Nor is there any further difficulty in ascertaining that it is through the same channel that both attraction and discharge take place at different times. For obviously the inlet to the stomach does not merelyconduct food and drink into this organ, but in the condition of nausea it performs the opposite service. Further, the neck of the bladder which is beside the liver, albeit single, both fills and empties the bladder. Similarly the canal of the uterus affords an entrance to the semen and an exit to the foetus.
But in this latter case, again, whilst the eliminative faculty is evident, the attractive faculty is not so obvious to most people. It is, however, the cervix which Hippocrates blames for inertia of the uterus when he says:—“Its orifice has no power of attracting semen.”361
Erasistratus, however, and Asclepiades reached such heights of wisdom that they deprived not merely the stomach and the womb of this faculty but also the bladder by the liver, and the kidneys as well. I have, however, pointed out in the first book that it is impossible to assign any other cause for the secretion of urine or bile.362
Now, when we find that the uterus, the stomach and the bladder by the liver carry out attraction and expulsion through one and the same duct, we need no longer feel surprised that Nature should also frequently discharge waste-substances into the stomach through the veins. Still less need we be astonished if a certain amount of the food should, during long fasts, be drawn back from the liver into the stomach through the same veins363by which it was yielded up to the liver during absorption of nutriment.364To disbelieve such thingswould of course be like refusing to believe that purgative drugs draw their appropriate humours from all over the body by the same stomata through which absorption previously takes place, and to look for separate stomata for absorption and purgation respectively. As a matter of fact one and the same stoma subserves two distinct faculties, and these exercise their pull at different times in opposite directions—first it subserves the pull of the liver and, during catharsis, that of the drug. What is there surprising, then, in the fact that the veins situated between the liver and the region of the stomach365fulfil a double service or purpose? Thus, when there is abundance of nutriment contained in the food-canal, it is carried up to the liver by the veins mentioned; and when the canal is empty and in need of nutriment, this is again attracted from the liver by the same veins.
For everything appears to attract from and to go shares with everything else, and, as the most divine Hippocrates has said, there would seem to be a consensus in the movements of fluids and vapours.366Thus the stronger draws and the weaker is evacuated.
Now, one part is weaker or stronger than another either absolutely, by nature, and in all cases, or else it becomes so in such and such a particular instance. Thus, by nature and in all men alike, the heart is stronger than the liver at attracting what is serviceable to it and rejecting what is not so; similarly the liver is stronger than the intestines and stomach, andthe arteries than the veins. In each of us personally, however, the liver has stronger drawing power at one time, and the stomach at another. For when there is much nutriment contained in the alimentary canal and the appetite and craving of the liver is violent, then the viscus367exerts far the strongest traction. Again, when the liver is full and distended and the stomach empty and in need, then the force of the traction shifts to the latter.
Suppose we had some food in our hands and were snatching it from one another; if we were equally in want, the stronger would be likely to prevail, but if he had satisfied his appetite, and was holding what was over carelessly, or was anxious to share it with somebody, and if the weaker was excessively desirous of it, there would be nothing to prevent the latter from getting it all. In a similar manner the stomach easily attracts nutriment from the liver when it [the stomach] has a sufficiently strong craving for it, and the appetite of the viscus is satisfied. And sometimes the surplusage of nutriment in the liver is a reason why the animal is not hungry; for when the stomach has better and more available food it requires nothing from extraneous sources, but if ever it is in need and is at a loss how to supply the need, it becomes filled with waste-matters; these are certain biliary, phlegmatic [mucous] and serous fluids, and are the only substances that the liver yields in response to the traction of the stomach, on the occasions when the latter too is in want of nutriment.
Now, just as the parts draw food from each other, so also they sometimes deposit their excess substancesin each other, and just as the stronger prevailed when the two were exercising traction, so it is also when they are depositing; this is the cause of the so-called fluxions,368for every part has a definite inborn tension, by virtue of which it expels its superfluities, and, therefore, when one of these parts,—owing, of course, to some special condition—becomes weaker, there will necessarily be a confluence into it of the superfluities from all the other parts. The strongest part deposits its surplus matter in all the parts near it; these again in other parts which are weaker; these next into yet others; and this goes on for a long time, until the superfluity, being driven from one part into another, comes to rest in one of the weakest of all; it cannot flow from this into another part, because none of the stronger ones will receive it, while the affected part is unable to drive it away. When, however, we come to deal again with the origin and cure of disease, it will be possible to find there also abundant proofs of all that we have correctly indicated in this book. For the present, however, let us resume again the task that lay before us,i.e.to show that there is nothing surprising in nutriment coming from the liver to the intestines and stomach by way of the very veins through which it had previously been yielded up from these organs into the liver. And in many people who have suddenly and completely given up active exercise, or who have had a limb cut off, there occurs at certain periods an evacuation of blood by way of the intestines—as Hippocrates has also pointed out somewhere. This causes no further trouble but sharply purges the whole body and evacuates the plethoras;the passage of the superfluities is effected, of course, through the same veins by which absorption took place.
Frequently also in disease Nature purges the animal through these same veins—although in this case the discharge is not sanguineous, but corresponds to the humour which is at fault. Thus incholerathe entire body is evacuated by way of the veins leading to the intestines and stomach.
To imagine that matter of different kinds is carried in one direction only would characterise a man who was entirely ignorant of all the natural faculties, and particularly of the eliminative faculty, which is the opposite of the attractive. For opposite movements of matter, active and passive, must necessarily follow opposite faculties; that is to say, every part, after it has attracted its special nutrient juice and has retained and taken the benefit of it hastens to get rid of all the surplusage as quickly and effectively as possible, and this it does in accordance with the mechanical tendency of this surplus matter.369
Hence the stomach clears away by vomiting those superfluities which come to the surface of its contents,370whilst the sediment it clears away by diarrhœa. And when the animal becomes sick, this means that the stomach is striving to be evacuated by vomiting. And the expulsive faculty has in it so violent and forcible an element that in cases ofileus[volvulus], when the lower exit is completely closed, vomiting of faeces occurs; yet such surplus matter could not be emitted from the mouth without having first traversed the whole of the small intestine, the jejunum, the pylorus, the stomach, and the oesophagus. What is there to wonder at, then, if somethingshould also be transferred from the extreme skin-surface and so reach the intestines and stomach? This also was pointed out to us by Hippocrates, who maintained that not merely pneuma or excess-matter, but actual nutriment is brought down from the outer surface to the original place from which it was taken up. For the slightest mechanical movements371determine this expulsive faculty, which apparently acts through the transverse fibres, and which is very rapidly transmitted from the source of motion to the opposite extremities. It is, therefore, neither unlikely nor impossible that, when the part adjoining the skin becomes suddenly oppressed by an unwonted cold, it should at once be weakened and should find that the liquid previously deposited beside it without discomfort had now become more of a burden than a source of nutrition, and should therefore strive to put it away. Finally, seeing that the passage outwards was shut off by the condensation [of tissue], it would turn to the remaining exit and would thus forcibly expel all the waste-matter at once into the adjacent part; this would do the same to the part following it; and the process would not cease until the transference finally terminated at the inner ends of the veins.372
Now, movements like these come to an end fairly soon, but those resulting from internal irritants (e.g., in the administration of purgative drugs or in cholera) become much stronger and more lasting; they persist as long as the condition of things373about the mouths of the veins continues, that is, so long asthese continue to attract what is adjacent. For this condition374causes evacuation of the contiguous part, and that again of the part next to it, and this never stops until the extreme surface is reached; thus, as each part keeps passing on matter to its neighbour, the original affection375very quickly arrives at the extreme termination. Now this is also the case inileus; the inflamed intestine is unable to support either the weight or the acridity of the waste substances and so does its best to excrete them, in fact to drive them as far away as possible. And, being prevented from effecting an expulsion downwards when the severest part of the inflammation is there, it expels the matter into the adjoining part of the intestines situated above. Thus the tendency of the eliminative faculty is step by step upwards, until the superfluities reach the mouth.
Now this will be also spoken of at greater length in my treatise on disease. For the present, however, I think I have shewn clearly that there is a universal conveyance or transference from one thing into another, and that, as Hippocrates used to say, there exists in everything a consensus in the movement of air and fluids. And I do not think that anyone, however slow his intellect, will now be at a loss to understand any of these points,—how, for instance, the stomach or intestines get nourished, or in what manner anything makes its way inwards from the outer surface of the body. Seeing that all parts have the faculty of attracting what is suitable or well-disposed and of eliminating what is troublesome or irritating, it is not surprising that opposite movements should occur in them consecutively—as maybe clearly seen in the case of the heart, in the various arteries, in the thorax, and lungs. In all these376the active movements of the organs and therewith the passive movements of [their contained] matters may be seen taking place almost every second in opposite directions. Now, you are not astonished when the trachea-artery377alternately draws air into the lungs and gives it out, and when the nostrils and the whole mouth act similarly; nor do you think it strange or paradoxical that the air is dismissed through the very channel by which it was admitted just before. Do you, then, feel a difficulty in the case of the veins which pass down from the liver into the stomach and intestines, and do you think it strange that nutriment should at once be yielded up to the liver and drawn back from it into the stomach by the same veins? You must define what you mean by this expression “at once.” If you mean “at the same time” this is not what we ourselves say; for just as we take in a breath at one moment and give it out again at another, so at one time the liver draws nutriment from the stomach, and at another the stomach from the liver. But if your expression “at once” means that in one and the same animal a single organ subserves the transport of matter in opposite directions, and if it is this which disturbs you, consider inspiration and expiration. For of course these also take place through the same organs, albeit they differ in their manner of movement, and in the way in which the matter is conveyed through them.
Now the lungs, the thorax, the arteries rough and smooth, the heart, the mouth, and the nostrils reverse their movements at very short intervals and change the direction of the matters they contain. On the other hand, the veins which pass down from the liver to the intestines and stomach reverse the direction of their movements not at such short intervals, but sometimes once in many days.
The whole matter, in fact, is as follows:—Each of the organs draws into itself the nutriment alongside it, and devours all the useful fluid in it, until it is thoroughly satisfied; this nutriment, as I have already shown, it stores up in itself, afterwards making it adhere and then assimilating it—that is, it becomes nourished by it. For it has been demonstrated with sufficient clearness already378that there is something which necessarily precedes actual nutrition, namelyadhesion, and that before this again comespresentation. Thus as in the case of theanimalsthemselves the end of eating is that the stomach should be filled, similarly in the case of each of theparts, the end of presentation is the filling of this part with its appropriate liquid. Since, therefore, every part has, like the stomach, acraving379to be nourished, it too envelops its nutriment and clasps it all round as the stomach does. And this [action of the stomach], as has been already said, is necessarily followed by the digestion of the food, although it is not to make it suitable for the other parts that the stomach contracts upon it; if it did so, it would no longer be a physiological organ,380but an animal possessing reasonand intelligence, with the power of choosing the better [of two alternatives].
But while the stomach contracts for the reason that the whole body possesses a power of attracting and of utilising appropriate qualities, as has already been explained, it also happens that, in this process, the food undergoes alteration; further, when filled and saturated with the fluid pabulum from the food, it thereafter looks on the food as a burden; thus it at once gets rid of the excess—that is to say, drives it downwards—itself turning to another task, namely that of causing adhesion. And during this time, while the nutriment is passing along the whole length of theintestine, it is caught up by the vessels which pass into the intestine; as we shall shortly demonstrate,381most of it is seized by the veins, but a little also by the arteries; at this stage also it becomespresentedto the coats of the intestines.
Now imagine the whole economy of nutrition divided into three periods. Suppose that in the first period the nutriment remains in the stomach and is digested and presented to the stomach until satiety is reached, also that some of it is taken up from the stomach to the liver.382
During the second period it passes along the intestines and becomes presented both to them and to the liver—again until the stage of satiety—while a small part of it is carried all over the body.382During this period, also imagine that what was presented to the stomach in the first period becomes now adherent to it.
During the third period the stomach has reachedthe stage of receiving nourishment; it now entirely assimilates everything that had become adherent to it: at the same time in the intestines and liver there takes place adhesion of what had been before presented, while dispersal [anadosis] is taking place to all parts of the body,383as also presentation. Now, if the animal takes food immediately after these [three stages] then, during the time that the stomach is again digesting and getting the benefit of this by presenting all the useful part of it to its own coats, the intestines will be engaged in final assimilation of the juices which have adhered to them, and so also will the liver: while in the various parts of the body there will be taking place adhesion of the portions of nutriment presented. And if the stomach is forced to remain without food during this time, it will draw its nutriment from the veins in the mesentery and liver; for it will not do so from the actual body of the liver (bybody of the liverI mean first and foremost its flesh proper, and after this all the vessels contained in it), for it is irrational to suppose that one part would draw away from another part the juice already contained in it, especially when adhesion and final assimilation of that juice were already taking place; the juice, however, that is in the cavity of the veins will be abstracted by the part which is stronger and more in need.
It is in this way, therefore, that the stomach, when it is in need of nourishment and the animal has nothing to eat, seizes it from the veins in the liver. Also in the case of the spleen we have shown in a former passage384how it draws all material fromthe liver that tends to be thick, and by working it up converts it into more useful matter. There is nothing surprising, therefore, if, in the present instance also, some of this should be drawn from the spleen into such organs as communicate with it by veins,e.g.the omentum, mesentery, small intestine, colon, and the stomach itself. Nor is it surprising that the spleen should disgorge its surplus matters into the stomach at one time, while at another time it should draw some of its appropriate nutriment from the stomach.
For, as has already been said, speaking generally, everything has the power at different times of attracting from and of adding to everything else. What happens is just as if you might imagine a number of animals helping themselves at will to a plentiful common stock of food; some will naturally be eating when others have stopped, some will be on the point of stopping when others are beginning, some eating together, and others in succession. Yes, by Zeus! and one will often be plundering another, if he be in need while the other has an abundant supply ready to hand. Thus it is in no way surprising that matter should make its way back from the outer surface of the body to the interior, or should be carried from the liver and spleen into the stomach by the same vessels by which it was carried in the reverse direction.
In the case of the arteries385this is clear enough, as also in the case of heart, thorax, and lungs; for, since all of these dilate and contract alternately, it must needs be that matter is subsequently discharged back into the parts from which it waspreviously drawn. Now Nature foresaw this necessity,386and provided the cardiac openings of the vessels with membranous attachments,387to prevent their contents from being carried backwards. How and in what manner this takes place will be stated in my work “On the Use of Parts,” where among other things I show that it is impossible for the openings of the vessels to be closed so accurately that nothing at all can run back. Thus it is inevitable that the reflux into thevenous artery388(as will also be made clear in the work mentioned) should be much greater than through the other openings. But what it is important for our present purpose to recognise is that every thing possessing a large and appreciable cavity must, when it dilates, abstract matter from all its neighbours, and, when it contracts, must squeeze matter back into them. This should all be clear from what has already been said in this treatise and from what Erasistratus and I myself have demonstrated elsewhere respecting the tendency of a vacuum to become refilled.389
And further, it has been shown in other treatises that all the arteries possess a power which derives from the heart, and by virtue of which they dilate and contract.
Put together, therefore, the two facts—that the arteries have this motion, and that everything, whenit dilates, draws neighbouring matter into itself—and you will find nothing strange in the fact that those arteries which reach the skin draw in the outer air when they dilate, while those which anastomose at any point with the veins attract the thinnest and most vaporous part of the blood which these contain, and as for those arteries which are near the heart, it is on the heart itself that they exert their traction. For, by virtue of the tendency by which a vacuum becomes refilled, the lightest and thinnest part obeys the tendency before that which is heavier and thicker. Now the lightest and thinnest of anything in the body is firstly pneuma, secondly vapour, and in the third place that part of the blood which has been accurately elaborated and refined.
These, then, are what the arteries draw into themselves on every side; those arteries which reach the skin draw in the outer air390(this being near them and one of the lightest of things); as to the other arteries, those which pass up from the heart into the neck, and that which lies along the spine, as also such arteries as are near these—draw mostly from the heart itself; and those which are further from the heart and skin necessarily draw the lightest part of the blood out of the veins. So also the traction exercised by the diastole of the arteries which go to the stomach and intestines takes place at the expense of the heart itself and the numerous veins in its neighbourhood; for these arteries cannot get anything worth speaking of from the thick heavy nutriment contained in the intestines and stomach,391since they first become filled with lighter elements. For if you let down a tube into a vesselfull of water and sand, and suck the air out of the tube with your mouth, the sand cannot come up to you before the water, for in accordance with the principle of the refilling of a vacuum the lighter matter is always the first to succeed to the evacuation.
It is not to be wondered at, therefore, that only a very little [nutrient matter] such, namely, as has been accurately elaborated—gets from the stomach into the arteries, since these first become filled with lighter matter. We must understand thatthere are two kinds of attraction, that by which a vacuum becomes refilled and that caused by appropriateness of quality;392air is drawn into bellows in one way, and iron by the lodestone in another. And we must also understand that the traction which results from evacuation acts primarily on what is light, whilst that from appropriateness of quality acts frequently, it may be, on what is heavier (if this should be naturally more nearly related393). Therefore, in the case of the heart and the arteries, it is in so far as they are hollow organs, capable of diastole, that they always attract the lighter matter first, while, in so far as they require nourishment, it is actually into theircoats(which are the realbodiesof these organs) that the appropriate matter is drawn.394Of the blood, then, which is taken into their cavities when they dilate, that part which is most proper to them andmost able to afford nourishment is attracted by their actual coats.
Now, apart from what has been said,395the following is sufficient proof that something is taken over from the veins into the arteries. If you will kill an animal by cutting through a number of its large arteries, you will find the veins becoming empty along with the arteries: now, this could never occur if there were not anastomoses between them. Similarly, also, in the heart itself, the thinnest portion of the blood is drawn from the right ventricle into the left, owing to there being perforations in the septum between them: these can be seen for a great part [of their length]; they are like a kind of fossae [pits] with wide mouths, and they get constantly narrower; it is not possible, however, actually to observe their extreme terminations, owing both to the smallness of these and to the fact that when the animal is dead all the parts are chilled and shrunken.396Here, too, however, our argument,397starting from the principle that nothing is done by Nature in vain, discovers these anastomoses between the ventricles of the heart; for it could not be at random and by chance that there occurred fossae ending thus in narrow terminations.
And secondly [the presence of these anastomoses has been assumed] from the fact that, of the two orifices in the right ventricle, the one conducting blood in and the other out, the former398is much the larger. For, the fact that the insertion of the vena cava into the heart399is larger than thevein which is inserted into the lungs400suggests that not all the blood which the vena cava gives to the heart is driven away again from the heart to the lungs. Nor can it be said that any of the blood is expended in the nourishment of the actual body of the heart, since there is another vein401which breaks up in it and which does not take its origin nor get its share of blood from the heart itself. And even if a certain amount is so expended, still the vein leading to the lungs is not to such a slight extent smaller than that inserted into the heart as to make it likely that the blood is used as nutriment for the heart: the disparity is much too great for such an explanation. It is, therefore, clear that somethingistaken over into the left ventricle.402
Moreover, of the two vessels connected with it, that which brings pneuma into it from the lungs403is much smaller than the great outgrowing artery404from which the arteries all over the body originate; this would suggest that it not merely gets pneuma from the lungs, but that it also gets blood from the right ventricle through the anastomoses mentioned.
Now it belongs to the treatise “On the Use of Parts” to show that it was best that some parts of the body should be nourished by pure, thin, and vaporous blood, and others by thick, turbid blood, and that in this matter also Nature has overlooked nothing. Thus it is not desirable that these matters should be further discussed. Having mentioned,however, that there are two kinds of attraction, certain bodies exerting attraction along wide channels during diastole (by virtue of the principle by which a vacuum becomes refilled) and others exerting it by virtue of their appropriateness of quality, we must next remark that the former bodies can attract even from a distance, while the latter can only do so from among things which are quite close to them; the very longest tube let down into water can easily draw up the liquid into the mouth, but if you withdraw iron to a distance from the lodestone or corn from the jar (an instance of this kind has in fact been already given405) no further attraction can take place.
This you can observe most clearly in connection withgarden conduits. For a certain amount of moisture is distributed from these into every part lying close at hand but it cannot reach those lying further off: therefore one has to arrange the flow of water into all parts of the garden by cutting a number of small channels leading from the large one. The intervening spaces between these small channels are made of such a size as will, presumably, best allow them [the spaces] to satisfy their needs by drawing from the liquid which flows to them from every side. So also is it in the bodies of animals. Numerous conduits distributed through the various limbs bring them pure blood, much like the garden water-supply, and, further, the intervals between these conduits have been wonderfully arranged by Nature from the outset so that the intervening parts should be plentifully provided for when absorbing blood, and that they should neverbe deluged by a quantity of superfluous fluid running in at unsuitable times.
For the way in which they obtain nourishment is somewhat as follows. In the body406which is continuous throughout, such as Erasistratus supposes hissimple vesselto be, it is the superficial parts which are the first to make use of the nutriment with which they are brought into contact; then the parts coming next draw their share from these by virtue of their contiguity; and again others from these; and this does not stop until the quality of the nutrient substance has been distributed among all parts of the corpuscle in question. And for such parts as need the humour which is destined to nourish them to be altered still further, Nature has provided a kind of storehouse, either in the form of a central cavity or else as separate caverns,407or something analogous to caverns. Thus the flesh of the viscera and of the muscles is nourished from the blood directly, this having undergone merely a slight alteration; the bones, however, in order to be nourished, require very great change, and what blood is to flesh marrow is to bone; in the case of the small bones, which do not possess central cavities, this marrow is distributed in their caverns, whereas in the larger bones which do contain central cavities the marrow is all concentrated in these.
For, as was pointed out in the first book,408things having a similar substance can easily change into one another, whereas it is impossible for those which are very different to be assimilated to one another without intermediate stages. Such a one in respect tocartilage is the myxoid substance which surrounds it, and in respect to ligaments, membranes, and nerves the viscous liquid dispersed inside them; for each of these consists of numerous fibres, which are homogeneous409—in fact, actualsensible elements; and in the intervals between these fibres is dispersed the humour most suited for nutrition; this they have drawn from the blood in the veins, choosing the most appropriate possible, and now they are assimilating it step by step and changing it into their own substance.
All these considerations, then, agree with one another, and bear sufficient witness to the truth of what has been already demonstrated; there is thus no need to prolong the discussion further. For, from what has been said, anyone can readily discover in what way all the particular [vital activities] come about. For instance, we could in this way ascertain why it is that in the case of many people who are partaking freely of wine, the fluid which they have drunk is rapidly absorbed410through the body and almost the whole of it is passed by the kidneys within a very short time. For here, too, the rapidity with which the fluid is absorbed depends on appropriateness of quality, on the thinness of the fluid, on the width of the vessels and their mouths, and on the efficiency of the attractive faculty. The parts situated near the alimentary canal, by virtue of their appropriateness of quality, draw in the imbibed food for their own purposes, then the parts next to themin their turn snatch it away, then those next again take it from these, until it reaches the vena cava, whence finally the kidneys attract that part of it which is proper to them. Thus it is in no way surprising that wine is taken up more rapidly than water, owing to its appropriateness of quality, and, further, that the white clear kind of wine is absorbed more rapidly owing to its thinness, while black turbid wine, is checked on the way and retarded because of its thickness.
These facts, also, will afford abundant proof of what has already been said about the arteries; everywhere, in fact, such blood as is both specifically appropriate and at the same time thin in consistency answers more readily to their traction than does blood which is not so; this is why the arteries which, in their diastole, absorb vapour, pneuma, and thin blood attract either none at all or very little of the juices contained in the stomach and intestines.
299“Of food to feeder,”i.e.of the environment to the organism.cf.p. 39, chap.xi.
299“Of food to feeder,”i.e.of the environment to the organism.cf.p. 39, chap.xi.
300“Drawing”;cf.p. 116,note 2.
300“Drawing”;cf.p. 116,note 2.
301For these terms (prosthesisandprosphysisin Greek)cf.p. 39,notes 5and6.
301For these terms (prosthesisandprosphysisin Greek)cf.p. 39,notes 5and6.
302Lit. “through theenergizing(orfunctioning) of the attractive faculty”; the faculty (δύναμις)in operationis an activity (ἐνέργεια).cf.p. 3,note 2.
302Lit. “through theenergizing(orfunctioning) of the attractive faculty”; the faculty (δύναμις)in operationis an activity (ἐνέργεια).cf.p. 3,note 2.
303This chapter is an excellent example of Galen’s method of reasoninga priori. The complementary inductive method, however, is employed in the next chapter.cf.p. 209,note 1.
303This chapter is an excellent example of Galen’s method of reasoninga priori. The complementary inductive method, however, is employed in the next chapter.cf.p. 209,note 1.
304The deductive.
304The deductive.
305Thelogosis the argument or “theory” arrived at by the process of λογικὴ θεωρία or “theorizing”;cf.p. 151,note 3; p. 205,note 1.
305Thelogosis the argument or “theory” arrived at by the process of λογικὴ θεωρία or “theorizing”;cf.p. 151,note 3; p. 205,note 1.