, in eastern Asia, there might have been a Grand Canal, something as suggested in Fig. 148, from the Rio Grande to the mouth of the Ohio river and from the Mississippi to Chesapeake Bay, constituting more than two thousand miles of inland water-way, serving commerce, holding up and redistributing both the run-off water and the wasting fertility of soil erosion, spreading them over 200,000 square miles of thoroughly canalized coastal plains, so many of which are now impoverished lands, made so by the intolerable waste of a vaunted civilization. And who shall venture to enumerate the increase in the tonnage of sugar, bales of cotton, sacks of rice, boxes of oranges, baskets of peaches, and in the trainloads of cabbage, tomatoes and celery such husbanding would make possible through all time; or number the increased millions these could feed and clothe? We may prohibit the exportation of our phosphorus, grind our limestone, and apply them to our fields, but this alone is only temporizing with the future. The more we produce, the more numerous our millions, the faster must present practices speed the waste to the sea, from whence neither money nor prayer can call them back.
If the United States is to endure; if we shall project our history even through four or five thousand years as the Mongolian nations have done, and if that history shall be written in continuous peace, free from periods of wide-spread famine or pestilence, this nation must orient itself; it must square its practices with a conservation of resources which can make endurance possible. Intensifying cultural methods but intensifies the digestion, assimilation and exhaustion of the surface soil, from which life springs. Multiple cropping, closer stands on the ground and stronger growth, all mean the transpiration of much more water per acre through the crops, and this can only be rendered possible through a redistribution of the run-off and the adoption of irrigation practices in humid climates where water exists in abundance. Sooner or later we must adopt a national policy which shall more completely conserve our water resources, utilizing them not only for power and transportation, but primarily for the maintenance of soil fertility and greater crop production through supplemental irrigation, and all these great national interests should be considered collectively, broadly, and with a view to the fullest and best possible coordination. China, Korea and Japan long ago struck the keynote of permanent agriculture but the time has now come when they can and will make great improvements, and it remains for us and other nations to profit by their experience, to adopt and adapt what is good in their practice and help in a world movement for the introduction of new and improved methods.
In selecting rice as their staple crop; in developing and maintaining their systems of combined irrigation and drainage, notwithstanding they have a large summer rainfall; in their systems of multiple cropping; in their extensive and persistent use of legumes; in their rotations for green manure to maintain the humus of their soils and for composting; and in the almost religious fidelity with which they have returned to their fields every form of waste which can replace plant food removed by the crops, these nations have demonstrated a grasp of essentials and of fundamental principles which may well cause western nations to pause and reflect.
While this country need not and could not now adopt their laborious methods of rice culture, and while, let us hope, those who come after us may never be compelled to do so, it is nevertheless quite worth while to study, for the sake of the principles involved, the practices they have been led to adopt.
Great as is the acreage of land in rice in these countries but little, relatively, is of the dry land type, and the fields upon which most of the rice grows have all been graded to a water level and surrounded by low, narrow raised rims, such as may be seen in Fig. 149 and in Fig. 150, where three men are at work on their foot-power pump, flooding fields preparatory to transplanting the rice. If the country was not level then the slopes have been graded into horizontal terraces varying in size according to the steepness of the areas in which they were cut. We saw these often no larger than the floor of a small room, and Professor Ross informed me that he walked past those in the interior of China no larger than a dining table and that he saw one bearing its crop of rice, surrounded by its rim and holding water, yet barely larger than a good napkin. The average area of the paddy field in Japan is officially reported at 1.14 se, or an area of but 31 by 40 feet. Excluding Hokkaido, Formosa and Karafuto, fifty-three per cent of the irrigated rice lands in Japan are in allotments smaller than one-eighth of an acre, and seventy-four per cent of other cultivated lands are held in areas less than one-fourth of an acre, and each of these may be further subdivided. The next two illustrations, Figs. 151 and 152, give a good idea both of the small size of the rice fields and of the terracing which has been done to secure the water level basins. The house standing near the center of Fig. 151 is a good scale for judging both the size of the paddies and the slope of the valley. The distance between the rows of rice is scarcely one foot, hence counting these in the foreground may serve as another measure. There are more than twenty little fields shown in this engraving in front of the house and reaching but half way to it, and the house was less than five hundred feet from the camera.
There are more than eleven thousand square miles of fields thus graded in the three main islands of Japan, each provided with rims, with water supply and drainage channels, all carefully kept in the best of repair. The more level areas, too, in each of the three countries, have been similarly thrown into water level basins, comparatively few of which cover large areas, because nearly always the holdings are small. All of the earth excavated from the canals and drainage channels has been leveled over the fields unless needed for levees or dikes, so that the original labor of construction, added to that of maintenance, makes a total far beyond our comprehension and nearly all of it is the product of human effort.
The laying out and shaping of so many fields into these level basins brings to the three nations an enormous aggregate annual asset, a large proportion of which western nations are not yet utilizing. The greatest gain comes from the unfailing higher yields made possible by providing an abundance of water through which more plant food can be utilized, thus providing higher average yields. The waters used, coming as they do largely from the uncultivated hills and mountain lands, carrying both dissolved and suspended matters, make positive annual additions of dissolved limestone and plant food elements to the fields which in the aggregate have been very large, through the persistent repetitions which have prevailed for centuries. If the yearly application of such water to the rice fields is but sixteen inches, and this has the average composition quoted by Merrill for rivers of North America, taking into account neither suspended matter nor the absorption of potassium and phosphorus by it, each ten thousand square miles would receive, dissolved in the water, substances containing some 1,400 tons of phosphorus; 23,000 tons of potassium; 27,000 tons of nitrogen; and 48,000 tons of sulphur. In addition, there are brought to the fields some 216,000 tons of dissolved organic matter and a still larger weight of dissolved limestone, so necessary in neutralizing the acidity of soils, amounting to 1,221,000 tons; and such savings have been maintained in China, Korea and Japan on more than five, and possibly more than nine, times the ten thousand square miles, through centuries. The phosphorus thus turned upon ninety thousand square miles would aggregate nearly thirteen million tons in a thousand years, which is less than the time the practice has been maintained, and is more phosphorus than would be carried in the entire rock phosphate thus far mined in the United States, were it all seventy-five per cent pure.
The canalization of fifty thousand square miles of our Gulf and Atlantic coastal plain, and the utilization on the fields of the silts and organic matter, together with the water, would mean turning to account a vast tonnage of plant food which is now wasting into the sea, and a correspondingly great increase of crop yield. There ought, and it would seem there must some time be provided a way for sending to the sandy plains of Florida, and to the sandy lands between there and the Mississippi, large volumes of the rich silt and organic matter from this and other rivers, aside from that which should be applied systematically to building above flood plain the lands of the delta which are subject to overflow or are too low to permit adequate drainage.
It may appear to some that the application of such large volumes of water to fields, especially in countries of heavy rainfall, must result in great loss of plant food through leaching and surface drainage. But under the remarkable practices of these three nations this is certainly not the case and it is highly important that our people should understand and appreciate the principles which underlie the practices they have almost uniformly adopted on the areas devoted to rice irrigation. In the first place, their paddy fields are under-drained so that most of the water either leaves the soil through the crop, by surface evaporation, or it percolates through the subsoil into shallow drains. When water is passed directly from one rice paddy to another it is usually permitted some time after fertilization, when both soil and crop have had time to appropriate or fix the soluble plant food substances. Besides this, water is not turned upon the fields until the time for transplanting the rice, when the plants are already provided with a strong root system and are capable of at once appropriating any soluble plant food which may develop about their roots or be carried downward over them.
Although the drains are of the surface type and but eighteen inches to three feet in depth, they are sufficiently numerous and close so that, although the soil is continuously nearly filled with water, there is a steady percolation of the fresh, fully aerated water carrying an abundance of oxygen into the soil to meet the needs of the roots, so that watermelons, egg plants, musk melons and taro are grown in the rotations on the small paddies among the irrigated rice after the manner seen in the illustrations. In Fig. 153 each double row of egg plants is separated from the next by a narrow shallow trench which connects with a head drain and in which water was standing within fourteen inches of the surface. The same was true in the case of the watermelons seen in Fig. 154, where the vines are growing on a thick layer of straw mulch which holds them from the moist soil and acts to conserve water by diminishing evaporation and, through decay from the summer rains and leaching, serves as fertilizer for the crop. In Fig. 155 the view is along a pathway separating two head ditches between areas in watermelons and taro, carrying the drainage waters from the several furrows into the main ditches. Although the soil appeared wet the plants were vigorous and healthy, seeming in no way to suffer from insufficient drainage.
These people have, therefore, given effective attention to the matter of drainage as well as irrigation and are looking after possible losses of plant food, as well as ways of supplying it. It is not alone where rice is grown that cultural methods are made to conserve soluble plant food and to reduce its loss from the field, for very often, where flooding is not practiced, small fields and beds, made quite level, are surrounded by low raised borders which permit not only the whole of any rain to be retained upon the field when so desired, but it is completely distributed over it, thus causing the whole soil to be uniformly charged with moisture and preventing washing from one portion of the field to another. Such provisions are shown in Figs. 133 and 138.
Extensive as is the acreage of irrigated rice in China, Korea and Japan, nearly every spear is transplanted; the largest and best crop possible, rather than the least labor and trouble, as is so often the case with us, determining their methods and practices. We first saw the fitting of the rice nursery beds at Canton and again near Kashing in Chekiang province on the farm of Mrs. Wu, whose homestead is seen in Fig. 156. She had come with her husband from Ningpo after the ravages of the Taiping rebellion had swept from two provinces alone twenty millions of people and settled on a small area of then vacated land. As they prospered they added to their holding by purchase until about twenty-five acres were acquired, an area about ten times that possessed by the usual prosperous family in China. The widow was managing her place, one of her sons, although married, being still in school, the daughter-in-law living with her mother-in-law and helping in the home. Her field help during the summer consisted of seven laborers and she kept four cows for the plowing and pumping of water for irrigation. The wages of the men were at the rate of $24, Mexican, for five summer months, together with their meals which were four each day. The cash outlay for the seven men was thus $14.45 of our currency per month. Ten years before, such labor had been $30 per year, as compared with $50 at the time of our visit, or $12.90 and $21.50 of our currency, respectively.
Her usual yields of rice were two piculs per mow, or twenty-six and two-thirds bushels per acre, and a wheat crop yielding half this amount, or some other, was taken from part of the land the same season, one fertilization answering for the two crops. She stated that her annual expense for fertilizers purchased was usually about $60, or $25.80 of our currency. The homestead of Mrs. Wu, Fig. 156, consists of a compound in the form of a large quadrangle surrounding a court closed on the south by a solid wall eight feet high. The structure is of earth brick with the roof thatched with rice straw.
Our first visit here was April 19th. The nursery rice beds had been planted four days, sowing seed at the rate of twenty bushels per acre. The soil had been very carefully prepared and highly fertilized, the last treatment being a dressing of plant ashes so incompletely burned as to leave the surface coal black. The seed, scattered directly upon the surface, almost completely covered it and had been gently beaten barely into the dressing of ashes, using a wide, flat-bottom basket for the purpose. Each evening, if the night was likely to be cool, water was pumped over the bed, to be withdrawn the next day, if warm and sunny, permitting the warmth to be absorbed by the black surface, and a fresh supply of air to be drawn into the soil.
Nearly a month later, May 14th, a second visit was made to this farm and one of the nursery beds of rice, as it then appeared, is seen in Fig. 159, the plants being about eight inches high and nearing the stage for transplanting. The field beyond the bed had already been partly flooded and plowed, turning under "Chinese clover" to ferment as green manure, preparatory for the rice transplanting. On the opposite side of the bed and in front of the residence, Fig. 156, flooding was in progress in the furrows between the ridges formed after the previous crop of rice was harvested and upon which the crop of clover for green manure was grown. Immediately at one end of the two series of nursery beds, one of which is seen in Fig. 159, was the pumping plant seen in Fig. 157, under a thatched shelter, with its two pumps installed at the end of a water channel leading from the canal. One of these wooden pump powers, with the blindfolded cow attached, is reproduced in Fig. 158 and just beyond the animal's head may be seen the long handle dipper to which reference has been made, used for collecting excreta.
More than a month is saved for maturing and harvesting winter and early spring crops, or in fitting the fields for rice, by this planting in nursery beds. The irrigation period for most of the land is cut short a like amount, saving in both water and time. It is cheaper and easier to highly fertilize and prepare a small area for the nursery, while at the same time much stronger and more uniform plants are secured than would be possible by sowing in the field. The labor of weeding and caring for the plants in the nursery is far less than would be required in the field. It would be practically impossible to fit the entire rice areas as early in the season as the nursery beds are fitted, for the green manure is not yet grown and time is required for composting or for decaying, if plowed under directly. The rice plants in the nursery are carried to a stage when they are strong feeders and when set into the newly prepared, fertilized, clean soil of the field they are ready to feed strongly under these most favorable conditions Both time and strength of plant are thus gained and these people are following what would appear to be the best possible practices under their condition of small holdings and dense population.
With our broad fields, our machinery and few people, their system appears to us crude and impossible, but cut our holdings to the size of theirs and the same stroke makes our machinery, even our plows, still more impossible, and so the more one studies the environment of these people, thus far unavoidable, their numbers, what they have done and are doing, against what odds they have succeeded, the more difficult it becomes to see what course might have been better.
How full with work is the month which precedes the transplanting of rice has been pointed out,—the making of the compost fertilizer; harvesting the wheat, rape and beans; distributing the compost over the fields, and their flooding and plowing. In Fig. 160 one of these fields is seen plowed, smoothed and nearly ready for the plants. The turned soil had been thoroughly pulverized, leveled and worked to the consistency of mortar, on the larger fields with one or another sort of harrow, as seen in Figs. 160 and 161. This thorough puddling of the soil permits the plants to be quickly set and provides conditions which ensure immediate perfect contact for the roots.
When the fields are ready women repair to the nurseries with their low four-legged bamboo stools, to pull the rice plants, carefully rinsing the soil from the roots, and then tie them into bundles of a size easily handled in transplanting, which are then distributed in the fields.
The work of transplanting may be done by groups of families changing work, a considerable number of them laboring together after the manner seen in Fig. 163, made from four snap shots taken from the same point at intervals of fifteen minutes. Long cords were stretched in the rice field six feet apart and each of the seven men was setting six rows of rice one foot apart, six to eight plants in a hill, and the hills eight or nine inches apart in the row. The, bundle was held in one hand and deftly, with the other, the desired number of plants were selected with the fingers at the roots, separated from the rest and, with a single thrust, set in place in the row. There was no packing of earth about the roots, each hill being set with a single motion, which followed one another in quick succession, completing one cross row of six hills after another. The men move backward across the field, completing one entire section, tossing the unused plants into the unset field. Then reset the lines to cover another section. We were told that the usual day's work of transplanting, for a man under these conditions, after the field is fitted and the plants are brought to him, is two mow or one-third of an acre. The seven men in this group would thus set two and a third acres per day and, at the wage Mrs. Wu was paying, the cash outlay, if the help was hired, would be nearly 21 cents per acre. This is more cheaply than we are able to set cabbage and tobacco plants with our best machine methods. In Japan, as seen in Figs. 164 and 165, the women participate in the work of setting the plants more than in China.
After the rice has been transplanted its care, unlike that of our wheat crop, does not cease. It must be hoed, fertilized and watered. To facilitate the watering all fields have been leveled, canals, ditches and drains provided, and to aid in fertilizing and hoeing, the setting has been in rows and in hills in the row.
The first working of the rice fields after the transplanting, as we saw it in Japan, consisted in spading between the hills with a four-tined hoe, apparently more for loosening the soil and aeration than for killing weeds. After this treatment the field was gone over again in the manner seen in Fig. 166, where the man is using his bare hands to smooth and level the stirred soil, taking care to eradicate every weed, burying them beneath the mud, and to straighten each hill of rice as it is passed. Sometimes the fingers are armed with bamboo claws to facilitate the weeding. Machinery in the form of revolving hand cultivators is recently coming into use in Japan, and two men using these are seen in Fig. 14. In these cultivators the teeth are mounted on an axle so as to revolve as the cultivator is pushed along the row.
Fertilization for the rice crop receives the greatest attention everywhere by these three nations and in no direction more than in maintaining the store of organic matter in the soil. The pink clover, to which reference has been made, Figs. 99 and 100, is extensively sowed after a crop of rice is harvested in the fall and comes into full bloom, ready to cut for compost or to turn under directly when the rice fields are plowed. Eighteen to twenty tons of this green clover are produced per acre, and in Japan this is usually applied to about three acres, the stubble and roots serving for the field producing the clover, thus giving a dressing of six to seven tons of green manure per acre, carrying not less than 37 pounds of potassium; 5 pounds of phosphorus, and 58 pounds of nitrogen.
Where the families are large and the holdings small, so they cannot spare room to grow the green manure crop, it is gathered on the mountain, weed and hill lands, or it may be cut in the canals. On our boat trip west from Soochow the last of May, many boats were passed carrying tons of the long green ribbon-like grass, cut and gathered from the bottom of the canal. To cut this grass men were working to their armpits in the water of the canal, using a crescent-shaped knife mounted like an anchor from the end of a 16-foot bamboo handle. This was shoved forward along the bottom of the canal and then drawn backward, cutting the grass, which rose to the surface where it was gathered upon the boats. Or material for green manure may be cut on grave, mountain or hill lands, as described under Fig. 115.
The straw of rice and other grain and the stems of any plant not usable as fuel may also be worked into the mud of rice fields, as may the chaff which is often scattered upon the water after the rice is transplanted, as in Fig. 168.
Reference has been made to the utilization of waste of various kinds in these countries to maintain the productive power of their soils, but it is worth while, in the interests of western nations, as helping them to realize the ultimate necessity of such economies, to state again, in more explicit terms, what Japan is doing. Dr. Kawaguchi, of the National Department of Agriculture and Commerce, taking his data from their records, informed me that Japan produced, in 1908, and applied to her fields, 23,850,295 tons of human manure; 22,812,787 tons of compost; and she imported 753,074 tons of commercial fertilizers, 7000 of which were phosphates in one form or another. In addition to these she must have applied not less than 1,404,000 tons of fuel ashes and 10,185,500 tons of green manure products grown on her hill and weed lands, and all of these applied to less than 14,000,000 acres of cultivated field, and it should be emphasized that this is done because as yet they have found no better way of permanently maintaining a fertility capable of feeding her millions.
Besides fertilizing, transplanting and weeding the rice crop there is the enormous task of irrigation to be maintained until the rice is nearly matured. Much of the water used is lifted by animal power and a large share of this is human. Fig. 169 shows two Chinese men in their cool, capacious, nowhere-touching summer trousers flinging water with the swinging basket, and it is surprising the amount of water which may be raised three to four feet by this means. The portable spool windlass, in Figs. 27 and 123, has been described, and Fig. 170 shows the quadrangular, cone-shaped bucket and sweep extensively used in Chihli. This man was supplying water sufficient for the irrigation of half an acre, per day, lifting the water eight feet.
The form of pump most used in China and the foot-power for working it are seen in Fig. 171. Three men working a similar pump are seen in Fig. 150, a closer view of three men working the foot-power may be seen in Fig. 42 and still another stands adjacent to a series of flooded fields in Fig. 172. Where this view was taken the old farmer informed us that two men, with this pump, lifting water three feet, were able to cover two mow of land with three inches of water in two hours. This is at the rate of 2.5 acre-inches of water per ten hours per man, and for 12 to 15 cents, our currency, thus making sixteen acre-inches, or the season's supply of water, cost 77 to 96 cents, where coolie labor is hired and fed. Such is the efficiency of human power applied to the Chinese pump, measured in American currency.
This pump is simply an open box trough in which travels a wooden chain carrying a series of loosely fitting boards which raise the water from the canal, discharging it into the field. The size of the trough and of the buckets are varied to suit the power applied and the amount of water to be lifted. Crude as it appears there is nothing in western manufacture that can compete with it in first cost, maintenance or efficiency for Chinese conditions and nothing is more characteristic of all these people than their efficient, simple appliances of all kinds, which they have reduced to the lowest terms in every feature of construction and cost. The greatest results are accomplished by the simplest means. If a canal must be bridged and it is too wide to be covered by a single span, the Chinese engineer may erect it at some convenient place and turn the canal under it when completed. This we saw in the case of a new railroad bridge near Sungkiang. The bridge was completed and the water had just been turned under it and was being compelled to make its own excavation. Great expense had been saved while traffic on the canal had not been obstructed.
In the foot-power wheel of Japan all gearing is eliminated and the man walks the paddles themselves, as seen in Fig. 173. Some of these wheels are ten feet in diameter, depending upon the height the water must be lifted.
Irrigation by animal power is extensively practiced in each of the three countries, employing mostly the type of power wheel shown in Fig. 158. The next illustration, Fig. 174, shows the most common type of shelter seen in Chekiang and Kiangsu provinces, which are there very numerous. We counted as many as forty such shelters in a semi-circle of half a mile radius. They provide comfort for the animals during both sunshine and rain, for under no conditions must the water be permitted to run low on the rice fields, and everywhere their domestic animals receive kind, thoughtful treatment.
In the less level sections, where streams have sufficient fall, current wheels are in common use, carrying buckets near their circumference arranged so as to fill when passing through the water, and to empty after reaching the highest level into a receptacle provided with a conduit which leads the water to the field. In Szechwan province some of these current wheels are so large and gracefully constructed as to strongly suggest Ferris wheels. A view of one of these we are permitted to present in Fig. 175, through the kindness of Rollin T. Chamberlin who took the photograph from which the engraving was prepared. This wheel which was some forty feet in diameter, was working when the snap shot was taken, raising the water and pouring it into the horizontal trough seen near the top of the wheel, carried at the summit of a pair of heavy poles standing on the far side of the wheel. From this trough, leading away to the left above the sky line, is the long pipe, consisting of bamboo stems joined together, for conveying the water to the fields.
When the harvest time has come, notwithstanding the large acreage of grain, yielding hundreds of millions of bushels, the small, widely scattered holdings and the surface of the fields render all of our machine methods quite impossible. Even our grain cradle, which preceded the reaper, would not do, and the great task is still met with the old-time sickle, as seen in Fig. 176, cutting the rice hill by hill, as it was transplanted.
Previous to the time for cutting, after the seed is well matured, the water is drawn off and the land permitted to dry and harden. The rainy season is not yet over and much care must be exercised in curing the crop. The bundles may be shocked in rows along the margins of the paddies, as seen in Fig. 176, or they may be suspended, heads down, from bamboo poles as seen in Fig. 177.
The threshing is accomplished by drawing the heads of the rice through the teeth of a metal comb mounted as seen at the right in Fig. 178, near the lower corner, behind the basket, where a man and woman are occupied in winnowing the dust and chaff from the grain by means of a large double fan. Fanning mills built on the principle of those used by our farmers and closely resembling them have long been used in both China and Japan. After the rice is threshed the grain must be hulled before it can serve as food, and the oldest and simplest method of polishing used by the Japanese is seen in, Fig. 179, where the friction of the grain upon itself does the polishing. A quantity of rice is poured into the receptacle when, with heavy blows, the long-headed plunger is driven into the mass of rice, thus forcing the kernels to slide over one another until, by their abrasion, the desired result is secured. The same method of polishing, on a larger scale, is accomplished where the plungers are worked by the weight of the body, a series of men stepping upon lever handles of weighted plungers, raising them and allowing them to fall under the force of the weight attached. Recently, however, mills worked by gasoline engines are in operation for both hulling and polishing, in Japan.
The many uses to which rice straw is put in the economies of these people make it almost as important as the rice itself. As food and bedding for cattle and horses; as thatching material for dwellings and other shelters; as fuel; as a mulch; as a source of organic matter in the soil, and as a fertilizer, it represents a money value which is very large. Besides these ultimate uses the rice straw is extensively employed in the manufacture of articles used in enormous quantities. It is estimated that not less than 188,700,000 bags such as are seen in Figs. 180 and 181, worth $3,110,000 are made annually from the rice straw in Japan, for handling 346,150,000 bushels of cereals and 28,190,000 bushels of beans; and besides these, great numbers of bags are employed in transporting fish and other prepared manures.
In the prefecture of Hyogo, with 596 square miles of farm land, as compared with Rhode Island's 712 square miles, Hyogo farmers produced in 1906, on 265,040 acres, 10,584,000 bushels of rice worth $16,191,400, securing an average yield of almost forty bushels per acre and a gross return of $61 for the grain alone. In addition to this, these farmers grew on the same land, the same season, at least one other crop. Where this was barley the average yield exceeded twenty-six bushels per acre, worth $17.
In connection with their farm duties these Japanese families manufactured, from a portion of their rice straw, at night and during the leisure hours of winter, 8,980,000 pieces of matting and netting of different kinds having a market value of $262,000; 4,838,000 bags worth $185,000; 8,742,000 slippers worth $34,000; 6,254,000 sandals worth $30,000; and miscellaneous articles worth $64,000. This is a gross earning of more than $21,000,000 from eleven and a half townships of farm land and the labor of the farmers' families, an average earning of, $80 per acre on nearly three-fourths of the farm land of this prefecture. At this rate three of the four forties of our 160-acre farms should bring a gross annual income of $9,600 and the fourth forty should pay the expenses.
At the Nara Experiment Station we were informed that the money value of a good crop of rice in that prefecture should be placed at ninety dollars per acre for the grain and eight dollars for the unmanufactured straw; thirty-six dollars per acre for the crop of naked barley and two dollars per acre for the straw. The farmers here practice a rotation of rice and barley covering four or five years, followed by a summer crop of melons, worth $320 per acre and some other vegetable instead of the rice on the fifth or sixth year, worth eighty yen per tan, or $160 per acre. To secure green manure for fertilizing, soy beans are planted each year in the space between the rows of barley, the barley being planted in November. One week after the barley is harvested the soy beans, which produce a yield of 160 kan per tan, or 5290 pounds per acre, are turned under and the ground fitted for rice, At these rates the Nara farmers are producing on four-fifths or five-sixths of their rice lands a gross earning of $136 per acre annually, and on the other fifth or sixth, an earning of $480 per acre, not counting the annual crop of soy beans used in maintaining the nitrogen and organic matter in their soils, and not counting their earnings from home manufactures. Can the farmers of our south Atlantic and Gulf Coast states, which are in the same latitude, sometime attain to this standard? We see no reason why they should not, but only with the best of irrigation, fertilization and proper rotation, with multiple cropping.