CHAPTER XI

(1)Une application pratique de l’anthropometrie, Extrait des Annales de Démographie Interne. Paris 1881. (2)Les signalements anthropometriques, Conference faite au Congrès Penitentiare International de Rome, Nov. 22, 1885. (3)Sur le fonctionnement du service des signalements. All the above are published by Masson, 120 Boulevard St. Germain, Paris. To these must be added a very interesting but anonymous pamphlet, based on official documents, and which I have reason to know is authorised by M. Bertillon, namely, (4)L’anthropometrie Judiciare en Paris, en 1889: G. Stenheil, 2 Rue Casimir-Delavigne, Paris.Besides these a substantial volume is forthcoming, which may give a satisfactory solution to some present uncertainties.

(1)Une application pratique de l’anthropometrie, Extrait des Annales de Démographie Interne. Paris 1881. (2)Les signalements anthropometriques, Conference faite au Congrès Penitentiare International de Rome, Nov. 22, 1885. (3)Sur le fonctionnement du service des signalements. All the above are published by Masson, 120 Boulevard St. Germain, Paris. To these must be added a very interesting but anonymous pamphlet, based on official documents, and which I have reason to know is authorised by M. Bertillon, namely, (4)L’anthropometrie Judiciare en Paris, en 1889: G. Stenheil, 2 Rue Casimir-Delavigne, Paris.

Besides these a substantial volume is forthcoming, which may give a satisfactory solution to some present uncertainties.

The scale on which the service is carried on, is very large. It was begun in 1883, and by the end of 1887 no less than 60,000 sets of measures were in hand, but thus far only about one half of the persons arrested in Paris were measured, owing to the insufficiency of the staff. Arrangements were then made for its further extension. There are from 100 to 150 prisoners sentenced each day by the Courts of Law in Paris to more than a few days’ imprisonment, and every one of these is sent to the Dépôt for twenty-four hours. While there, they are now submitted toBertillonage, a newly coined word that has already come into use. This is done in the forenoon, by three operators and three clerks; six officials in all. About half of the prisoners are old offenders, of whom a considerable proportion give their names correctly, as is rapidly verified by an alphabetically arranged catalogue of cards, each of which contains front and profile photographs, and measurements. The remainder are examined strictly; their bodily marks are recorded according to a terse system of a few letters, and they are variously measured. Each person occupies seven or eight minutes. They are then photographed. From sixty to seventy-five prisoners go through this complete process every forenoon. In the afternoon the officials are engaged in making numerous copies of each set of records, one of which is sent to Lyon, and another to Marseille, where there are similar establishments. They also classifythe copies of records that are received from those towns and elsewhere in France, of which from seventy to one hundred arrive daily. Lastly, they search the Registers for duplicate sets of measures of those, whether in Paris or in the provinces, who were suspected of having given false names. The entire staff consists of ten persons. It is difficult to rightly interpret the figures given in the pamphlet (4) at pp. 22-24, as they appear to disagree, but as I understand them, 562 prisoners who gave false names in the year 1890 were recognised byBertillonage, and only four other persons were otherwise discovered to have been convicted previously, who had escaped recognition by its means.

I had the pleasure of seeing the system in operation in Paris a few years ago, and was greatly impressed by the deftness of the measuring, and with the swiftness and success with which the assistants searched for the cards containing entries similar to the measures of the prisoner then under examination.

It is stated in theSignalements(p. 12) that the basis of the classification are the four measurements (1) Head-length, (2) Head-breadth, (3) Middle-finger-length, (4) Foot-length, their constancy during adult life nearly always [as stated] holding good. Each of these four elements severally is considered as belonging to one or other of three equally numerous classes—small, medium, and large; consequently there are 34or 81 principal headings, under some one of which the card of each prisoner is in the first instance sorted. Each of these primary headings is successivelysubdivided, on the same general principle of a three-fold classification, according to other measures that are more or less subject to uncertainties, namely, the height, the span, the cubit, the length and breadth of the ear, and the height of the bust. The eye-colour alone is subjected to seven divisions. The general result is (pp. 19, 22) that a total of twelve measures are employed, of which eleven are classed on the three-fold principle, and one on the seven-fold, giving a final result of 311× 7, or more than a million possible combinations. M. Bertillon considers it by no means necessary to stop here, but in his chapter (p. 22) on the “Infinite Extension of the Classification,” claims that the method may be indefinitely extended.

The success of the system is considered by many experts to be fully proved, notwithstanding many apparent objections, one of which is the difficulty due to transitional cases: a belief in its success has certainly obtained a firm hold upon the popular imagination in France. Its general acceptance elsewhere seems to have been delayed in part by a theoretical error in the published calculations of its efficiency: the measures of the limbs which are undoubtedly correlated being treated as independent, and in part by the absence of a sufficiently detailed account of the practical difficulties experienced in its employment. Thus in theApplication pratique, p. 9: “We are embarrassed what to choose, the number of human measures which vary independently of each other being considerable.” In theSignalements, p. 19: “It has been shown” (by assuming this independent variability) “that by seven measurements, 60,000 photographs can be separated into batches of less than ten in each.” (By the way, even on that assumption, the result is somewhat exaggerated, the figures having been arrived at by successively taking the higher of the two nearest round values.) In short, the general tone of these two memoirs is one of enthusiastic belief in the method, based almost wholly, so far as is there shown, on questionabletheoreticgrounds of efficiency.

To learn how far correlation interferes with the regularity of distribution, causing more entries to be made under some index-heads than others, as was the case with finger prints, I have classified on the Bertillon system, 500 sets of measures taken at my laboratory. It was not practicable to take more than three of the four primary measures, namely, the head-length, its breadth, and the middle-finger-length. The other measure, that of foot-length, is not made at my laboratory, as it would require the shoes to be taken off, which is inconvenient since persons of all ranks and both sexes are measured there; but this matters little for the purpose immediately in view. It should, however, be noted that the head-length and head-breadth have especial importance, being only slightly correlated, either together or with any other dimension of the body. Many a small man has a head that is large in one or both directions, while a small man rarely has a large foot, finger, or cubit, and conversely with respect to large men.

The following set of five measures of each of the 500 persons were then tabulated: (1) head-length; (2) head-breadth; (3) span; (4) body-height, that is the height of the top of the head from the seat on which the person sits; (5) middle-finger-length. The measurements were to the nearest tenth of an inch, but in cases of doubt, half-tenths were recorded in (1), (2), and (5). With this moderate minuteness of measurement, it was impossible so to divide the measures as to give better results than the following, which show that the numbers in the three classes are not as equal as desirable. But they nevertheless enable us to arrive at an approximate idea of the irregular character of the distribution.

Table XVI.

The distribution of the measures is shown in Table XVII.

Table XVII.

Distribution of 500 sets of measures into classes. Each set consists of five elements;each element is classed as + or above medium class; M, or mediocre; -, or below medium class.

(Total number of classes is 35= 243.)

The frequency with which 1, 2, 3, 4, etc., sets were found to fall under the same index-heading, is shown in Table XVIII.

Table XVIII.

No example was found of 83, say of one-third, of the 243 possible combinations. In one case no less than 24 sets fell under the same head; in another case 19 did so, and there were two cases in which 14, 11, and 10 severally did the same. Thus, out of 500 sets (see the five bottom lines in the last column of the above table) no less than 113 sets fell into four classes, each of which included from 10 to 24 entries.

The 24 sets whose Index-number is + M, + + + admit of being easily subdivided and rapidly sorted by an expert, into smaller groups, paying regard toconsiderable differences only, in the head-length and head-breadth. After doing this, two comparatively large groups remain, with five cases in each, which require further analysis. They are as follow, the height and eye-colour being added in each case, and brackets being so placed as to indicate measures that do not differ to a sufficient amount to be surely distinguished. No two sets are alike throughout, some difference of considerable magnitude always occurring to distinguish them. Nos. 2 and 3 come closest together, and are distinguished by eye-colour alone.

Table XIX.

This is satisfactory. It shows that each one of the 500 sets may be distinguished from all the others by means of only seven elements; for if it is possible so to subdivide twenty-four entries that come under one index-heading, we may assume that we could do so in the other cases where the entries were fewer. The other measures that I possess—strength of graspand breathing capacity—are closely correlated with stature and bulk, while eyesight and reaction-time are uncorrelated, but the latter are hardly suited to test the further application of the Bertillon method.

It would appear, from these and other data, that a purely anthropometric classification, irrespective of bodily marks and photographs, would enable an expert to deal with registers of considerable size.

Bearing in mind that mediocrities differ less from one another than members of either of the extreme classes, and would therefore be more difficult to distinguish, it seems probable that with comparatively few exceptions,at leasttwo thousand adults of the same sex might be individualised, merely by means of twelve careful measures, on the Bertillon system, making reasonable allowances for that small change of proportions that occurs after the lapse of a few years, and for inaccuracies of measurement. This estimate may be far below the truth, but more cannot, I think, be safely inferred from the above very limited experiment.

The system of registration adopted in the American army for tracing suspected deserters, was described in a memoir contributed to the “International Congress of Demography,” held in London in 1891. The memoir has so far been only published in theAbstracts of Papers, p. 233 (Eyre and Spottiswoode). Its phraseology is unfortunately so curt as sometimes to be difficult to understand; it runs as follows:—

Personal identity as determined by scars and other body marks by Colonel Charles R. Greenleaf and Major Charles Smart, Medical Department, U.S. Army.Desertions from United States army believed to greatly exceed deserters, owing to repeaters.Detection of repeaters possible if all body marks of all recruits recorded, all deserters noted, and all recruits compared with previous deserters.In like manner men discharged for cause excluded from re-entry.Bertillon’s anthropometric method insufficient before courts-martial, because possible inaccuracies in measurement, and because of allowable errors.But identity acknowledged following coincident indelible marks, when height, age, and hair fairly correspond.That is, Bertillon’s collateral evidence is practically primary evidence for such purposes.There is used for each man an outline figure card giving anterior and posterior surfaces, divided by dotted lines into regions.These, showing each permanent mark, are filed alphabetically at the Surgeon-General’s office, War Department.As a man goes out for cause, or deserts, his card is placed in a separate file.The cards of recruits are compared with the last-mentioned file.To make this comparison, a register in two volumes is opened, one for light-eyed and one for dark-eyed men. Each is subdivided into a fair number of pages, according to height of entrants, and each page is ruled in columns for body regions. Tattooed and non-tattooed men of similar height and eyes are entered on opposite pages. Recruits without tattoos are not compared with deserters with tattoos; but recruits with tattoos are compared with both classes.On the register S T B M, etc., are used as abbreviations for scar, tattoo, birth-mark, mole, etc.One inch each side of recorded height allowed for variation or defective measurement.When probability of identity appears, the original card is used for comparison.Owing to obstacles in inaugurating new system, its practical working began with 1891, and, to include May 1891 [= 5 months, F.G.], out of sixty-two cases of suspected fraud sixty-one proved real.

Personal identity as determined by scars and other body marks by Colonel Charles R. Greenleaf and Major Charles Smart, Medical Department, U.S. Army.

Desertions from United States army believed to greatly exceed deserters, owing to repeaters.

Detection of repeaters possible if all body marks of all recruits recorded, all deserters noted, and all recruits compared with previous deserters.

In like manner men discharged for cause excluded from re-entry.

Bertillon’s anthropometric method insufficient before courts-martial, because possible inaccuracies in measurement, and because of allowable errors.

But identity acknowledged following coincident indelible marks, when height, age, and hair fairly correspond.

That is, Bertillon’s collateral evidence is practically primary evidence for such purposes.

There is used for each man an outline figure card giving anterior and posterior surfaces, divided by dotted lines into regions.

These, showing each permanent mark, are filed alphabetically at the Surgeon-General’s office, War Department.

As a man goes out for cause, or deserts, his card is placed in a separate file.

The cards of recruits are compared with the last-mentioned file.

To make this comparison, a register in two volumes is opened, one for light-eyed and one for dark-eyed men. Each is subdivided into a fair number of pages, according to height of entrants, and each page is ruled in columns for body regions. Tattooed and non-tattooed men of similar height and eyes are entered on opposite pages. Recruits without tattoos are not compared with deserters with tattoos; but recruits with tattoos are compared with both classes.

On the register S T B M, etc., are used as abbreviations for scar, tattoo, birth-mark, mole, etc.

One inch each side of recorded height allowed for variation or defective measurement.

When probability of identity appears, the original card is used for comparison.

Owing to obstacles in inaugurating new system, its practical working began with 1891, and, to include May 1891 [= 5 months, F.G.], out of sixty-two cases of suspected fraud sixty-one proved real.

There was some interesting discussion, both upon this memoir and on a verbal communication concerning the French method, that had been made by M. Jacques Bertillon the statistician, who is a brother of its originator. It appeared that there was room for doubt whether the anthropometric method had received a fair trial in America, the measurements being made by persons not specially trained, whereas in France the establishments, though small, are thoroughly efficient.

There are almost always moles or birth-marks, serving for identification, on the body of every one, and a record of these is, as already noted, an important though subsidiary part of the Bertillon system. Body-marks are noted in the English registers of criminals, and it is curious how large a proportion of these men are tattooed and scarred. How far the body-marks admit of being usefully charted on the American plan, it is difficult to say, the success of the method being largely dependent on the care with which they are recorded. The number of persons hitherto dealt with on the American plan appears not to be very large. As observations of this class require the person to be undressed, they are unsuitable for popular purposes of identification, butthe marks have the merit of serving to identify at all ages, which the measurements of the limbs have not.

It seems strange that no register of this kind, so far as I know, takes account of the teeth. If a man, on being first registered, is deficient in certain teeth, they are sure to be absent when he is examined on a future occasion. He may, and probably will in the meantime, have lost others, but the fact of his being without specified teeth on the first occasion, excludes the possibility of his being afterwards mistaken for a man who still possesses them.

We will now separately summarise the results arrived at, in respect to the two processes that may both be needed in order to effect an identification.

First, as regardssearch in an Index.—Some sets of measures will give trouble, but the greater proportion can apparently be catalogued with so much certainty, that if a second set of measures of any individual be afterwards taken, no tedious search will be needed to hunt out the former set. Including the bodily marks and photographs, let us rate the Bertillon method as able to cope with a register of 20,000 adults of the same sex, with a small and definable, but as yet unknown, average dose of difficulty, which we will callx.

A catalogue of 500 sets of finger prints easily fulfils the same conditions. I could lay a fair claim to much more, but am content with this. Now the finger patterns have been shown to be so independent of other conditions that they cannot be notably, if at all, correlated with the bodily measurements or withany other feature, not the slightest trace of any relation between them having yet been found, as will be shown atp. 186, and more fully inChapter XII.For instance, it would be totally impossible to fail to distinguish between the finger prints of twins, who in other respects appeared exactly alike. Finger prints may therefore be treated without the fear of any sensible error, as varying quite independently of the measures and records in the Bertillon system. Their inclusion would consequently increase its power fully five-hundred fold. Suppose one moderate dose of difficulty,x, is enough for dealing with the measurements, etc., of 20,000 adult persons of the same sex by the Bertillon method, and a similar dose of difficulty with the finger prints of 500 persons, then two such doses could deal with a register of 20,000 × 500, or 10,000,000.

We now proceed to consider the second and final process, namely, that of identification byComparison. When the data concerning a suspected person are discovered to bear a general likeness to one of those already on the register, and a minute comparison shows their finger prints to agree in all or nearly all particulars, the evidence thereby afforded that they were made by the same person, far transcends in trustworthiness any other evidence that can ordinarily be obtained, and vastly exceeds all that can be derived from any number of ordinary anthropometric data.By itself it is amply sufficient to convict.Bertillonagecan rarely supply more than grounds for very strong suspicion: the method of finger prints affordscertainty. It is easy, however, to understand that so long as the peculiarities of finger prints are not generally understood, a juryman would be cautious in accepting their evidence, but it is to be hoped that attention will now gradually become drawn to their marvellous virtues, and that after their value shall have been established in a few conspicuous cases, it will come to be popularly recognised.

Let us not forget two great and peculiar merits of finger prints; they are self-signatures, free from all possibility of faults in observation or of clerical error; and they apply throughout life.

An abstract of the remarks made by M. Herbette, Director of the Penitentiary Department of the Ministère de l’Intérieur, France, at the International Penitentiary Congress at Rome, after the communication by M. Alphonse Bertillon had been read, may fitly follow.

“Proceeding to a more extended view of the subject and praising the successful efforts of M. Bertillon, M. Herbette pointed out how a verification of the physical personality, and of the identity of people of adult age, would fulfil requirements of modern society in an indisputable manner under very varied conditions.“If it were a question, for instance, of giving to the inhabitants of a country, to the soldiers of an army, or to travellers proceeding to distant lands, notices or personal cards as recognisable signs, enabling them always to prove who they are; if it were a question of completing the obligatory records of civil life by perfectly sure indications, such as would prevent all error, or substitution of persons; if it were a question of recording the distinctive marks of an individual in documents, titles or contracts, where his identity requires to be established for his own interest, for that of third parties, or for that of theState,—there the anthropometric system of identification would find place.“Should it be a question of a life certificate, of a life assurance, or of a proof of death, or should it be required to certify the identity of a person who was insane, severely wounded, or of a dead body that had been partly destroyed, or so disfigured as to be hardly recognisable from a sudden or violent death due to crime, accident, shipwreck, or battle—how great would be the advantage of being able to trace these characters, unchangeable as they are in each individual, infinitely variable as between one individual and another, indelible, at least in part, even in death.“There is still more cause to be interested in this subject when it is a question of identifying persons who are living at a great distance, and after the lapse of a considerable time, when the physiognomy, the features, and the physical habits may have changed from natural or artificial causes, and to be able to identify them without taking a journey and without cost, by the simple exchange of a few lines or figures that may be sent from one country or continent to another, so as to give information in America as to who any particular man is, who has just arrived from France, and to certify whether a certain traveller found in Rome is the same person who was measured in Stockholm ten years before.“In one word, to fix the human personality, to give to each human being an identity, an individuality that can be depended upon with certainty, lasting, unchangeable, always recognisable and easily adduced, this appears to be in the largest sense the aim of the new method.“Consequently, it may be said that the extent of the problem, as well as the importance of its solution, far exceeds the limits of penitentiary work and the interest, which is however by no means inconsiderable, that penal action has excited amongst various nations. These are the motives for giving to the labours of M. Bertillon and to their practical utilisation the publicity they merit.”

“Proceeding to a more extended view of the subject and praising the successful efforts of M. Bertillon, M. Herbette pointed out how a verification of the physical personality, and of the identity of people of adult age, would fulfil requirements of modern society in an indisputable manner under very varied conditions.

“If it were a question, for instance, of giving to the inhabitants of a country, to the soldiers of an army, or to travellers proceeding to distant lands, notices or personal cards as recognisable signs, enabling them always to prove who they are; if it were a question of completing the obligatory records of civil life by perfectly sure indications, such as would prevent all error, or substitution of persons; if it were a question of recording the distinctive marks of an individual in documents, titles or contracts, where his identity requires to be established for his own interest, for that of third parties, or for that of theState,—there the anthropometric system of identification would find place.

“Should it be a question of a life certificate, of a life assurance, or of a proof of death, or should it be required to certify the identity of a person who was insane, severely wounded, or of a dead body that had been partly destroyed, or so disfigured as to be hardly recognisable from a sudden or violent death due to crime, accident, shipwreck, or battle—how great would be the advantage of being able to trace these characters, unchangeable as they are in each individual, infinitely variable as between one individual and another, indelible, at least in part, even in death.

“There is still more cause to be interested in this subject when it is a question of identifying persons who are living at a great distance, and after the lapse of a considerable time, when the physiognomy, the features, and the physical habits may have changed from natural or artificial causes, and to be able to identify them without taking a journey and without cost, by the simple exchange of a few lines or figures that may be sent from one country or continent to another, so as to give information in America as to who any particular man is, who has just arrived from France, and to certify whether a certain traveller found in Rome is the same person who was measured in Stockholm ten years before.

“In one word, to fix the human personality, to give to each human being an identity, an individuality that can be depended upon with certainty, lasting, unchangeable, always recognisable and easily adduced, this appears to be in the largest sense the aim of the new method.

“Consequently, it may be said that the extent of the problem, as well as the importance of its solution, far exceeds the limits of penitentiary work and the interest, which is however by no means inconsiderable, that penal action has excited amongst various nations. These are the motives for giving to the labours of M. Bertillon and to their practical utilisation the publicity they merit.”

These full and clear remarks seem even more applicable to the method of finger prints than to that of anthropometry.

HEREDITY

Some of those who have written on finger marks affirm that they are transmissible by descent, others assert the direct contrary, but no inquiry hitherto appears to justify a definite conclusion.

Chapter VIII.shows a close correlation to exist between the patterns on the several fingers of the same person. Hence we are justified in assuming that the patterns are partly dependent on constitutional causes, in which case it would indeed be strange if the general law of heredity failed in this particular case.

After examining many prints, the frequency with which some peculiar pattern was found to characterise members of the same family convinced me of the reality of an hereditary tendency. The question was how to submit the belief to numerical tests; particular kinships had to be selected, and methods of discussion devised.

It must here be borne in mind that “Heredity” implies more than its original meaning of a relationship between parent and child. It includes thatwhich connects children of the same parents, and which I have shown (Natural Inheritance) to be just twice as close in the case of stature as that which connects a child and either of its two parents. Moreover, the closeness of the fraternal and the filial relations are to a great extent interdependent, for in any population whose faculties remainstatisticallythe same during successive generations, it has been shown that a simple algebraical equation must exist, that connects together the three elements of Filial Relation, Fraternal Relation, and Regression, by which a knowledge of any two of them determines the value of the third. So far as Regression may be treated as being constant in value, the Filial and the Fraternal relations become reciprocally connected. It is not possible briefly to give an adequate explanation of all this now, or to show how strictly observations were found to confirm the theory; this has been fully done inNatural Inheritance, and the conclusions will here be assumed.

The fraternal relation, besides disclosing more readily than other kinships the existence or non-existence of heredity, is at the same time more convenient, because it is easier to obtain examples of brothers and sisters alone, than with the addition of their father and mother. The resemblance between those who are twins is also an especially significant branch of the fraternal relationship. The word “fraternities” will be used to include the children of both sexes who are born of the same parents; it being impossible to name the familiar kinship inquestion either in English, French, Latin, or Greek, without circumlocution or using an incorrect word, thus affording a striking example of the way in which abstract thought outruns language, and its expression is hampered by the inadequacy of language. In this dilemma I prefer to fall upon the second horn, that of incorrectness of phraseology, subject to the foregoing explanation and definition.

The first preliminary experiments were made with the help of the Arch-Loop-Whorl classification, on the same principle as that already described and utilised inChapter VIII.he following addition. Each of the two members of any couplet of fingers has a distinctive name—for instance, the couplet may consist of a finger and a thumb: or again, if it should consist of two fore-fingers, one will be a right fore-finger and the other a left one, but the two brothers in a couplet of brothers rank equally as such. The plan was therefore adopted of “ear-marking” the prints of the first of the two brothers that happened to come to hand, with an A, and that of the second brother with a B; and so reducing the questions to the shape:—How often does the pattern on the finger of a B brother agree with that on the corresponding finger of an A brother? How often would it occur between two persons who had no family likeness? How often would it correspond if the kinship between A and B were as close as it is possible to conceive? Or transposing the questions, and using the same words as inChapter VIII., what is the relative frequency of (1) Random occurrences, (2) Observedoccurrences, (3) Utmost possibilities? It was shown in that chapter how to find the value of (2) upon a centesimal scale in which “Randoms” ranked as 0° and “Utmost possibilities” as 100°.

The method there used of calculating the frequency of the “Random” events will be accepted without hesitation by all who are acquainted with the theory and the practice of problems of probability. Still, it is as well to occasionally submit calculation to test. The following example was sent to me for that purpose by a friend who, not being mathematically minded, had demurred somewhat to the possibility of utilising the calculated “Randoms.”

The prints of 101 (by mistake for 100) couplets of prints of the right fore-fingers of school children were taken by him from a large collection, the two members, A and B, being picked out at random and formed into a couplet. It was found that among the A children there were 22 arches, 50 loops, and 29 whorls, and among the B children 25, 34, and 42 respectively, as is shown by theitalicnumerals in the last column, and again in the bottom row of Table XX. The remainder of the table shows the number of times in which an arch, loop, or whorl of an A child was associated with an arch, loop, or whorl of a B child.

Table XX.

Observed Random Couplets.

Table XXI.

Calculated Random Couplets.

The question, then, was how far calculations from the above data would correspond with the contents of Table XX. The answer is that it does so admirably. Multiply each of the italicised A totals into each of the italicised B totals, and after dividing each result by 101, enter it in the square at which the columnthat has the A total at its base, is intersected by the row that has the B total at its side. We thus obtain Table XXI.

We will now discuss in order the following relationships: the Fraternal, first in the ordinary sense, and then in the special case of twins of the same set; Filial, in the special case in which both parents have the same particular pattern on the same finger; lastly, the relative influence of the father and mother in transmitting their patterns.

Fraternal relationship.—In 105 fraternities theobservedfigures were as in Table XXII.:—

TableXXII.

Observed Fraternal Couplets.

The squares that run diagonally from the top at the left, to the bottom at the right, contain the doubleevents, and it is with these that we are now concerned. Are the entries in those squares larger or not than the randoms, calculated as above, viz. the values of 10 × 19, 68 × 61, 27 × 25, all divided by 105? The calculated Randoms are shown in the first line of Table XXIII., the third line gives the greatest feasible number of correspondences which would occur if the kinship were as close as possible, subject to the reservation explained inp. 127. As there shown, thelowerof the A and B values is taken in each case, for Arches, Loops, and Whorls respectively.

Table XXIII.

In every instance, the Observed values are seen to exceed the Random.

Many other cases of this description were calculated, all yielding the same general result, but these results are not as satisfactory as can be wished, owing to their dilution by inappropriate cases, the A. L. W. system being somewhat artificial.

PLATE 16.

Fig. 24

The “C” set of standard patterns, for prints of the Right Hand.

With the view of obtaining a more satisfactory result the patterns were subdivided under fifty-three heads, and an experiment was made with the fore,middle, and ring-fingers of 150 fraternal couplets (300 individuals and 900 digits) by Mr. F. Howard Collins, who kindly undertook the considerable labour of indexing and tabulating them.

The provisional list of standard patterns published in thePhil. Trans.was not appropriate for this purpose. It related chiefly to thumbs, and consequently omitted the tented arch; it also referred to the left hand, but in the following tabulations the right hand has been used; and its numbering is rather inconvenient. The present set of fifty-three patterns has faults, and cannot be considered in any way as final, but it was suitable for our purposes and may be convenient to others; as Mr. Collins worked wholly by it, it may be distinguished as the “C. set.” The banded patterns, 24-31, are very rarely found on the fingers, but being common on the thumb, were retained, on the chance of our requiring the introduction of thumb patterns into the tabulations. The numerals refer to the patterns as seen in impressions of theright handonly. [They would be equally true for the patterns as seen on thefingers themselvesof the left hand.] For impressions of the left hand the numerals up to 7 inclusive would be the same, but those of all the rest would be changed. These are arranged in couplets, the one member of the couplet being a reversed picture of the other, those in each couplet being distinguished by severally bearing an odd and an even number. Therefore, in impressions of the left hand, 8 would have to be changed into 9, and 9 into 8; 10 into 11, and 11 into 10; andso on, up to the end, viz. 52 and 53. The numeral 54 was used to express nondescript patterns.

The finger prints had to be gone through repeatedly, some weeks elapsing between the inspections, and under conditions which excluded the possibility of unconscious bias; a subject of frequent communication between Mr. Collins and myself. Living at a distance apart, it was not easy at the time they were made, to bring our respective interpretations of transitional and of some of the other patterns, especially the invaded loops, into strict accordance, so I prefer to keep his work, in which I have perfect confidence, independent from my own. Whenever a fraternity consisted of more than two members, they were divided, according to a prearranged system, into as many couplets as there were individuals. Thus, while a fraternity of three individuals furnished all of its three possible varieties of couplets, (1, 2), (1, 3), (2, 3), one of four individuals was not allowed to furnish more than four of its possible couplets, the two italicised ones being omitted, (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), and so on. Without this precaution, a single very large family might exercise a disproportionate and even overwhelming statistical influence.

It would be essential to exact working, that the mutual relations of the patterns should be taken into account; for example, suppose an arch to be found on the fore-finger of one brother and a nascent loop on that of the other; then, as these patterns are evidently related, their concurrence ought to beinterpreted as showing some degree of resemblance. However, it was impossible to take cognizance of partial resemblances, the mutual relations of the patterns not having, as yet, been determined with adequate accuracy.

The completed tabulations occupied three large sheets, one for each of the fingers, ruled crossways into fifty-three vertical columns for the A brothers, and fifty-three horizontal rows for the B brothers. Thus, if the register number of the pattern of A was 10, and that of B was 42, then a mark would be put in the square limited by the ninth and tenth horizontal lines, and by the forty-first and forty-second vertical ones. The marks were scattered sparsely over the sheet. Those in each square were then added up, and finally the numbers in each of the rows and in each of the columns were severally totalled.

If the number of couplets had been much greater than they are, a test of the accuracy with which their patterns had been classed under the appropriate heads, would be found in the frequency with which the same patterns were registered in the corresponding finger of the A and B brothers. The A and B groups are strictly homogeneous, consequently the frequency of their patterns in corresponding fingers ought to be alike. The success with which this test has been fulfilled in the present case, is passably good, its exact degree being shown in the following paragraphs, where the numbers of entries under each head are arranged in as orderly a manner as the case admits,the smaller of the two numbers being the one that stands first, whether it was an A or a B. All instances in which there were at least five entries under either A or B, are included; the rest being disregarded. The result is as follows:—


Back to IndexNext