FOOTNOTES:

The whole of the building to be composed of non-combustible materials, such as iron, stone, or bricks.In order to prevent fire, whether arising from accident or spontaneous combustion, every opening, or crevice, communicating with the external atmosphere to be closed.An isolated staircase, of stone, or iron, well protected on every side by brick, or stone walls, to be attached to every story, and be furnished with a line of water-pipes, communicating with the mains in the street, and ascending to the top of the building.In a range of stores, the different warehouses to bedivided by strong partition-walls, in no case less than eighteen inches thick, and no more openings to be made than are absolutely necessary for the admission of goods and light.That the iron columns, beams, and brick arches be of strength sufficient, not only to support a continuous dead pressure, but to resist the force of impact to which they are subject by the falling of heavy goods upon the floors.That in order to prevent accident from the columns being melted by intense heat in the event of fire in any of the rooms, a current of cold air should be introduced into the hollow of the columns, from an arched tunnel under the floors.

The whole of the building to be composed of non-combustible materials, such as iron, stone, or bricks.

In order to prevent fire, whether arising from accident or spontaneous combustion, every opening, or crevice, communicating with the external atmosphere to be closed.

An isolated staircase, of stone, or iron, well protected on every side by brick, or stone walls, to be attached to every story, and be furnished with a line of water-pipes, communicating with the mains in the street, and ascending to the top of the building.

In a range of stores, the different warehouses to bedivided by strong partition-walls, in no case less than eighteen inches thick, and no more openings to be made than are absolutely necessary for the admission of goods and light.

That the iron columns, beams, and brick arches be of strength sufficient, not only to support a continuous dead pressure, but to resist the force of impact to which they are subject by the falling of heavy goods upon the floors.

That in order to prevent accident from the columns being melted by intense heat in the event of fire in any of the rooms, a current of cold air should be introduced into the hollow of the columns, from an arched tunnel under the floors.

There is no doubt that if the second principle could be carried out, namely, the total exclusion of air, the fire would go out of itself; but it seems, to say the least of it, very doubtful indeed if this can be accomplished, and if it could, the carelessness of a porter leaving open one of the doors or windows, would make the whole useless. The fifth principle shows that Mr. Fairbairn has omitted to allow for the loss of strength the iron may sustain from the increase of temperature. The last principle would not be likely to answer its purpose, even if it was possible to keep these tunnels and hollow columns clear for a number of years, which is scarcely to be expected. A piece of cast-iron pipe, one-and-a-half inch in diameter, was heated for four minutes in a common forge, both ends being carefully kept open to the atmosphere, when, on one end being fixed in a vice, and the other pulled aside by the hand, it gave way.

One of the principal objections to the kind of fire-proofbuildings above described, is, that absolute perfection in their construction is indispensable to their safety; whereas buildings of a more common description are comparatively safe, although there may be some errors or omissions in their construction. Indeed, Mr. Fairbairn states in the same Report, that "it is true that negligence of construction on the one hand, and want of care in management on the other, might entail risk and loss to an enormous extent."

The following is a very clear proof of the inability of cast iron to resist the effects of fire:—

"A chapel in Liverpool-road, Islington, seventy feet in length and fifty-two feet in breadth, took fire in the cellar, on the 2nd October, 1848, and was completely burned down. After the fire, it was ascertained that of thirteen cast-iron pillars used to support the galleries, only two remained perfect; the greater part of the others were broken into small pieces, the metal appearing to have lost all power of cohesion, and some parts were melted. It should be observed, that these pillars were of ample strength to support the galleries when filled by the congregation, but when the fire reached them, they crumbled under the weight of the timber only, lightened as it must have been by the progress of the fire."

In this case it mattered little whether the pillars stood or fell, but it would be very different with some of the large wholesale warehouses in the City, where numbers of young men sleep in the upper floors; in several of those warehouses the cast-iron pillars are much less in proportion to the weight to be carried than those referred to, and would be completely in the draught of a fire. If a fire should unfortunately take place under such circumstances, the loss ofhuman life might be very great, as the chance of fifty, eighty, or one hundred people escaping in the confusion of a sudden night alarm, by one or two ladders, to the roof, could scarcely be calculated on, and the time such escape must necessarily occupy, independent of all chance of accidents, would be considerable.

For the reasons here stated, I submit that large buildings, containing considerable quantities of combustible goods, with floors of brick-arches, supported by cast-iron beams and columns, are not, practically speaking, fire-proof; and that the only construction which would render large buildings fire-proof; where considerable quantities of combustible goods are deposited, would be groined brick-arches, supported by pillars of the same material, laid in proper cement. I am fully convinced, from a lengthened experience, that the intensity of a fire,—the risk of its ravages extending to adjoining premises, and also the difficulty of extinguishing it, depend,cæteris paribus, on the cubic contents of the building which takes fire, and it appears to me that the amount of loss would be very much reduced, if, instead of building immense warehouses, which give the fire a fortified position, warehouses were made of a moderate size, with access on two sides at least, completely separated from each other by party-walls, and protected by iron-doors and window-shutters. In the latter case, the probability is, that not more than one warehouse would be lost at a time, and perhaps that one would be only partially injured.

It is sincerely to be hoped that the clause in the last Metropolitan Building Act, restricting the size of warehouses, may be more successful than its predecessor, for it is not only property that is at stake, but human life. In many of these"Manchester warehouses," there are fifty or one hundred and upwards of warehousemen and servants sleeping in the upper floors, whose escape, in case of fire, would be very doubtful, to say the least of it.[E]

Covering timber with sheet-iron is very often resorted toas a protection against fire. I have never found it succeed; but Dr. Faraday, Professor Brande, Dr. D. B. Reid, and Mr. W. Tite, M.P., are of opinion that it may be useful against a sudden burst of flame, but that it is worse than useless against a continued heat.

In wadding manufactories the drying-rooms were frequently lined with iron-plates, and when a fire arose there, the part covered with iron was generally found more damaged than the rest; the heat got through the sheet-iron, and burnt the materials behind it, and there was no means of touching them with water until the iron was torn down; sheet iron should not, therefore, be used for protecting wood.

Even cast iron, one inch thick, laid on tiles and cement three inches thick, has allowed fire to pass through both, to the boarding and joisting below, merely from the fire in an open fire-place being taken off and laid on the hearth. This arises from iron being so good a conductor that, when heat is applied to it, it becomes in a very short time nearly as hot on the one side as the other. If the smoke escapes up a chimney, or in any other way, there may be a serious amount of fire before it is noticed.

In a fire at the Bank of England, the hearth on which the stove was placed was cast iron an inch thick, with two-and-a-halfinches of concrete underneath it; but the timber below that was fired.

With regard to the subject of fire-proof dwelling-houses of average size, I consider that such houses when built of brick or stone, with party-walls carried through the roof; the partitions of brick, the stairs of slate or stone, the joists of wrought iron filled in with concrete, and the whole well plastered, are practically fire-proof because, as stated at the opening of this chapter, there is no probability that the furniture and flooring in any one room would make fire enough to communicate to another. The safest manner of heating such houses is with open fire-places, the hearths not being laid upon timber. Stone staircases, when much heated, will fracture from cold water coming suddenly in contact with them; but in a dwelling-house built as described above, there is very little chance of such a circumstance endangering human life, even with wooden steps carried upon brick walls, and rendered incombustible by a ceiling of an inch and a quarter of good hair mortar and well pugged, all the purposes of safety to human life would be attained.

There is a particular description of floor, which, although not altogether fire-proof, is certainly (at least so far as I can judge), almost practically so for dwelling-houses. It is composed simply of plank two and a-half or three inches thick, so closely joined, and so nicely fitted to the walls, as to be completely air-tight. Its thickness and its property of being air-tight, will be easily observed to be its only causes of safety. Although the apartment be on fire, yet the time required to burn through the floor above or below, will be so great, that the property may be removed from the other floors, or, more probably, if the means of extinguishing firebe at hand, it may be subdued before it can spread to any other apartment. The doors must of course be made in proportion, and the partitions of brick or stone.

Before closing the subject of fire-proof structures, I will add a few words upon fire-proof safes. These are all constructed with double casings of wrought iron, the interstices being in some filled with non-combustible substances, such as pumice stone and Stourbridge clay, and in others with metal tubes, that melt at a low temperature, and allow a liquid contained in them to escape, and form steam round the box, with the intention of preventing the heat from injuring the contents. Such safes I have never found destroyed; and in some cases, after large fires, the whole of the contents have been found uninjured, while the papers in common safes, merely made strong enough to prevent their being broken into, were generally found consumed.

FOOTNOTES:[A]VideSeventh Report of the British Association, 1837, vol. vi. page 409.[B]VideReport on the Fall of the Cotton Mill, at Oldham, and part of the Prison at Northleach, page 4. Folio. London: Clowes and Sons, 1845.[C]VideReport of W. Fairbairn, Esq., on the Construction of Fire-proof Buildings. With introductory Remarks by Samuel Holme, page 11,et seq.Tract, 8vo. Liverpool: T. Baines, 1844.[D]The Author has been informed by Mr. Farey, M. Inst. C.E., that a fire took place, in 1827, in a mill belonging to Mr. Marshall, of Leeds, the whole of which, with the exception of the roof, was fire-proof. The upper floor was filled with flax, which took fire; the roof fell in, and the heat so affected the iron beams of the floor, as to cause them to give way.[E]In the year 1858, when reporting to the Insurance Offices upon the Warehouses in the Metropolitan Docks, Mr. Braidwood made the following suggestions which are applicable to all large buildings. That all the party-walls where the roofs do not rise above the wall, should be 3 feet 6 inches above such roof. That all the party-walls in the valleys of the roofs should be raised to the level of the highest ridge on either side, all openings in such walls being closed by wrought-iron doors on each side of the walls, at least a quarter of an inch thick in the panels, and such openings not to exceed 42 superficial feet in the clear. That all windows which look upon other windows, or loop-hole doors in other warehouses or compartments, within 100 feet, should be bricked up, or have wrought-iron shutters at least 3/16th of an inch thick in the panels.That all loop-hole doors similarly situated should be made entirely of wrought iron, frames included, or bricked up. That all shafts for lifts or other purposes, should be of brick, with wrought-iron doors where necessary to receive or deliver goods, and that all openings whatever for machinery should be included in such shaft. That every hatchway or opening in the floors for "shooting" goods from floor to floor should have a strong flaphinged onto the floor, to be closed when not in use, especially at night.That there should be direct access to every room, of every compartment, of every warehouse, from a fire-proof staircase, by iron doors, and that all such staircases should enter from the open air, as well as from under any warehouse on the quay; in the latter case the doors must be of iron only.All the windows in the entresol and ground floors to be bricked up, or have iron shutters, and the doors and frames to be of iron.Wherever the warehouses face each other within 100 feet, the front parapet walls to be carried up to the level of the ridge of the roof.When it is stated in this report that the windows or loop-hole doors should be bricked up, it is not meant to exclude the use of thick glass, three or four pieces being built into each door or window space, not exceeding 6 inches in diameter or square, in the clear, and set in the mortar or cement at least 3/4 of an inch all round, the glass to be not less than 1-1/2 inches thick, flat on both sides, and so placed that no goods can be stored within 18 inches of the inner surface.There should be a tank on the top of each staircase, with a tap from it on each landing, with six fire buckets hung near it, and three small hand pumps in every staircase; the officers and workpeople seeing these every day would be certain to run to them in case of fire, and by having a constant supply of water on every floor small accidents might be extinguished at once, and the iron doors and roofs kept cool in case of one room taking fire.

[A]VideSeventh Report of the British Association, 1837, vol. vi. page 409.

[A]VideSeventh Report of the British Association, 1837, vol. vi. page 409.

[B]VideReport on the Fall of the Cotton Mill, at Oldham, and part of the Prison at Northleach, page 4. Folio. London: Clowes and Sons, 1845.

[B]VideReport on the Fall of the Cotton Mill, at Oldham, and part of the Prison at Northleach, page 4. Folio. London: Clowes and Sons, 1845.

[C]VideReport of W. Fairbairn, Esq., on the Construction of Fire-proof Buildings. With introductory Remarks by Samuel Holme, page 11,et seq.Tract, 8vo. Liverpool: T. Baines, 1844.

[C]VideReport of W. Fairbairn, Esq., on the Construction of Fire-proof Buildings. With introductory Remarks by Samuel Holme, page 11,et seq.Tract, 8vo. Liverpool: T. Baines, 1844.

[D]The Author has been informed by Mr. Farey, M. Inst. C.E., that a fire took place, in 1827, in a mill belonging to Mr. Marshall, of Leeds, the whole of which, with the exception of the roof, was fire-proof. The upper floor was filled with flax, which took fire; the roof fell in, and the heat so affected the iron beams of the floor, as to cause them to give way.

[D]The Author has been informed by Mr. Farey, M. Inst. C.E., that a fire took place, in 1827, in a mill belonging to Mr. Marshall, of Leeds, the whole of which, with the exception of the roof, was fire-proof. The upper floor was filled with flax, which took fire; the roof fell in, and the heat so affected the iron beams of the floor, as to cause them to give way.

[E]In the year 1858, when reporting to the Insurance Offices upon the Warehouses in the Metropolitan Docks, Mr. Braidwood made the following suggestions which are applicable to all large buildings. That all the party-walls where the roofs do not rise above the wall, should be 3 feet 6 inches above such roof. That all the party-walls in the valleys of the roofs should be raised to the level of the highest ridge on either side, all openings in such walls being closed by wrought-iron doors on each side of the walls, at least a quarter of an inch thick in the panels, and such openings not to exceed 42 superficial feet in the clear. That all windows which look upon other windows, or loop-hole doors in other warehouses or compartments, within 100 feet, should be bricked up, or have wrought-iron shutters at least 3/16th of an inch thick in the panels.That all loop-hole doors similarly situated should be made entirely of wrought iron, frames included, or bricked up. That all shafts for lifts or other purposes, should be of brick, with wrought-iron doors where necessary to receive or deliver goods, and that all openings whatever for machinery should be included in such shaft. That every hatchway or opening in the floors for "shooting" goods from floor to floor should have a strong flaphinged onto the floor, to be closed when not in use, especially at night.That there should be direct access to every room, of every compartment, of every warehouse, from a fire-proof staircase, by iron doors, and that all such staircases should enter from the open air, as well as from under any warehouse on the quay; in the latter case the doors must be of iron only.All the windows in the entresol and ground floors to be bricked up, or have iron shutters, and the doors and frames to be of iron.Wherever the warehouses face each other within 100 feet, the front parapet walls to be carried up to the level of the ridge of the roof.When it is stated in this report that the windows or loop-hole doors should be bricked up, it is not meant to exclude the use of thick glass, three or four pieces being built into each door or window space, not exceeding 6 inches in diameter or square, in the clear, and set in the mortar or cement at least 3/4 of an inch all round, the glass to be not less than 1-1/2 inches thick, flat on both sides, and so placed that no goods can be stored within 18 inches of the inner surface.There should be a tank on the top of each staircase, with a tap from it on each landing, with six fire buckets hung near it, and three small hand pumps in every staircase; the officers and workpeople seeing these every day would be certain to run to them in case of fire, and by having a constant supply of water on every floor small accidents might be extinguished at once, and the iron doors and roofs kept cool in case of one room taking fire.

[E]In the year 1858, when reporting to the Insurance Offices upon the Warehouses in the Metropolitan Docks, Mr. Braidwood made the following suggestions which are applicable to all large buildings. That all the party-walls where the roofs do not rise above the wall, should be 3 feet 6 inches above such roof. That all the party-walls in the valleys of the roofs should be raised to the level of the highest ridge on either side, all openings in such walls being closed by wrought-iron doors on each side of the walls, at least a quarter of an inch thick in the panels, and such openings not to exceed 42 superficial feet in the clear. That all windows which look upon other windows, or loop-hole doors in other warehouses or compartments, within 100 feet, should be bricked up, or have wrought-iron shutters at least 3/16th of an inch thick in the panels.

That all loop-hole doors similarly situated should be made entirely of wrought iron, frames included, or bricked up. That all shafts for lifts or other purposes, should be of brick, with wrought-iron doors where necessary to receive or deliver goods, and that all openings whatever for machinery should be included in such shaft. That every hatchway or opening in the floors for "shooting" goods from floor to floor should have a strong flaphinged onto the floor, to be closed when not in use, especially at night.

That there should be direct access to every room, of every compartment, of every warehouse, from a fire-proof staircase, by iron doors, and that all such staircases should enter from the open air, as well as from under any warehouse on the quay; in the latter case the doors must be of iron only.

All the windows in the entresol and ground floors to be bricked up, or have iron shutters, and the doors and frames to be of iron.

Wherever the warehouses face each other within 100 feet, the front parapet walls to be carried up to the level of the ridge of the roof.

When it is stated in this report that the windows or loop-hole doors should be bricked up, it is not meant to exclude the use of thick glass, three or four pieces being built into each door or window space, not exceeding 6 inches in diameter or square, in the clear, and set in the mortar or cement at least 3/4 of an inch all round, the glass to be not less than 1-1/2 inches thick, flat on both sides, and so placed that no goods can be stored within 18 inches of the inner surface.

There should be a tank on the top of each staircase, with a tap from it on each landing, with six fire buckets hung near it, and three small hand pumps in every staircase; the officers and workpeople seeing these every day would be certain to run to them in case of fire, and by having a constant supply of water on every floor small accidents might be extinguished at once, and the iron doors and roofs kept cool in case of one room taking fire.

Before entering upon the subject of Public Fire Brigades, I will call attention to the course to be pursued by inmates of the house on fire, and their neighbours.

When all available means of fire prevention have been adopted, the next thing to be considered is a supply of water. In the country, or where there are no water-pipes or engines, this ought to be particularly attended to, and a hand-pump should be provided. Where no water is kept solely for the purpose of extinguishing fire, such vessels as can be spared should be regularly filled every night, and placed in such situations as may be most convenient in case of danger; and no master of a family ought to retire to rest, without being satisfied that this has been attended to. If it had no other advantage than merely that of directing the inmates of a house to the possibility of such an occurrence as fire, it would be worth much more than the trouble such an arrangement would cost; but, in addition to that, a supply ofwater would be at hand, in most cases more than sufficient to extinguish the fire immediately on its being discovered, and before it had become either alarming or dangerous. But when no such precaution has been adopted, when even the bare possibility of fire has not been considered, when no attention has even been paid to the subject, and no provision made for it; the inhabitants are generally so alarmed and confused, that the danger is probably over, by their property being burned to the ground, before they can sufficiently recollect themselves to lend any effective assistance.

In most cases of fire, the people in whose premises it occurs are thrown into what may be called a state of temporary derangement, and seem to be actuated only by a desire of muscular movement, no matter to what purpose their exertions are directed. Persons may often be seen toiling like galley-slaves, at operations which a moment's reflection would show were utterly useless. I have seen tables, chairs, and every article of furniture that would pass through a window, three or four stories high, dashed into the street, even when the fire had hardly touched the tenement. On one occasion I saw crockery-ware thrown from a window on the third floor.[F]

Most of these extravagances take place on the first alarm. When the engines have got fairly into play, people begin to recollect themselves, and it is at this time that most of those "who go to see a fire" arrive. By the exertions of thepolice there is then generally a considerable degree of order restored, and the most interesting part of the scene is over.

What remains, however, may, from its novelty or grandeur, if the fire is extensive, be still worth looking at for a little, but much of the excitement is banished with the confusion; and if the fire and firemen seem to be well matched, the chief interest which is excited in the spectators is to ascertain which of the parties is likely to be victorious. Few people, comparatively, have thus an opportunity of witnessing the terror and distraction occasioned by the first alarm of fire, and this may probably account for the apathy and indifference with which people who have not seen this regard it.

When a fire actually takes place, every one should endeavour to be as cool and collected as possible; screams, cries, and other exhibitions of terror, while utterly useless in themselves, have generally the effect of alarming those whose services might otherwise be of the utmost advantage, and of rendering them unfit for useful exertion. It is unhappily, too, at the commencement of fires, that this tendency to confusion and terror is the strongest, when a bucket of water, properly applied, is generally of more value than a hundred will be half an hour afterwards. It is the feeling of total surprise, on the breaking out of a fire, which thus unhinges the faculties of many individuals. They have never made the case their own, nay, one would almost imagine they had scarcely thought such an occurrence possible, till, coming on them almost like a thunderbolt, they are lost in perplexity and terror. The only preventive against this is to think the matter over frequently and carefully before it occurs.

The moment it is ascertained that fire has actually taken place, notice should be sent to the nearest station wherethere is a fire-engine. No matter whether the inmates are likely to be able to extinguish the fire themselves—this should never be trusted to if more efficient help can be had.

It is much better that an engine should be turned out twenty times when it is not wanted, than be once too late. This may cause a trifling expense; but even that expense is not altogether lost, as it teaches the firemen steadiness and coolness.

The person in the house best qualified for such duty should endeavour to ascertain, with as much precision as possible, the extent and position of the fire, while the others collect as much water as they can. If the fire be in an upper floor, the inmates should be got out immediately, although the lower part of the house may generally be entered with safety for some time. If in the lower part of the house, after the inmates have been removed, great care should be observed in going into any of the upper floors, as the flames very often reach the stair before being observed by those above. The upper floors are, besides, generally filled with smoke, and, in that case, there is great danger of suffocation to those who may enter.

This, indeed, is the principal danger attending fires, and should be particularly guarded against, as a person, when being suffocated, is unable to call for assistance. In a case of this kind the fire took place in the third floor from the street, and all the inmates immediately left the premises except one old woman. In about fifteen minutes after the arrival of the engines, the firemen made their way upstairs, and the poor woman was found dead beside a basket partly filled with clothes, which it was supposed she had been packingup for removal; had she made any noise, or even broke a pane of glass, she would, in all probability, have been saved; as the fire never touched the floor in which she was found, she must have died entirely from suffocation, which a little fresh air would have prevented. Had the slightest suspicion existed that any one was in the upper floors, they would have been entered by the windows or the roof; but as the fire took place in daylight, and none of the neighbours spoke of any one being in the house, it was thought unnecessary to damage the property, or risk the lives of the firemen, without some adequate cause. This, however, shows how little dependence can be placed on information received from the inmates of the premises on fire. Some of the people who lived on the same floor with this poor woman, and who had seen her immediately before they left the house, never mentioned her. I do not suppose that this negligence arose from apathy, or any feeling of that sort; but the people were in such a state of utter confusion, that they were unable to think of anything. But to return.

On the first discovery of a fire, it is of the utmost consequence to shut, and keep shut, all doors, windows, or other openings. It may often be observed, after a house has been on fire, that one floor is comparatively untouched, while those above and below are nearly burned out. This arises from the door on that particular floor having been shut, and the draught directed elsewhere. If the person who has examined the fire finds a risk of its gaining ground upon him, he should, if within reach of fire-engines, keep everything close, and await their arrival, instead of admitting air to the fire by ineffectual efforts to oppose it with inadequate means. In the meantime, however, he should examinewhere a supply of water is most likely to be obtained, and communicate that, and any other local information, to the firemen on their coming forward. If there be no fire-engine within reach, the person who has examined the fire should keep the place where it is situated as close as possible, till as many buckets of water as can be easily collected are placed within his reach.

Taking care always that there is some one ready to assist him, he should then open the door, and creep forward on his hands and knees till he gets as near the fire as possible; holding his breath, and standing up for a moment to give the water a proper direction, he should throw it with force, using a hand pump if available, and instantly get down to his former position, where he will be again able to breathe. The people behind handing forward another bucket of water, he repeats the operation till the fire is quenched, or until he feels exhausted; in which case some one should take his place. If there be enough of water, however, two, three, or any convenient number of people may be employed in throwing it; on the contrary, if the supply of water be insufficient to employ even one person, the door should be kept shut while the water is being brought, and the air excluded as much as possible, as the fire burns exactly in proportion to the quantity of air which it receives.

One great evil, and which ought to be strictly guarded against by people not accustomed to fire, is, that on the first alarm they exert themselves to the very utmost of their strength. This, of course, can last but a short time; and when they feel tired, which in that case soon happens, they very often give up altogether. Now this is the reverse of what it ought to be. In extinguishing fires, like most otherthings, a cool judgment and steady perseverance are far more effective than any desultory exertions which can be made.

The heat generally increases in a considerable degree when water is first thrown upon a fire, from the conversion of a portion of it into steam. This is sometimes very annoying; so much so, that the persons engaged in throwing the water, frequently feel themselves obliged to give back a little. They should on no account, however, abate or discontinue their exertions in throwing the water with as much force as possible in the direction of the fire; it will in a short time cool the air and materials, and the steam will, in consequence, be generated more slowly, while a steady perseverance on the part of those employed can alone effect the object in view.

When water is scarce, mud, cow or horse dung, damp earth, &c., may be used as substitutes; but if there seems no chance of succeeding by any of these, and the fire is likely to extend to other buildings, the communication should be immediately cut off by pulling down the building next to that on fire. Any operation of this sort, however, should be begun at a sufficient distance from the fire to allow the communication to be completely cut off, before it gains upon the workmen. If this operation be attempted so near the fire as to be interrupted by it, it must be begun again at a greater distance; and, in that case, there is a greater destruction of property than might have been necessary.

If a fire occur in a stable or cow-house, surrounded with other buildings of the same description, or with the produce of a farm, there is much danger. The cattle and horses should be immediately removed; and, in doing so, if any of them become restive, they should be blindfolded, taking care that it is done thoroughly, as any attempt to blindfold thempartially, only increases the evil. They should be handled as much as possible in the ordinary manner, and with great coolness; the violent gestures and excited appearance of the persons removing them tending greatly to startle the animals, and render them unmanageable.

The best public means of arresting fires is a very wide question, as the only limit to the means is the expense. Different nations have different ways of doing the same thing. On the Continent generally, the whole is managed by Government, and the firemen are placed under martial law, the inhabitants being compelled to work the engines. In London, the principal means of arresting fires is a voluntary association of the insurance companies, without legal authority of any sort, the legal protection by parish engines being, with a few praiseworthy exceptions, a dead letter.

In Liverpool, Manchester, and other towns, the extinction of fires by the pressure of water only, without the use of fire-engines, is very much practised. The advantages of this system are very great; but, to enable us to follow this system in London, the whole water supply would require to be remodelled.

In America, the firemen are generally volunteers, enrolled by the local Governments. They are exempt from other duties, or are entitled to privileges, which appear to satisfy them, as the situation of fireman is eagerly sought in most of the American cities.

Which is the best of these different modes it is difficult to say; perhaps each is best suited for the place where it exists.

It is now generally admitted, that the whole force brought together to extinguish a fire ought to be under the direction and control of one individual. By this means, all quarrelling among the firemen about the supply of water, the interest of particular insurance companies, and other matters of detail, is avoided. By having the whole force under the command of one person, he is enabled to form one general plan of operations, to which the whole body is subservient; and although he may not, in the hurry of the moment, at all times adopt what will afterwards appear to be the best plan, yet it is better to have some general arrangement, than to allow the firemen of each engine to work according to their own fancy, and that, too, very often in utter disregard as to whether their exertions may aid or retard those of their neighbours. The individual appointed to such a situation ought not to be interfered with, or have his attention distracted, except by the chief authority on the spot, or the owner of the premises on fire. Much valuable information is frequently obtained from the latter, as to the division of the premises, the party-walls, and other matters connected with its locality. But, generally speaking, the less interference and advice the better, as it occupies time which may generally be better employed.

I need scarcely add, that on no account whatever should directions be given to the firemen by any other individual while the superintendent of brigade is present; and that there may be no quarrelling about superiority, the menshould be aware on whom the command is to devolve in his absence.

It has often been to me a matter of surprise, that so small a portion of the public attention should be directed to the matter of extinguishing fires. It is only when roused by some great calamity that people bestir themselves; and then there is such a variety of plans proposed to avert similar cases of distress, that to attempt to concoct a rational plan out of such a crude, ill-digested, and contradictory mass of opinion, requires more labour and attention than most people are inclined to give it, unless a regular business was made of it. In Paris the corps of military firemen are so well trained, that although their apparatus is not so good as it should be, the amount of the losses by fire is comparatively trifling. If the head-quarters of such an establishment were to be in London, a store of apparatus, constructed on one uniform plan, could be kept there, to be forwarded to any other part of the kingdom where it might be required. This uniformity of the structure and design of the apparatus could extend to the most minute particulars; a screw or a nut of any one engine would fit every other engine in the kingdom. A depôt could also be kept at head-quarters, where recruits would be regularly drilled and instructed in the business, and a regular system of communication kept up with all the provincial corps. Any particular circumstances occurring at a fire would thus be immediately reported, and the advantages of any knowledge or experience thus gained, would be disseminated over the whole kingdom. As the matter at present stands one town may have an excellent fire-engine establishment, and another within a few miles a very indifferent one, and when the one is called to assist the other,they can neither act in concert, nor can the apparatus of the one in case of accident be of the smallest service in replacing that of the other. The best might (if a proper communication were kept up) be under frequent obligations to the worst, and here, as in other matters, it is chiefly by communication that knowledge is increased. If the whole experience of the country were brought together, and maturely considered and digested by persons competent to judge, I have no doubt that a system might be introduced suitable to the nation and to the age in which we live. Instead of hearing of the "dreadful losses by fire," and the "great exertions" made to extinguish it, all the notice would be, such a place took fire, the engines arrived, and it was extinguished.

It would be useless for me to enter into the details of a plan which I have little hope of ever seeing realized. I may state, however, that a premium might be offered for the best engine of a size previously agreed upon, which, when finished, should be kept as a model.

Specifications could then be made out, and estimates advertised for, for all the different parts, such as wheels, axles, levers, cisterns, barrels, air-vessels, &c., separately. When any particular part of an engine was damaged, it could be immediately replaced, and the engine again rendered fit for service; and upon emergency any number of engines could be set up, merely by putting the different parts together. The work would also be better done; at least it would be much more easy to detect faults in the materials or workmanship than if the engines were bought ready for use. These remarks apply to all the rest of the apparatus.

It could be provided that firemen might be enlisted for a term of years. When enlisted, they would be sent to thedepôt at head-quarters, drilled to the use of the engines, and carefully instructed in separating and cleaning the different parts. Here also they could be practised in gymnastic exercises, and generally instructed in everything tending to promote their usefulness as firemen. They could then be sent off to some large towns, and, after having seen a little active service, distributed over the country in such parties as might be deemed necessary for the places they were intended to protect.

The practice of keeping fire-engines at noblemen's and gentlemen's residences, and at large manufactories in the country, is by no means uncommon, and I have no doubt that many more would supply themselves in this way if they knew where to apply for information in such matters; but the great fault lies in the want of persons of skill and experience to work them when fire occurs. In the way I have mentioned, proprietors and others could have one or more of their workmen instructed in this necessary piece of duty; and I have no doubt that many gentlemen would avail themselves of the means of instructing some of their servants.

It will be observed, I do not propose that the firemen who are enlisted, drilled, and instructed in the business, should be sent to the different stations in sufficient numbers to work the engines; this part of the work can be performed by any man accustomed to hard labour, as well as by the most expert fireman, and the local authorities could easily provide men for this purpose. In small towns, where fires are rare, the novelty would draw together plenty of hands; and in large towns, where the inhabitants are not sufficiently disinterested to work for nothing, there are always plenty who could be bound to assist in cases of fire at a certain rate perhour, to be paid upon a certificate from the fireman who has charge of the engine at which they worked. The trained firemen would thus be required only for the direction of the engine, attaching the hose, &c.

I am quite aware that many people object to the training of firemen; but it would be just as reasonable to give to a mob all the "matériel" of war, and next day expect it to act like a regular army, as to expect engines to be managed with any general prospect of success, unless the men are properly trained and prepared for the duty which is expected from them. Fire is both a powerful and an insidious enemy, and those whose business it is to attack it will best succeed when they have become skilful and experienced in the use of their arms.

It is quite obvious that a fire brigade, however complete in its apparatus and equipments, must depend for its efficiency on the state of training and discipline of the firemen. Wherever there is inexperience, want of co-operation, or confusion amongst them, the utmost danger is to be apprehended in the event of fire. It is amidst the raging of this destructive element, the terror and bustle of the inhabitants, that organization and discipline triumph, and it is there, too, that coolness and promptitude, steadiness and activity, fearlessness and caution, are peculiarly required; but, unfortunately, it is then also that they are most rarely exhibited.

There should not be less than five or six men attached to each engine, who should be properly instructed and drilled, to take charge of it, and to guide the people who work at the levers.

The person having the principal charge of the engines should frequently turn over in his mind what might be thebest plan, in such and such circumstances, supposing a fire to take place. By frequently ruminating on the subject, he will find himself, when suddenly turned out of bed at night, much more fit for his task than if he had never considered the matter at all. Indeed he will frequently be surprised, when examining the premises afterwards (which he ought always to do, and mark any mistakes he may have committed), that he should have adopted the very best mode of extinguishing the fire, amid the noise, confusion, and the innumerable advices showered down on him, by all those who consider themselves qualified or entitled to give advice in such matters; a number, by the way, which sometimes includes no inconsiderable portion of the spectators. He should also make himself well acquainted with the different parts of the town in which he may be appointed to act, and notice the declivities of the different streets, &c. He will find this knowledge of great advantage.

Any buildings, supposed to be particularly dangerous, should be carefully examined, and all the different places where supplies of water can be obtained for them noticed.

A knowledge of the locality thus obtained will be found of great advantage in case of a fire breaking out. Indeed all firemen, especially those having the charge of engines, should be instructed carefully to examine and make themselves acquainted with the localities of their neighbourhood or district. Such knowledge will often prove valuable in emergencies; the proprietors or tenants of the property on fire being sometimes in such a state of alarm, that no distinct intelligence can be got from them.

When an engine is brought to a fire, it ought to be placed as nearly as possible in a straight line between the supply ofwater and the premises on fire; taking care, however, to keep at such a distance from the latter that the men who work the pumps may be in no danger from being scorched by the heat, or of being annoyed by the falling of water or burning materials. Running the engine close upon the fire serves no good purpose, except to shorten the quantity of hose that would otherwise be required. The addition of twenty or thirty feet of hose makes very little difference in the working of the engine, and, when compared with the disadvantage of the men becoming unsteady from the idea of personal danger, is not even to be named. Indeed, if the engine be brought too near the fire, there is danger of the men quitting the levers altogether. I may also add that, both for the safety of the hose and the convenience of the inhabitants, the engine should be kept out of the way of people removing furniture.

When the hose is attached and the engine filled with water, the man who holds the branch-pipe, accompanied by another, should get so near the fire, inside the house,that the water from the branch may strike the burning materials. If he cannot accomplish this standing, he must get down on his hands and knees and creep forward, those behind handing up the hose. A stratum of fresh air is almost always to be depended on from six to twelve inches from the floor, so that if the air be not respirable to a person standing upright, he should instantly get down. I have often observed this fact, which indeed is well known; but I once saw an example of it which appeared to me to be so striking, that I shall here relate it. A fire had broken out in the third floor of a house, and when I reached the top of the stair, the smoke was rolling in thick heavy masses, which prevented me from seeingsix inches before me. I immediately got down on the floor; above which, for a space of about eight inches the air seemed to be remarkably clear and bright. I could distinctly see the feet of the tables and other furniture in the apartment; the flames in this space burning as vivid and distinct as the flame of a candle, while all above the smoke was so thick that the eye could not penetrate it. The fire had already burst through three out of five windows in the apartment, yet, when lying flat on the floor, no inconvenience was felt except from the heat.

When the fire has broken through a floor, the supply of air along that floor is not to be depended on—the fire drawing the principal supply of air from the apartments below.

When the two first firemen have gained a favourable position, they should keep it as long as they are able; and when they feel exhausted, the men behind them should take their place.

The great point to which everything ought to be made subservient is,that the water on its discharge from the branch-pipe should actually strike the burning materials. This cannot be too often or too anxiously inculcated on every one connected with a fire-engine establishment. Every other method not having this for its grand object, will, in nine cases out of ten, utterly fail; and upon the degree of attention paid to this point, depends almost entirely the question as to the amount of damage the fire will occasion.

When approaching a fire, it should always be done by the door, if possible. When this is attended to, it is much easier to shift the hose from one apartment to another; and the current of fresh air, entering by the door and proceedingalong the passages, makes respiration easier and safer than elsewhere.

When entrance by the door is impracticable, and access is to be gained by a window, the flames frequently burst through in such a manner as to render advance in the first instance impossible. In that case, the branch should be pointed against the window, nearly in a perpendicular direction; the water striking the lintel, and falling all round inside the window, will soon extinguish the fire at that point sufficiently to render an entrance practicable.

The old plan of standing with the branch pipe in the street, and throwing the water into the windows is a very random way of going to work; and for my own part, although I have seen it repeatedly tried, I never saw it attended with success. Indeed it is hardly to be expected that water, thrown from the street into a room three or four storeys high, can have any impression on closets, presses, or passages, divided probably with brick partitions in the centre of the house. The circumstance of having engines at work on both sides of the house does not alter the case. The fire very often burns up through the centre, and frequently, when the space between the windows is large, along the front or back wall, till it arrives at the roof, which the water cannot touch on account of the slates or tiles. On the other hand, when the firemen enter the house, the fire is almost wholly under their command. And when it happens that there is any corner which the water cannot directly strike, the fire in it may often be extinguished by throwing the water against an opposite wall or partition, and trusting to the recoil to throw it to the point required.

When the water is thrown from the street, it is impossibleto say whether it touches the parts on fire or not. No one can tell anything about it, except when the flame appears at the windows.

On going with the branch inside the house, besides the advantage of the water rushing directly from the hose upon the fire, there is a great saving in the article of water itself. The whole that is thrown by the engine is applied to the right purpose. No part of it is lost; that which does not strike the burning materials falls within the house; and, by soaking those parts on which it falls, prevents their burning so rapidly when the flames approach them.

If, on entering an apartment, it be found that the flames cover a considerable space, it is of advantage, in some instances, to place the point of the thumb in contact with the water at the nozzle of the branch. By this means the water may be spread to cover any space under twenty or thirty feet, according to the pressure applied.

While speaking of the mode of entering houses on fire, I may mention that I have tried several inventions for the purpose of elevating the branch pipe and hose to the level of a second or third story window. But these, although exceedingly ingenious, appear to me to rest on a principle entirely wrong; I mean that of throwing water on the fire from the outside of the building.

Independent altogether of a mistaken principle of usefulness, one insuperable objection to all these machines, is the difficulty of conveying them with the necessary celerity, and the impossibility of packing them on the engine in such a manner that it may be worked without their being taken off, as it seems to methat every description of apparatus which cannot be conveyed along with the engine, is likely to beleft behind when most wanted. It is notorious that parish fire-ladders are, for this reason, seldom or never made use of.

Many people object to going inside a building on fire on account of the danger. It ought never to be forgotten, however, that the danger increases with the delay; and that although at first there may be no danger, if the opportunity is not promptly seized, it may become very considerable.

Several of the firemen have at different times fainted, or become stupefied, from the want of fresh air; but as no one is ever allowed to enter singly, they have been, in all cases, immediately observed by their comrades, and relieved.

Another objection has been raised in the alleged difficulty of persuading men to risk their lives in this manner for the small consideration which is allowed them. The truth is, that any persuasions I have had occasion to use, have been generally on the other side.

To hold the branch is considered the post of honour; and when two engines are working together, I have sometimes difficulty in preventing the men from pressing forward farther than is absolutely necessary. This forwardness is not the result of pecuniary reward for the increase of risk, but a spirit of emulation is at work, and the man entrusted with this duty, if found drawing back, would be completely disgraced.

A retreat should in all cases be kept open, to provide against any accident that may occur; and as this may be done in almost all cases by means so easy and simple, there can be no excuse for its omission. At the same time no one but an expert fireman should be permitted to enter where there is personal danger.

The danger to which firemen are most exposed is catchingcold, from their being so frequently drenched with water, and from their exposure to the sudden alternations of heat and cold. A man is turned out of bed at midnight, and in a few minutes after quitting it he is exposed to the sharp air, perhaps, of a frosty winter night; running to the fire as fast as he can, he is, from the exercise, joined to the oppressive heat inside the place on fire, in a few minutes in a state of the most profuse perspiration; and, while in this state, he is almost certain to be soaked with cold water. The smoke is sometimes so thick, that he comes under the range of the branch of the engine without being aware of it till the water strikes him. If he escape this chance, the water rushing on some other object, recoils on him, and produces the same effect; and if the fire be in the roof of the apartment, he must lie down on his back on the floor, and in this manner gets completely steeped.

A bath of this sort is neither very safe nor pleasant; and the only preventive of injury to the health is to keep the men in constant motion. When they are allowed to stand still or sit down, the danger is considerable. When the fire is extinguished, or in two or three hours after its commencement, I make it a rule to give every man a dram of spirits. If it be necessary to leave an engine on the spot, those of the men who are to remain are sent home to change their clothes.

The London Fire Brigade now (January, 1861) consists of one superintendent, four foremen, each being appointed to a district consisting of a fourth part of London, which henever leaves except on some very pressing emergency, and who, in the absence of the superintendent, has the sole command of all engines, or firemen, within, or who may come within, his district; twelve engineers, ten sub-engineers, forty-seven senior firemen, and forty-three junior firemen: in all, one hundred and seventeen individuals. In addition, there are fifteen drivers and thirty-seven horses, all living at the several stations, and ready when required. There is also a supplementary force of four extra firemen, four drivers, and eight horses living at the stations, pursuing their usual avocations, and only paid by the Committee when required. The mechanical appliances consist of twenty-seven large engines drawn by horses, eight small engines drawn by hand, two floating-engines worked by steam, one of forty-horse power, and the other of eighty-horse power, one land steam fire-engine, and twenty-eight hand-pumps, one of the latter being carried on each engine. When an engine is sent to a fire, only four firemen and one driver accompany it. The levers are worked by the by-standers, who are paid one shilling for the first hour, and sixpence for each succeeding hour, besides refreshments. Upwards of six hundred assistants have been thus employed at one time. The principal protection of London against fire is entirely voluntary on the part of the insurance companies, to whom the above establishment belongs; there being no law in any shape whatever to control or sustain the brigade; and with the exception of some fifteen or twenty, the parish-engines are comparatively useless at a serious fire. It must not be omitted, that the greatest possible assistance is given to the firemen by the police, of whom there are about 7000, in keeping back the crowd, &c. Thefire-offices look upon the whole as a matter of private business, so that the brigade is proportioned quite as must to the amount which the offices think it prudent to spend as to the size of the place. Paris, which is not half the size of London, and the buildings of which are much more substantial, has upwards of 800 firemen. It appears to me that any success which the brigade may have attained depends, in a great measure, on the liberal pay given, by which the best men for the purpose can be obtained, the favourable view in which the brigade is regarded by the public, and the willing and able assistance given by a numerous and perhaps the best police in existence.

The firemen in London being constantly employed on weekly wages, give their whole time to their employers, and are much more under command than where men are only occasionally employed. The wages and treatment being liberal, although the discipline is severe, there are generally a considerable number of candidates for each vacancy. Thus good men are obtained, seamen being preferred, as they are taught to obey orders, and the night and day watches and the uncertainty of the occupation are more similar to their former habits, than to those of other men of the same rank in life. The large number of fires is, however, the principal cause of any advantage the London firemen may possess over those of smaller places; and it is hardly fair to compare firemen who have only an opportunity of attending one or two fires in a week, to those who attend nearly three fires a day.

The firemen are drilled first daily, and then two or three times a week, for some months; and this, with an average of three calls a day, soon makes them acquainted with theroutine of their business; but it takes years of constant work to make a thoroughly good fireman.

The management of the London Fire Brigade is confided to a Committee, consisting of one of the directors or secretaries from each of the fire-offices in London.

The superintendent has the command of the whole force.

The town is divided into four districts, in each of which there are stationed a sufficient number of engines, under the charge of a foreman, with engines and firemen under him.

The districts are as follows:—


Back to IndexNext