§ 50. While written language was passing through its earlier stages of development, the mural decoration which formed its root was being differentiated into Painting and Sculpture. The gods, kings, men, and animals represented, were originally marked by indented outlines and coloured. In most cases these outlines were of such depth, and the object they circumscribed so far rounded and marked out in its leading parts, as to form a species of work intermediate between intaglio and bas-relief. In other cases we see an advance upon this: the raised spaces between the figures being chiselled off, and the figures themselves appropriately tinted, a painted bas-relief was produced. The restored Assyrian architecture at Sydenham, exhibits this style of art carried to greater perfection—the persons and things represented, though still barbarously coloured, are carved out with more truth and in greater detail; and in the winged lions and bulls used for the angles of gateways, we may see a considerable advance towards a completely sculptured figure; which, nevertheless, is still coloured, and still forms part of the building. But while in Assyria the production of a statue proper, seems to have been little, if at all, attempted, we may trace in Egyptian art the gradual separation of the sculptured figure from the wall. A walk through the collection in the British Museum will clearly show this; while it will at the same time afford an opportunity of observingthe evident traces which the independent statues bear of their derivation from bas-relief: seeing that nearly all of them not only display that union of the limbs with the body which is the characteristic of bas-relief, but have the back of the statue united from head to foot with a block which stands in place of the original wall. Greece repeated the leading stages of this progress. As in Egypt and Assyria, these twin arts were at first united with each other and with their parent, Architecture; and were the aids of Religion and Government. On the friezes of Greek temples, we see coloured bas-reliefs representing sacrifices, battles, processions, games—all in some sort religious. On the pediments we see painted sculptures more or less united with the tympanum, and having for subjects the triumphs of gods or heroes. Even when we come to statues that are definitely separated from the buildings to which they pertain, we still find them coloured; and only in the later periods of Greek civilization, does the differentiation of sculpture from painting appear to have become complete. In Christian art we may clearly trace a parallel re-genesis. All early paintings and sculptures throughout Europe, were religious in subject—represented Christs, crucifixions, virgins, holy families, apostles, saints. They formed integral parts of church architecture, and were among the means of exciting worship: as in Roman Catholic countries they still are. Moreover, the early sculptures of Christ on the cross, of virgins, of saints, were coloured; and it needs but to call to mind the painted madonnas and crucifixes still abundant in continental churches and highways, to perceive the significant fact that painting and sculpture continue in closest connexion with each other, where they continue in closest connexion with their parent. Even when Christian sculpture was pretty clearly differentiated from painting, it was still religious and governmental in its subjects—was used for tombs in churches and statues of kings; while, at the same time, painting, where not purely ecclesiastical, was applied to thedecoration of palaces, and besides representing royal personages, was almost wholly devoted to sacred legends. Only in quite recent times have painting and sculpture become entirely secular arts. Only within these few centuries has painting been divided into historical, landscape, marine, architectural, genre, animal, still-life, &c., and sculpture grown heterogeneous in respect of the variety of real and ideal subjects with which it occupies itself.
Strange as it seems then, we find it no less true, that all forms of written language, of painting, and of sculpture, have a common root in the politico-religious decorations of ancient temples and palaces. Little resemblance as they now have, the bust that stands on the console, the landscape that hangs against the wall, and the copy of theTimeslying upon the table, are remotely akin; not only in nature, but by extraction. The brazen face of the knocker which the postman has just lifted, is related not only to the woodcuts of theIllustrated London Newswhich he is delivering, but to the characters of thebillet-douxwhich accompanies it. Between the painted window, the prayer-book on which its light falls, and the adjacent monument, there is consanguinity. The effigies on our coins, the signs over shops, the figures that fill every ledger, the coat of arms outside the carriage-panel, and the placards inside the omnibus, are, in common with dolls, blue-books and paper-hangings, lineally descended from the rude sculpture-paintings in which the Egyptians represented the triumphs and worship of their god-kings. Perhaps no example can be given which more vividly illustrates the multiplicity and heterogeneity of the products that in course of time may arise by successive differentiations from a common stock.
Before passing to other classes of facts, it should be observed that the evolution of the homogeneous into the heterogeneous is displayed not only in the separation of Painting and Sculpture from Architecture and from each other, and in the greater variety of subjects they embody; but it is further shown in the structure of each work. A modern picture orstatue is of far more heterogeneous nature than an ancient one. An Egyptian sculpture-fresco represents all its figures as on one plane—that is, at the same distance from the eye; and so is less heterogeneous than a painting that represents them as at various distances from the eye. It exhibits all objects as exposed to the same degree of light; and so is less heterogeneous than a painting which exhibits different objects, and different parts of each object, as in different degrees of light. It uses scarcely any but the primary colours, and these in their full intensity; and so is less heterogeneous than a painting which, introducing the primary colours but sparingly, employs an endless variety of intermediate tints, each of heterogeneous composition, and differing from the rest not only in quality but in intensity. Moreover, we see in these earliest works a great uniformity of conception. The same arrangement of figures is perpetually reproduced—the same actions, attitudes, faces, dresses. In Egypt the modes of representation were so fixed that it was sacrilege to introduce a novelty; and indeed it could have been only in consequence of a fixed mode of representation that a system of hieroglyphics became possible. The Assyrian bas-reliefs display parallel characters. Deities, kings, attendants, winged-figures and animals, are severally depicted in like positions, holding like implements, doing like things, and with like expression or non-expression of face. If a palm-grove is introduced, all the trees are of the same height, have the same number of leaves, and are equidistant. When water is imitated, each wave is a counterpart of the rest; and the fish, almost always of one kind, are evenly distributed over the surface. The beards of the kings, the gods, and the winged-figures, are everywhere similar; as are the manes of the lions, and equally so those of the horses. Hair is represented throughout by one form of curl. The king’s beard is quite architecturally built up of compound tiers of uniform curls, alternating with twisted tiers placed in a transverse direction, and arranged with perfect regularity; and the terminal tufts of the bulls’ tails are representedin exactly the same manner. Without tracing out analogous facts in early Christian art, in which, though less striking, they are still visible, the advance in heterogeneity will be sufficiently manifest on remembering that in the pictures of our own day the composition is endlessly varied; the attitudes, faces, expressions, unlike; the subordinate objects different in size, form, position, texture; and more or less of contrast even in the smallest details. Or, if we compare an Egyptian statue, seated bolt upright on a block, with hands on knees, fingers outspread and parallel, eyes looking straight forward, and the two sides perfectly symmetrical in every particular, with a statue of the advanced Greek or the modern school, which is asymmetrical in respect of the position of the head, the body, the limbs, the arrangement of the hair, dress, appendages, and in its relations to neighbouring objects, we shall see the change from the homogeneous to the heterogeneous clearly manifested.
§ 51. In the co-ordinate origin and gradual differentiation of Poetry, Music, and Dancing, we have another series of illustrations. Rhythm in speech, rhythm in sound, and rhythm in motion, were in the beginning, parts of the same thing; and have only in process of time become separate things. Among various existing barbarous tribes we find them still united. The dances of savages are accompanied by some kind of monotonous chant, the clapping of hands, the striking of rude instruments: there are measured movements, measured words, and measured tones; and the whole ceremony, usually having reference to war or sacrifice, is of governmental character. In the early records of the historic races we similarly find these three forms of metrical action united in religious festivals. In the Hebrew writings we read that the triumphal ode composed by Moses on the defeat of the Egyptians, was sung to an accompaniment of dancing and timbrels. The Israelites danced and sung “at the inauguration of the golden calf. And as it is generally agreed that this representationof the Deity was borrowed from the mysteries of Apis, it is probable that the dancing was copied from that of the Egyptians on those occasions.” There was an annual dance in Shiloh on the sacred festival; and David danced before the ark. Again, in Greece the like relation is everywhere seen: the original type being there, as probably in other cases, a simultaneous chanting and mimetic representation of the life and adventures of the god. The Spartan dances were accompanied by hymns and songs; and in general the Greeks had “no festivals or religious assemblies but what were accompanied with songs and dances”—both of them being forms of worship used before altars. Among the Romans, too, there were sacred dances: the Salian and Lupercalian being named as of that kind. And even in Christian countries, as at Limoges in comparatively recent times, the people have danced in the choir in honour of a saint. The incipient separation of these once united arts from each other and from religion, was early visible in Greece. Probably diverging from dances partly religious, partly warlike, as the Corybantian, came the war-dances proper, of which there were various kinds; and from these resulted secular dances. Meanwhile Music and Poetry, though still united, came to have an existence separate from dancing. The aboriginal Greek poems, religious in subject, were not recited but chanted; and though at first the chant of the poet was accompanied by the dance of the chorus, it ultimately grew into independence. Later still, when the poem had been differentiated into epic and lyric—when it became the custom to sing the lyric and recite the epic—poetry proper was born. As during the same period musical instruments were being multiplied, we may presume that music came to have an existence apart from words. And both of them were beginning to assume other forms besides the religious. Facts having like implications might be cited from the histories of later times and peoples; as the practices of our own early minstrels, who sang to the harp heroic narratives versifiedby themselves to music of their own composition: thus uniting the now separate offices of poet, composer, vocalist, and instrumentalist. But, without further illustration, the common origin and gradual differentiation of Dancing, Poetry, and Music will be sufficiently manifest.
The advance from the homogeneous to the heterogeneous is displayed not only in the separation of these arts from each other and from religion, but also in the multiplied differentiations which each of them afterwards undergoes. Not to dwell upon the numberless kinds of dancing that have, in course of time, come into use; and not to occupy space in detailing the progress of poetry, as seen in the development of the various forms of metre, of rhyme, and of general organization; let us confine our attention to music as a type of the group. As argued by Dr. Burney, and as implied by the customs of still extant barbarous races, the first musical instruments were, without doubt, percussive—sticks, calabashes, tom-toms—and were used simply to mark the time of the dance; and in this constant repetition of the same sound, we see music in its most homogeneous form. The Egyptians had a lyre with three strings. The early lyre of the Greeks had four, constituting their tetrachord. In course of some centuries lyres of seven and eight strings were employed. And, by the expiration of a thousand years, they had advanced to their “great system” of the double octave. Through all which changes there of course arose a greater heterogeneity of melody. Simultaneously there came into use the different modes—Dorian, Ionian, Phrygian, Æolian, and Lydian—answering to our keys: and of these there were ultimately fifteen. As yet, however, there was but little heterogeneity in the time of their music. Instrumental music during this period being merely the accompaniment of vocal music, and vocal music being completely subordinated to words,—the singer being also the poet, chanting his own compositions and making the lengths of his notes agree with the feet of his verses; thereunavoidably arose a tiresome uniformity of measure, which, as Dr Burney says, “no resources of melody could disguise.” Lacking the complex rhythm obtained by our equal bars and unequal notes, the only rhythm was that produced by the quantity of the syllables, and was of necessity comparatively monotonous. And further, it may be observed that the chant thus resulting, being like recitative, was much less clearly differentiated from ordinary speech than is our modern song. Nevertheless, considering the extended range of notes in use, the variety of modes, the occasional variations of time consequent on changes of metre, and the multiplication of instruments, we see that music had, towards the close of Greek civilization, attained to considerable heterogeneity: not indeed as compared with our music, but as compared with that which preceded it. As yet, however, there existed nothing but melody: harmony was unknown. It was not until Christian church-music had reached some development, that music in parts was evolved; and then it came into existence through a very unobtrusive differentiation. Difficult as it may be to conceive,à priori, how the advance from melody to harmony could take place without a sudden leap, it is none the less true that it did so. The circumstance which prepared the way for it, was the employment of two choirs singing alternately the same air. Afterwards it became the practice (very possibly first suggested by a mistake) for the second choir to commence before the first had ceased; thus producing a fugue. With the simple airs then in use, a partially harmonious fugue might not improbably thus result; and a very partially harmonious fugue satisfied the ears of that age, as we know from still preserved examples. The idea having once been given, the composing of airs productive of fugal harmony would naturally grow up; as in some way itdidgrow up out of this alternate choir-singing. And from the fugue to concerted music of two, three, four, and more parts, the transition was easy. Without pointing out in detail the increasing complexity that resulted from introducingnotes of various lengths, from the multiplication of keys, from the use of accidentals, from varieties of time, from modulations and so forth, it needs but to contrast music as it is, with music as it was, to see how immense is the increase of heterogeneity. We see this if, looking at music in itsensemble, we enumerate its many different genera and species—if we consider the divisions into vocal, instrumental, and mixed; and their subdivisions into music for different voices and different instruments—if we observe the many forms of sacred music, from the simple hymn, the chant, the canon, motet, anthem, &c., up to the oratorio; and the still more numerous forms of secular music, from the ballad up to the serenata, from the instrumental solo up to the symphony. Again, the same truth is seen on comparing any one sample of aboriginal music with a sample of modern music—even an ordinary song for the piano; which we find to be relatively highly heterogeneous, not only in respect of the varieties in the pitch and in the length of the notes, the number of different notes sounding at the same instant in company with the voice, and the variations of strength with which they are sounded and sung, but in respect of the changes of key, the changes of time, the changes oftimbreof the voice, and the many other modifications of expression. While between the old monotonous dance-chant and a grand opera of our own day, with its endless orchestral complexities and vocal combinations, the contrast in heterogeneity is so extreme that it seems scarcely credible that the one should have been the ancestor of the other.
§ 52. Were they needed, many further illustrations might be cited. Going back to the early time when the deeds of the god-king, chanted and mimetically represented in dances round his altar, were further narrated in picture-writings on the walls of temples and palaces, and so constituted a rude literature, we might trace the development of Literature through phases in which, as in the Hebrew Scriptures it presentsin one work, theology, cosmogony, history, biography, civil law, ethics, poetry; through other phases in which, as in the Iliad, the religious, martial, historical, the epic, dramatic, and lyric elements are similarly commingled; down to its present heterogeneous development, in which its divisions and subdivisions are so numerous and varied as to defy complete classification. Or we might track the evolution of Science: beginning with the era in which it was not yet differentiated from Art, and was, in union with Art, the handmaid of Religion; passing through the era in which the sciences were so few and rudimentary, as to be simultaneously cultivated by the same philosophers; and ending with the era in which the genera and species are so numerous that few can enumerate them, and no one can adequately grasp even one genus. Or we might do the like with Architecture, with the Drama, with Dress. But doubtless the reader is already weary of illustrations; and my promise has been amply fulfilled. I believe it has been shown beyond question, that that which the German physiologists have found to be the law of organic development, is the law of all development. The advance from the simple to the complex, through a process of successive differentiations, is seen alike in the earliest changes of the Universe to which we can reason our way back, and in the earliest changes which we can inductively establish; it is seen in the geologic and climatic evolution of the Earth, and of every single organism on its surface; it is seen in the evolution of Humanity, whether contemplated in the civilized individual, or in the aggregation of races; it is seen in the evolution of Society, in respect alike of its political, its religious, and its economical organization; and it is seen in the evolution of all those endless concrete and abstract products of human activity, which constitute the environment of our daily life. From the remotest past which Science can fathom, up to the novelties of yesterday, that in which Evolution essentially consists, is the transformation of the homogeneous into the heterogeneous.
8.The substance of this chapter is nearly identical with the first half of an essay on “Progress: its Law and Cause,” which was originally published in theWestminster Reviewfor April 1857: only a few unimportant additions and alterations have been made. The succeeding chapter, however, in which the subject is continued, is, with the exception of a fragment embodied in it, wholly new.
8.The substance of this chapter is nearly identical with the first half of an essay on “Progress: its Law and Cause,” which was originally published in theWestminster Reviewfor April 1857: only a few unimportant additions and alterations have been made. The succeeding chapter, however, in which the subject is continued, is, with the exception of a fragment embodied in it, wholly new.
9.For detailed proof of these assertions see essay onManners and Fashion.
9.For detailed proof of these assertions see essay onManners and Fashion.
CHAPTER III.THE LAW OF EVOLUTION, CONTINUED.
§ 53. But now, does this generalization express the whole truth? Does it include all the phenomena of Evolution? and does it exclude all other phenomena? A careful consideration of the facts, will show that it does neither.
That there are changes from the less heterogeneous to the more heterogeneous, which do not come within what we call Evolution, is proved in every case of local disease. A portion of the body in which there arises a cancer, or other morbid growth, unquestionably displays a new differentiation. Whether this morbid growth be, or be not, more heterogeneous than the tissues in which it is seated, is not the question. The question is, whether the structure of the organism as a whole, is, or is not, rendered more heterogeneous by the addition of a part unlike every pre-existing part, both in form and composition. And to this question there can be none but an affirmative answer. Again, it might with apparent truth be contended, that the earlier stages of decomposition in a dead body, similarly involve an increase of heterogeneity. Supposing the chemical changes to commence in some parts of the body earlier than in other parts, as they commonly do; and to affect different tissues in different, ways, as they must; it seems to be a necessary admission that the entire body, made up of undecomposed parts and parts decomposed in different ways and degrees, has become more heterogeneous than it was. Though greater homogeneity will be theeventual result, the immediate result is the opposite. And yet this immediate result is certainly not evolution. But perhaps of all illustrations the least debatable are those furnished by social disorders and disasters. When in any nation there occurs a rebellion, which, while leaving some provinces undisturbed, developes itself here in secret societies, there in public demonstrations, and elsewhere in actual appeal to arms, leading probably to conflict and bloodshed; it must be admitted that the society, regarded as a whole, has so been rendered more heterogeneous. Or when a dearth causes commercial panic with its entailed bankruptcies, closed factories, discharged operatives, political agitations, food riots, incendiarisms; it is manifest that as, throughout the rest of society, there still exists the ordinary organization displaying the usual phenomena, these new phenomena must be regarded as adding to the complexity previously existing. Nevertheless, it is clear that such changes so far from constituting a further stage of evolution, are steps towards dissolution.
There is good reason to think then, that the definition arrived at in the last chapter, is an imperfect one. We may suspect, not that the process of evolution is different from the process there described; but that the description did not contain all that it should. The changes above instanced as coming within the formula as it now stands, are so obviously different from the rest, that the inclusion of them implies some oversight—some distinction hitherto overlooked. Such further distinction we shall find really exists.
§ 54. At the same time that all evolution is a change from the homogeneous to the heterogeneous, it is also a change from the indefinite to the definite. As well as an advance from simplicity to complexity, there is an advance from confusion to order—from undetermined arrangement to determined arrangement. In the process of development, no matter what sphere it is displayed in, there is not only a gradualmultiplication of unlike parts; but there is a gradual increase in the distinctness with which these parts are marked off from each other. And so is that increase of heterogeneity which characterizes Evolution, distinguished from that increase of heterogeneity which does not. For proof of this, it needs only to reconsider the instances given above. The structural changes constituting a disease, have no such definiteness, either in locality, extent, or outline, as the structural changes constituting development. Though certain morbid growths arise much more commonly in some parts of the body than in others (as warts on the hands, cancer on the breasts, tubercle in the lungs), yet they are not confined to these parts; nor, when found on them, are they anything like so precise in their relative positions as are the normal parts around them. In size, again, they are extremely variable—they bear no such constant proportion to the body as organs do. Their forms, too, are far less specific than organic forms. And they are extremely irregular or confused in their internal structures. That is to say, they are in all respects comparatively indefinite. The like peculiarity may be traced in decomposition. That state of total indefiniteness to which a dead body is finally reduced, is a state towards which the putrefactive changes have tended from their commencement. Each step in the destruction of the organic compounds, is accompanied by a blurring of the minute structure—diminishes its distinctness. From the portions that have undergone most decomposition, there is a gradual transition to the less decomposed portions. And step by step the lines of organization, once so precise, disappear. Similarly with social changes of an abnormal kind. A political outbreak rising finally to a rebellion, tends from the very first to obliterate the specializations, governmental and industrial, which previously existed. The disaffection which originates such an outbreak, itself implies a loosening of those ties by which the citizens are bound up into distinct classes and sub-classes. Agitation, growing into revolutionary meetings,shows us a decided tendency towards the fusion of ranks that are usually separated. Acts of open insubordination exhibit a breaking through of those definite limits to individual conduct which were previously observed; and a disappearance of the lines previously existing between those in authority and those beneath them. At the same time, by the arrest of trade, artizans and others lose their occupations; and in so ceasing to be functionally distinguished, become fused into a mass from which the demarcations in great part vanish. And when at last there comes positive insurrection, all magisterial and official powers, all class distinctions, and all industrial differences, at once cease: organized society lapses into an unorganized aggregation of social units. How the like holds true of such social disasters as are entailed by famine, needs not be pointed out. On calling to mind that in cases of this kind the changes are from order towards disorder, it will at once be seen that like the foregoing they are changes from definite arrangements to indefinite arrangements.
Thus then is that increase of heterogeneity which constitutes Evolution, distinguished from that increase of heterogeneity which does not do so. Though in disease and death, individual or social, the earliest modifications may be construed as additions to the heterogeneity previously existing; yet they cannot be construed as additions to the definiteness previously existing. They begin from the very outset to destroy this definiteness; and so, gradually produce a heterogeneity that is indeterminate instead of determinate. Just in the same way that a city, already multiform in its variously arranged structures of various architecture, may be made more multiform by an earthquake, which leaves part of it standing and overthrows other parts in different ways and degrees, and yet is at the same time reduced from definite arrangement to indefinite arrangement; so may organized bodies be made for a time more multiform by changes which are nevertheless disorganizing changes. And in the one caseas in the other, it is the absence of definiteness which distinguishes the multiformity of regression from the multiformity of progression.
If the advance from the indefinite to the definite is an essential characteristic of Evolution, we shall of course find it everywhere displayed; as in the last Chapter we found the advance from the homogeneous to the heterogeneous. With a view of showing that it is so, let us now briefly reconsider the same several classes of facts.
§ 55. Beginning as before with a hypothetical illustration, we have to note that each further stage in the evolution of the Solar System, supposing it to have originated from diffused matter, was an advance towards more definite forms, and times, and forces. At first irregular in shape and with indistinct margins, the attenuated substance, as it concentrated and acquired a rotatory motion, must have assumed the shape of an oblate spheroid; which, with every increase of density, became more specific in general outline, and had its surface more sharply marked off from the surrounding void. At the same time, the constituent portions of nebulous matter, instead of independently moving towards their common centre of gravity from all points, and tending to revolve round it in various planes, as they would at first do, must have had these planes more and more merged into a single plane; and this plane must have gained greater precision as the concentration progressed. To which add that in the gradual establishment of a common and determinate angular velocity, instead of the various and conflicting angular velocities of different parts, we have a further change of like nature. According to the hypothesis, change from indistinct characteristics to distinct ones, was repeated in the evolution of each planet and satellite; and may in them be traced to a much greater extent. A gaseous spheroid is less definitely marked off from the space around it than a fluid spheroid, since it is subject to larger and more rapid undulations of surface,and to much greater distortions of general form; and similarly a fluid spheroid, covered as it must be with waves of various magnitudes, is less definite than a solid spheroid. Nor is it only in greater fixity of surface that a planet in its last stage, is distinguished from a planet in its earlier stages. Its general form, too, is more precise. The sphere, to which in the end it very closely approximates, is a perfectly specific figure; while the spheroid, under which figure it previously existed, being infinitely variable in oblateness, is an imperfectly specific figure. And further, a planet having an axis inclined to the plane of its orbit, must, while its form is very oblate, have its plane of rotation greatly disturbed by the attraction of external bodies; whereas its approach to a spherical form, involving a less extreme precessional motion, implies less marked variations in the direction of its axis. Nor is it only in respect of space-relations that the Solar System in general and in detail has become more precise. The like is true of time-relations. During the process of concentration the various portions of the nebulous mass must not only differ more or less from each other in their angular velocities, but each of them must gradually change the period in which it moves round the general axis. In every detached ring however, and in the resulting planet, this progressive alteration ceases: there results a determinate period of revolution. And similarly the time of axial rotation, which, during the formation of each planet, is continually diminishing, becomes at last practically fixed: as in the case of the Earth, whose day is not a second less than it was 2000 years ago. It is scarcely needful to point out that the force-relations have simultaneously become more and more settled. The exact calculations of physical astronomy, show us how definite these force-relations now are; while the great indefiniteness which once characterized them, is implied in the extreme difficulty, if not impossibility, of subjecting the nebular hypothesis to mathematical treatment.
From that originally molten state of the Earth inferable from established geological data—a state in harmony with the nebular hypothesis but inexplicable on any other—the transition to its existing state has been through stages in which the characters became more determinate. Besides being, as above pointed out, comparatively unstable in surface and contour, a fluid spheroid is less definite than a solid spheroid in having no fixed distribution of parts. Currents of molten matter, though kept to certain general circuits by the conditions of equilibrium, cannot in the absence of solid boundaries be precise or permanent in direction: all parts must be in motion with respect to other parts. But a solidification of the surface, even though but partial, is manifestly a step towards the establishment of definite relations of position. In a thin crust however, frequently ruptured as it must be by disturbing forces, and moved by every tidal undulation, such fixity of relative position can be but temporary. Only as the crust slowly increases in thickness, can there arise distinct and settled geographical relations. Observe too that when, on a crust that has cooled to the requisite degree, there begins to precipitate the water floating above as vapour, the water which is precipitated cannot maintain any definiteness either of state or place. Falling on a surface not thick enough to preserve anything beyond slight variations of level, it must form small shallow deposits over areas sufficiently cool to permit condensation; which areas must not only pass insensibly into others that are too hot for this, but must themselves from time to time be so raised in temperature as to drive off the water lying on them. With progressive refrigeration, however,—with an increasing thickness of crust, a consequent formation of larger elevations and depressions, and the condensation of more atmospheric water, there comes an arrangement of parts that is comparatively fixed in both time and space; and the definiteness of state and position increases, until there results such a distribution of continents and oceans as we now see—a distributionthat is not only topographically precise, but also in its cliff-marked coast-lines presents a more definite division of land from water than could have existed during the period when islands of low elevation had shelving beaches up which the tide ebbed and flowed to great distances. Respecting the characteristics technically classed as geological, we may draw parallel inferences. While the Earth’s crust was thin, mountain-chains were impossibilities: there could not have been long and well-defined axes of elevation, with distinct water-sheds and areas of drainage. Moreover, from small islands admitting of but small rivers, and tidal streams both feeble and narrow, there would result no clearly-marked sedimentary strata. Confused and varying masses of detritus, such as those now found at the mouths of brooks, must have been the prevailing formations. And these could give place to distinct strata, only as there arose continents and oceans, with their great rivers, long coast-lines, and wide-spreading marine currents. How there must simultaneously have resulted more definite meteorological characters, need not be pointed out in detail. That differences of climates and seasons must have grown relatively decided as the heat of the Sun became distinguishable from the proper heat of the Earth; that the establishment through this cause of comparatively constant atmospheric currents, must have similarly produced more specific conditions in each locality; and that these effects must have been aided by increasing permanence in the distribution of land and sea and of ocean currents; are conclusions which are sufficiently obvious.
Let us turn now to the evidence furnished by organic bodies. In place of deductive illustrations like the foregoing, we shall here find numerous illustrations which, as being inductively established, are less open to criticism. The process of mammalian development, for example, will supply us with numerous proofs ready-described by embryologists. The first change which the ovum of a mammal undergoes, after continued segmentation has reducedits yelk to a mulberry-like mass, is the appearance of a greater definiteness in the peripheral cells of this mass: each of which acquires a distinct enveloping membrane. These peripheral cells, vaguely distinguished from the internal ones both by their greater completeness and by their minuter subdivision, coalesce to form the blastoderm or germinal membrane. One portion of the blastoderm presently becomes contrasted with the rest, through the accumulation of cells still more subdivided, which, together, form an opaque roundish spot. Thisarea germinativa, as it is called, is not sharply delineated, but shades off gradually into the surrounding parts of the blastoderm; and thearea pellucida, subsequently formed in the midst of this germinal area, is similarly without any precise margin. The “primitive trace,” which makes its appearance in the centre of thearea pellucida, and is the rudiment of that vertebrate axis which is to be the fundamental characteristic of the mature animal, is shown by its name to be at first indefinite—a mere trace. Beginning as a shallow groove, this becomes slowly more pronounced: its sides grow higher, their summits overlap, and at last unite; and so the indefinite groove passes into a definite tube, forming the vertebral canal. In this vertebral canal the leading divisions of the brain are at first discernible only as slight bulgings; while the vertebræ commence as indistinct modifications of the tissue bounding the canal. Simultaneously, the outer portion of the blastoderm has been undergoing separation from the inner portion: there has been a division into the serous and mucous layers—a division at the outset indistinct, and traceable only about the germinal area, but which insensibly spreads throughout nearly the whole germinal membrane, and becomes definite. From the mucous layer, the development of the alimentary canal proceeds as that of the vertebral canal does from the serous layer. Originally a simple channel along the under surface of the embryonic mass, the intestine is rendered step by step more distinct by the bending down, on each side, of ridgeswhich finally join to form a tube—the permanent absorbing surface is by degrees clearly cut off from that temporary absorbing surface of which it was at first a part like all the rest. And in an analogous manner the entire embryo, which at first lies outspread upon the surface of the yelk-sack, gradually rises up from it, and, by the infolding of its ventral surface, becomes a separate mass, connected with the yelk-sack only by a narrow duct. These changes through which the general structure of the embryo is marked out with slowly-increasing precision, are paralleled in the evolution of each organ. The heart is at first a mere aggregation of cells, of which the inner liquify to form the cavity, while the outer are transformed into the walls; and when thus sketched out, the heart is indefinite not only as being unlined by limiting membrane, but also as being but vaguely distinguishable from the great blood-vessels: of which it is little more than a dilatation. By and by the receiving portion of the cavity becomes distinct from the propelling portion. Afterwards there begins to be formed across the ventricle, a septum, which, however, is some time before it completely shuts off the two halves from each other; while the later-formed septum of the auricle remains incomplete during the whole of fœtal life. Again, the liver commences as a multiplication of certain cells in the wall of the intestine. The thickening produced by this multiplication “increases so as to form a projection upon the exterior of the canal;” and at the same time that the organ grows and becomes distinct from the intestine, the channels which permeate it are transformed into ducts having clearly-marked walls. Similarly, by the increase of certain cells of the external coat of the alimentary canal at its upper portion, are produced buds from which the lungs are developed; and these, in their general outlines and detailed structure, acquire distinctness step by step. Changes of this order continue long after birth; and, in the human being, are some of them not completed till middle life. During youth, most of the articularsurfaces of the bones remain rough and fissured—the calcareous deposit ending irregularly in the surrounding cartilage. But between puberty and the age of thirty, the articular surfaces are finished off by the addition of smooth, hard, sharply-cut “epiphyses.” Thus we may say that during Evolution, an increase of definiteness continues long after there ceases to be any appreciable increase of heterogeneity. And, indeed, there is reason to think that those structural modifications which take place after maturity, ending in old age and death, are modifications of this nature; since they result in a growing rigidity of structure, a consequent restriction of movement and of functional pliability, a gradual narrowing of the limits within which the vital processes go on, ending at length in an organic adjustment too precise—too narrow in its margin of possible variation to permit the requisite adaptation to external changes of condition.
To demonstrate that the Earth’s Flora and Fauna, regarded either as wholes or in their separate species, have progressed in definiteness, is of course no more possible than it was to demonstrate that they have progressed in heterogeneity: lack of facts being an obstacle to the one conclusion as to the other. If, however, we allow ourselves to reason from the hypothesis, now daily rendered more probable, that every species of organic form up to the most complex, has arisen out of the simplest through the accumulation of modifications upon modifications, just as every individual organic form arises; we shall see that in such case there must have been a progress from the indeterminate to the determinate, both in the particular forms and in the groups of forms. We may set out with the significant fact that many of the lowest living organisms (which are analogous in structure to the germs of all higher ones) are so indefinite in character that it is difficult, if not impossible, to decide whether they are plants or animals. Respecting sundry of them there are unsettled disputes between zoologists and botanists; and it haseven been proposed to group them into a separate kingdom, forming a common basis to the animal and vegetal kingdoms. Note next that among theProtozoa, extreme indefiniteness of shape is very general. In the shell-less Rhizopods and their allies, not only is the form so irregular as to admit of no description, but it is neither alike in any two individuals nor in the same individual at successive moments. By the aggregation of such creatures, are produced, among other indefinite bodies, the sponges—bodies that are indefinite in size, in contour, in internal arrangement, and in the absence of an external limiting membrane. As further showing the relatively indeterminate character of the simplest organisms, it may be mentioned that their structures vary very greatly with surrounding conditions: so much so that, among theProtozoaandProtophyta, many forms which were once classed as distinct species, and even as distinct genera, are found to be merely varieties of one species. If now we call to mind how precise in their attributes are the highest organisms—how sharply cut their outlines, how invariable their proportions, and how comparatively constant their structures under changed conditions, we cannot deny that greater definiteness is one of their characteristics; and that if they have been evolved out of lower organisms, an increase of definiteness has been an accompaniment of their evolution. That in course of time, species have become more sharply marked off from other species, genera from genera, and orders from orders, is a conclusion not admitting of a more positive establishment than the foregoing; and must, indeed, stand or fall with it. If, however, species and genera and orders have resulted from the process of “natural selection,” then, as Mr. Darwin shows, there must have been a tendency to divergence, causing the contrasts between groups to become more and more pronounced. By the disappearance of intermediate forms, less fitted for special spheres of existence than the extreme forms they connected, the differences between the extreme forms must be renderedmore decided; and so, from indistinct and unstable varieties, must slowly be produced distinct and stable species. Of which inference it may be remarked, not only that it follows from a process to which the organic creation is of necessity ever subject, but also that it is in harmony with what we know respecting races of men and races of domestic animals.
Evidence that in the course of psychial development, there is a change from the vague to the distinct, may be seen in every nursery. The confusion of the infant’s perceptions is shown by its inability to distinguish persons. The dimness of its ideas of direction and distance, may be inferred from the ill-guided movements of its hands, and from its endeavours to grasp objects far out of reach. Only by degrees does the sense of equilibrium, needful for safe standing and moving, gain the requisite precision. Through the insensible steps that end in comprehensible speech, we may trace an increase in the accuracy with which sounds are discriminated and in the nicety with which they are imitated. And similarly during education, the change is towards the establishment of internal relations more perfectly corresponding to external ones—to exactness in calculations, to a better representation of objects drawn, to a more correct spelling, to a completer conformity to the rules of speech, to clearer ideas respecting the affairs of life. How in the further progress to maturity the law still holds, needs not here be pointed out; more especially as it will presently be shown in treating of the evolution of intelligence during the advance of civilization. The only further fact calling for remark, is, that this increase of mental definiteness is, in some ways, manifested even during the advance from maturity to old age. The habits of life grow more and more fixed; the character becomes less capable of change; the quantity of knowledge previously acquired ceases to have its limits alterable by additions; and the opinions upon every point admit of no modification.
Still more manifestly do the successive phases throughwhich societies pass, display the progress from indeterminate arrangement to determinate arrangement. A wandering tribe of savages, as being fixed neither in its locality nor in the relative positions of its parts, is far less definite than a nation, covering a territory clearly marked out, and formed of individuals grouped together in towns and villages. In such a tribe the social relations are similarly confused and unsettled. Political authority is neither well established nor precise. Distinctions of rank are neither clearly marked nor impassable. “Medicine-men” and “rain-makers” form a class by no means as distinct from the rest of the community as eventually becomes the priesthood they foreshadow. And save in the different occupations of men and women, there are no complete industrial divisions. Only in tribes of considerable size, which have enslaved other tribes, is the economical differentiation decided. Any one of these primitive societies however that developes, becomes step by step more specific. Increasing in size, consequently ceasing to be so nomadic, and restricted in its range by neighbouring tribes, it acquires, after prolonged border warfare, a more settled territorial boundary. The distinction between the royal race and the people, grows so extreme as to amount in the popular apprehension to a difference of nature. The warrior-class attains a perfect separation from classes devoted to the cultivation of the soil or other occupations regarded as servile. And there arises a priesthood that is defined in its rank, its functions, its privileges. This sharpness of definition, growing both greater and more variously exemplified as societies advance to maturity, is extremest in those that have reached their full development or are declining. Of ancient Egypt we read that its social divisions were strongly-marked and its customs rigid. Recent investigations make it more than ever clear, that among the Assyrians and surrounding peoples, not only were the laws unalterable, but even the minor habits, down to those of domestic routine, possessed a sacredness which insured their permanence. In India at the present day, theunchangeable distinctions of caste, not less than the constancy in modes of dress, industrial processes, and religious observances, show us how fixed are the arrangements where the antiquity is great. Nor does China with its long-settled political organization, its elaborate and precise conventions, and its unprogressive literature, fail to exemplify the same truth. The successive phases of our own and neighbouring societies, furnish facts somewhat different in kind but similar in meaning. After our leading class-divisions had become tolerably well-established, it was long before they acquired their full precision. Originally, monarchical authority was more baronial, and baronial authority more monarchical, than they afterwards became. Between modern priests and the priests of old times, who while officially teachers of religion were also warriors, judges, architects, there is a marked difference in definiteness of function. And among the people engaged in productive occupations, the like contrast would be found to hold: the industrial office has become more distinct from the military; and its various divisions from each other. A history of our constitution, reminding us how, after prolonged struggles, the powers of King, Lords, and Commons, have been gradually settled, would clearly exhibit analogous changes. Countless facts bearing the like construction would meet us, were we to trace the development of legislation: in the successive stages of which, we should find statutes made more precise in their provisions—more specific in their applications to particular cases. Even at the present time we see that each new law, beginning as a vague proposition, is, in the course of enactment, elaborated into specific clauses; and further that only after its interpretation has been established by judges’ decisions in courts of justice, does it reach its final definiteness. From the history of minor institutions like evidence may be gathered. Religious, charitable, literary, and all other societies, beginning with ends and methods roughly sketched out and easily modifiable, show us how, bythe accumulation of rules and precedents, the purposes become more distinct and the modes of action more restricted; until at last death often results from a fixity which admits of no adaptation to new conditions. Should it be objected that among civilized nations there are examples of decreasing definiteness, (instance the breaking down of limits between ranks,) the reply is, that such apparent exceptions are the accompaniments of a social metamorphosis—a change from the military or predatory type of social structure, to the industrial or mercantile type, during which the old lines of organization are disappearing and the new ones becoming more marked.
That all organized results of social action, pass in the course of civilization through parallel phases, is demonstrable. Being, as they are, objective products of subjective processes, they must display corresponding changes; and that they do this, the cases of Language, of Science, of Art, clearly prove.
If we strike out from our sentences everything but nouns and verbs, we shall perceive how extremely vague is the expression of ideas in undeveloped tongues. When we note how each inflection of a verb or addition by which the case of a noun is marked, serves to limit the conditions of action or of existence, we see that these constituents of speech enable men more precisely to communicate their thoughts. That the application of an adjective to a noun or an adverb to a verb, narrows the class of things or changes indicated, implies that these additional words serve further to define the meaning. And similarly with other parts of speech. The like effect results from the multiplication of words of each order. When the names for objects, and acts, and qualities, are but few, the range of each is proportionately wide, and its meaning therefore unspecific. The similes and metaphors so abundantly used by aboriginal races, are simply vehicles for indirectly and imperfectly conveying ideas, which lack of words disables them from conveying directlyand perfectly. In contrasting these figurative expressions, interpretable in various senses, with the expressions which we should use in place of them, the increase of exactness which wealth of language gives, is rendered very obvious. Or to take a case from ordinary life, if we compare the speech of the peasant, who, out of his limited vocabulary, can describe the contents of the bottle he carries, only as “doctor’s-stuff” which he has got for his “sick” wife, with the speech of the physician, who tells those educated like himself the particular composition of the medicine, and the particular disorder for which he has prescribed it; we have vividly brought home to us, the precision which language gains by the multiplication of terms. Again, in the course of its evolution, each tongue acquires a further accuracy through processes which fix the meaning of each word. Intellectual intercourse tends gradually to diminish laxity of expression. By and by dictionaries give definitions. And eventually, among the most cultivated, indefiniteness is not tolerated, either in the terms used or in their grammatical combinations. Once more, languages considered as wholes, become gradually more distinct from each other, and from their common parent: as witness in early times the divergence from the same root of two languages so unlike as Greek and Latin, and in later times the development of three Latin dialects into Italian, French, and Spanish.
In his “History of the Inductive Sciences,” Dr. Whewell says that the Greeks failed in physical philosophy because their “ideas were not distinct, and appropriate to the facts.” I do not quote this remark for its luminousness; since it would be equally proper to ascribe the indistinctness and inappropriateness of their ideas to the imperfection of their physical philosophy; but I quote it because it serves as good evidence of the indefiniteness of primitive science. The same work and its fellow on “The Philosophy of the Inductive Sciences,” supply other evidences equally good, because equally independent of any such hypothesis as is here to beestablished. Respecting mathematics we have the fact that geometrical theorems grew out of empirical methods; and that these theorems, at first isolated, did not acquire the clearness which complete demonstration gives, until they were arranged by Euclid into a series of dependent propositions. At a later period the same general truth was exemplified in the progress from the “method of exhaustions” and the “method of indivisibles” to the “method of limits;” which is the central idea of the infinitesimal calculus. In early mechanics, too, may be traced a dim perception that action and re-action are equal and opposite; though for ages after, this truth remained unformulated. And similarly, the property of inertia, though not distinctly comprehended until Kepler lived, was vaguely recognized long previously. “The conception of statical force,” “was never presented in a distinct form till the works of Archimedes appeared;” and “the conception of accelerating force was confused, in the mind of Kepler and his contemporaries, and did not become clear enough for purposes of sound scientific reasoning before the succeeding century.” To which specific assertions may be added the general remark, that “terms which originally, and before the laws of motion were fully known, were used in a very vague and fluctuating sense, were afterwards limited and rendered precise.” When we turn from abstract scientific conceptions to the concrete previsions of science, of which astronomy furnishes us with numerous examples, the like contrast is visible. The times at which celestial phenomena will occur, have been predicted with ever-increasing accuracy: errors once amounting to days, have been reduced down to seconds. The correspondence between the real and supposed forms of orbits, has been growing gradually more precise. Originally thought circular, then epicyclical, then elliptical, orbits are now ascertained to be curves which always deviate more or less from perfect ellipses, and which are ever undergoing change. But the general advance of Science in definiteness, is best shown by the contrast between its qualitativestage, and its quantitative stage. At first, the facts ascertained were, that between such and such phenomena some connexion existed—that the appearancesaandbalways occurred together or in succession; but it was neither known what was the nature of the relation betweenaandb, nor how much ofaaccompanied so much ofb. The development of Science has in part been the reduction of these vague connexions to distinct ones. Most relations have been determined as belonging to the classes mechanical, chemical, thermal, electric, magnetic, &c.; and we have learnt to infer the amounts of the antecedents and consequents from each other with an exactness that becomes ever greater. Were there space to state them, illustrations of this truth might be cited from all departments of physics; but it must suffice here to instance the general progress of chemistry. Besides the conspicuous fact that we have positively ascertained the constituent elements of an immense number of compounds which our ancestors could not analyze, and of a far greater number which they never even saw, there is the still more conspicuous fact that the combining equivalents of these elements are accurately calculated. The beginnings of a like advance from qualitative to quantitative prevision, may be traced even in some of the higher sciences. Physiology shows it in the weighing and measuring of organic products, and of the materials consumed. By Pathology it is displayed in the use of the statistical method of determining the sources of diseases, and the effects of treatment. In Zoology and Botany, the numerical comparisons of Floras and Faunas, leading to specific conclusions respecting their sources and distributions, illustrate it. And in Sociology, questionable as are the conclusions usually drawn from the classified sum-totals of the census, from Board-of-Trade tables, and from criminal returns, it must be admitted that these imply a progress towards more accurate conceptions of social phenomena. That an essential characteristic of advancing Science is increase in definiteness, appears indeedalmost a truism, when we remember that Science may be described as definite knowledge, in contradistinction to that indefinite knowledge possessed by the uncultured. And if, as we cannot question, Science has, in the slow course of ages, been evolved out of this indefinite knowledge of the uncultured; then, the gradual acquirement of that great definiteness which now distinguishes it, must have been a leading trait in its evolution.
The Arts, industrial and æsthetic, furnish illustrations perhaps still more striking. Flint implements of the kind recently found in certain of the later geologic deposits—implements so rude that some have held them to be of natural rather than of artificial origin—show the extreme want of precision in men’s first handyworks. Though a great advance on these is seen in the tools and weapons of existing savage tribes, yet an inexactness in forms and fittings, more than anything else distinguishes such tools and weapons from those of civilized races. In a less degree, the productions of semi-barbarous nations are characterized by like defects. A Chinese junk with all its contained furniture and appliances, nowhere presents a perfectly straight line, a uniform curve, or a true surface. Nor do the utensils and machines of our ancestors fail to exhibit a similar inferiority to our own. An antique chair, an old fireplace, a lock of the last century, or almost any article of household use that has been preserved for a few generations, will prove by contrast how greatly the industrial products of our time excel those of the past in their accuracy. Since planing machines have been invented, it has become possible to produce absolutely straight lines, and surfaces so truly level as to be air-tight when applied to each other. While in the dividing-engine of Troughton, in the micrometer of Whitworth, and in microscopes that show fifty thousand divisions to the inch, we have an exactness as far exceeding that reached in the works of our great-grandfathers, as theirs exceeded that of the aboriginal celt-makers. In the Fine Arts there hasbeen a parallel process. From the rudely carved and painted idols of savages, through the early sculptures characterized by limbs having no muscular detail, wooden-looking drapery, and faces devoid of individuality, up to the later statues of the Greeks or some of those now produced, the increased accuracy of representation is conspicuous. Compare the mural paintings of the Egyptians with the paintings of medieval Europe, or these with modern paintings, and the more precise rendering of the appearances of objects is manifest. So too is it with the delineations of fiction and the drama. In the marvellous tales current among Eastern nations, in the romantic legends of feudal Europe, as well as in the mystery-plays and those immediately succeeding them, we see great want of correspondence to the realities of life; not only in the predominance of supernatural events and extremely improbable coincidences, but also in the vaguely-indicated personages, who are nothing more than embodiments of virtue and vice in general, or at best of particular virtues and vices. Through transitions that need not be specified, there has been a progressive diminution, in both fiction and the drama, of whatever is unnatural—whatever does not answer to real life. And now, novels and plays are applauded in proportion to the fidelity with which they exhibit individual characters with their motives and consequent actions; improbabilities, like the impossibilities which preceded them, are disallowed; and there is even an incipient abandonment of those elaborate plots which the realities of life rarely if ever furnish.
Were it needful, it would be easy to accumulate evidences of various other kinds. The progress from myths and legends, extreme in their misrepresentations, to a history that has slowly become, and is still becoming, more accurate; the establishment of settled systematic methods of doing things, instead of the indeterminate ways at first pursued; and the great increase in the number of points on which conflicting opinion has settled down into exact knowledge;might severally be used further to exemplify the general truth enunciated. The basis of induction is, however, already sufficiently wide. Proof that all Evolution is from the indefinite to the definite, we find to be not less abundant than proof that all Evolution is from the homogeneous to the heterogeneous. The one kind of change is co-extensive with the other—is equally with it exhibited throughout Nature.
§ 56. To form a complete conception of Evolution, we have to contemplate it under yet another aspect. This advance from the indefinite to the definite, is obviously not primary but secondary—is an incidental result attendant on the finishing of certain changes. The transformation of a whole that was originally uniform, into a combination of multiform parts, implies a progressive separation. While this is going on there must be indistinctness. Only as each separated division draws into its general mass those diffused peripheral portions which are at first imperfectly disunited from the peripheral portions of neighbouring divisions, can it acquire anything like a precise outline. And it cannot become perfectly definite until its units are aggregated into a compact whole. That is to say, the acquirement of definiteness is simply a concomitant of complete union of the elements constituting each component division. Thus, Evolution is characterized not only by a continuous multiplication of parts, but also by a growing oneness in each part. And while an advance in heterogeneity results from progressive differentiation, an advance in definiteness results from progressive integration. The two changes are simultaneous; or are rather opposite aspects of the same change. This change, however, cannot be rightly comprehended without looking at both its sides. Let us then once more consider Evolution under its several manifestations; for the purpose of noting how it is throughout a process of integration.
The illustrations furnished by the Solar System, supposingit to have had a nebular origin, are so obvious as scarcely to need indicating. That as a whole, it underwent a gradual concentration while assuming its present distribution of parts; and that there subsequently took place a like concentration of the matter forming each planet and satellite, is the leading feature of the hypothesis. The process of integration is here seen in its simplest and most decided form.
Geologic evolution, if we trace it up from that molten state of the Earth’s substance which we are obliged to postulate, supplies us with more varied facts of like meaning. The advance from a thin crust, at first everywhere fissured and moveable, to a crust so solid and thick as to be but now and then very partially dislocated by disturbing forces, exemplifies the unifying process; as does likewise the advance from a surface covered with small patches of land and water, to one divided into continents and oceans—an advance also resulting from the Earth’s gradual solidification. Moreover, the collection of detritus into strata of great extent, and the union of such strata into extensive “systems,” becomes possible only as surfaces of land and water become wide, and subsidences great, in both area and depth; whence it follows that integrations of this order must have grown more pronounced as the Earth’s crust thickened. Different and simpler instances of the process through which mixed materials are separated, and the kindred units aggregated into masses, are exhibited in the detailed structure of the Earth. The phenomena of crystallization may be citeden masse, as showing how the unifications of similar elements take place wherever the conditions permit. Not only do we see this where there is little or no hindrance to the approach of the particles, as in the cases of crystals formed from solutions, or by sublimation; but it is also seen where there are great obstacles to their approach. The flints and the nodules of iron pyrites that are found in chalk, as well as the silicious concretions which occasionally occur in limestone, can be interpreted only as aggregations of atoms ofsilex or sulphuret of iron, originally diffused almost uniformly through the deposit, but gradually collected round certain centres, notwithstanding the solid or semi-solid state of the surrounding matter. Iron-stone as it ordinarily occurs, presents a similar phenomenon to be similarly explained; and what is called bog iron-ore supplies the conditions and the result in still more obvious correlation.
During the evolution of an organism, there occurs, as every physiologist knows, not only separation of parts, but coalescence of parts. In the mammalian embryo, the heart, at first a long pulsating blood-vessel, by and by twists upon itself and becomes integrated. The layer of bile-cells constituting the rudimentary liver, do not simply become different from the wall of the intestine in which they at first lie; but they simultaneously diverge from it and consolidate into an organ. The anterior segments of the cerebro-spinal axis, which are at first continuous with the rest, and distinguished only by their larger size, undergo a gradual union; and at the same time the resulting head consolidates into a mass clearly marked off from the rest of the vertebral column. The like process, variously exemplified in other organs, is meanwhile exhibited by the body as a whole; which becomes integrated, somewhat in the same way that the contents of an outspread handkerchief become integrated when its edges are drawn in and fastened to make a bundle. Analogous changes go on long after birth, and continue even up to old age. In the human being that gradual solidification of the bony framework, which, during childhood, is seen in the coalescence of portions of the same bone ossified from different centres, is afterwards seen in the coalescence of bones that were originally distinct. The appendages of the vertebræ unite with the vertebral centres to which they belong—a change not completed until towards thirty. At the same time the epiphyses, formed separately from the main bodies of their respective bones, have their cartilaginous connexions turned into osseous ones—are fused to the masses beneath them. The componentvertebræ of the sacrum, which remain separate till about the sixteenth year, then begin to unite; and in ten or a dozen years more their union is complete. Still later occurs the coalescence of the coccygeal vertebræ; and there are some other bony unions which are not completed until advanced age. To which add that the increase of density and toughness, going on throughout the tissues in general during life, may be regarded as the formation of a more highly integrated substance. The species of change thus illustrated under its several aspects in the unfolding of the human body, may be traced in all animals. That mode of it which consists in the union of homogeneous parts originally separate, has been described by Milne-Edwards and others, as exhibited in various of the invertebrata; though it does not seem to have been included by them as an essential peculiarity in the process of organic development. We shall, however, be led strongly to suspect that progressive integration should form part of the definition of this process, when we find it displayed not only in tracing up the stages passed through by every embryo, but also in ascending from the lower living creatures to the higher. And here, as in the evolution of individual organisms, it goes on both longitudinally and transversely: under which different forms we may indeed most conveniently consider it. Oflongitudinal integration, the sub-kingdomAnnulosasupplies abundant examples. Its lower members, such as worms and myriapods, are mostly characterized by the great number of segments composing them: reaching in some cases to several hundreds. But in the higher divisions—crustaceans, insects, and spiders—we find this number reduced down to twenty-two, thirteen, or even fewer; while, accompanying the reduction, there is a shortening or integration of the whole body, reaching its extreme in the crab and the spider. The significance of these contrasts, as bearing upon the general doctrine of Evolution, will be seen when it is pointed out that they are parallel to those which arise during the development of individualAnnulosa. In the lobster, the head andthorax form one compact box, made by the union of a number of segments which in the embryo were separable. Similarly, the butterfly shows us segments so much more closely united than they were in the caterpillar, as to be, some of them, no longer distinguishable from each other. TheVertebrataagain, throughout their successively higher classes, furnish like instances of longitudinal union. In most fishes, and in reptiles that have no limbs, the only segments of the spinal column that coalesce, are those forming the skull. In most mammals and in birds, a variable number of vertebræ become fused together to form the sacrum; and in the higher quadrumana and man, the caudal vertebræ also lose their separate individualities in a singleos coccygis. That which we may distinguish astransverse integration, is well illustrated among theAnnulosain the development of the nervous system. Leaving out those most degraded forms which do not present distinct ganglia, it is to be observed that the lower annulose animals, in common with the larvæ of the higher, are severally characterized by a double chain of ganglia running from end to end of the body; while in the more perfectly formed annulose animals, this double chain becomes more or less completely united into a single chain. Mr. Newport has described the course of this concentration as exhibited in insects; and by Rathke it has been traced in crustaceans. During the early stages of theAstacus fluviatilis, or common cray-fish, there is a pair of separate ganglia to each ring. Of the fourteen pairs belonging to the head and thorax, the three pairs in advance of the mouth consolidate into one mass to form the brain, or cephalic ganglion. Meanwhile, out of the remainder, the first six pairs severally unite in the median line, while the rest remain more or less separate. Of these six double ganglia thus formed, the anterior four coalesce into one mass; the remaining two coalesce into another mass; and then these two masses coalesce into one. Here we see longitudinal and transverse integration going on simultaneously; and in the highestcrustaceans they are both carried still further. TheVertebrataclearly exhibit transverse integration in the development of the generative system. The lowest of the mammalia—theMonotremata—in common with birds, to which they are in many respects allied, have oviducts which towards their lower extremities are dilated into cavities, severally performing in an imperfect way the function of a uterus. “In theMarsupialiathere is a closer approximation of the two lateral sets of organs on the median line; for the oviducts converge towards one another and meet (without coalescing) on the median line; so that their uterine dilatations are in contact with each other, forming a true ‘double uterus....’ As we ascend the series of ‘placental’ mammals, we find the lateral coalescence becoming more and more complete.... In many of theRodentiathe uterus still remains completely divided into two lateral halves; whilst in others these coalesce at their lower portions, forming a rudiment of the true ‘body’ of the uterus in the human subject. This part increases at the expense of the lateral ‘cornua’ in the higher herbivora and carnivora; but even in the lower quadrumana the uterus is somewhat cleft at its summit.”[10]