Fig. 23.—Mars and the paths of the Martian satellites as at present situated.
Fig. 23.—Mars and the paths of the Martian satellites as at present situated.
The outer satellite is probably not more than ten miles or so in diameter, the inner one, perhaps, the same; but neither can be measured. In the most powerful telescopes they appear as mere points of light. Nor is it easy to determine, from their lustre, or rather from their faintness, their true dimensions; for we cannot compare them directly in this respect with objects of known size, because their visibility is partly affected by the proximity of the planet, whose overpowering light dims their feeble rays. This remark applies with special force to the inner satellite.
The distance of the outer satellite from Mars's centreis about 14,300 miles, from Mars's surface about 12,000 miles. The inner travels at a distance of about 5,750 miles from the centre, and about 3,450 miles from the surface of Mars.
The motions of the satellites as seen from Mars must be very different from those of our own moon. Thus, our moon moves so slowly among the stars that she requires nearly an hour to traverse a distance equal to her own apparent diameter. The outer moon of Mars traverses a similar distance—that is, not her own apparent diameter, but an arc on the stellar heavens equal to our moon's apparent diameter—in about two and a half minutes, while the inner moon moves so rapidly as to traverse the same distance in about forty seconds. To both moons, therefore, but to the inner in particular, Job's description of our moon as "walking in brightness" would seem singularly applicable, so far at least as the rapidity of their motions is concerned. Their brightness, however, cannot be comparable to our moon's. For notwithstanding their much greater proximity, it is easily shown that they must present much smaller discs, and being illuminated by a more distant sun, their discs cannot shine so brightly as our moon's. That is, not only are the discs smaller, but their intrinsic brightness is less. Assuming the outer moon to be ten miles, the inner fifteen miles in diameter, it is easily shown that the twotogether, if full at the same time, can hardly give one-twelfth as much light to Martians as our moon gives to us.
Yet there can be no doubt that the Martian moons must be (orhave been) most useful additions to the Martian skies. They do not give a useful measure of time intermediate in length between the day and the year, as our moon does; for the outer travels round the planet in about thirty and a quarter hours, the inner in about seven and a half hours. Nor can they exert an influence upon the Martian seas corresponding to that exerted by our own moon in generating the lunar tidal wave. But their motions must serve usefully to indicate the progress of time, both by night and by day, for they must be visible by day unless very close to the sun. They must be even more useful than our moon in indicating the longitude of ships at sea, seeing that the accuracy with which a moon indicates longitude is directly proportional to her velocity of motion among the stars.
I have said that there does not seem to be any valid reason for considering that now is the accepted time with these moons; their services may have been of immense value in long past ages, and now be valueless for want of any creatures to be benefited by them. But those who not only believe that no object in nature was made without some special purpose, but that we are able to assignto each object its original purpose, should be well satisfied if they find reason for believing that, during millions of years long, long ago, the moons lately discovered by our astronomers were measuring time for past races of Martians, swaying tides in wider seas than those which now lave the shores of Martian continents, and enabling Martian travellers to guide their course over the trackless ocean and arid desert with far greater safety than can our voyagers by sea and land despite all the advances of modern science.