CHAPTER IV
The attack of December, 1915—The Allies’ good training tells—The casualties analysed—The new element of surprise—Evidences of the use of phosgene—The incident of the bulb—Improved alarms—The Strombos sirens—Accidents to the horns—The Tear Gas Shell—Its chemical analysis—Combated by anti-gas goggles—Tommies scoff at Tear Gas—The Germans make it formidable.
The attack of December, 1915—The Allies’ good training tells—The casualties analysed—The new element of surprise—Evidences of the use of phosgene—The incident of the bulb—Improved alarms—The Strombos sirens—Accidents to the horns—The Tear Gas Shell—Its chemical analysis—Combated by anti-gas goggles—Tommies scoff at Tear Gas—The Germans make it formidable.
The attack of December, 1915—The Allies’ good training tells—The casualties analysed—The new element of surprise—Evidences of the use of phosgene—The incident of the bulb—Improved alarms—The Strombos sirens—Accidents to the horns—The Tear Gas Shell—Its chemical analysis—Combated by anti-gas goggles—Tommies scoff at Tear Gas—The Germans make it formidable.
Theexpected German gas attack was actually made on December 19, 1915, at about 5:15A. M., just before “Stand to” in the morning, the venue being the north of the Ypres salient, from the canal bank at Boesinghe down to Wieltje, a distance of three miles. It was preceded by the appearance of parachute lights of an unusual kind and by a number of red rocket flares. Almost immediately afterward gas was smelt in the front trenches. In some cases a hissing sound made by the gas’s leaving the cylinders was heard and was taken as a warning by the soldiers in the trenches. In other cases the noise seems to have been deadened by rifle fire. Taking it altogether, however,there was very little warning, as the wind was favourable and the gas traveled surprisingly quickly.
There was absolutely no confusion, and the men put on their helmets at once and lined the parapets within a minute. Where the trenches were close together the men had some difficulty in getting on their helmets in time. This was particularly the case in listening posts where we had patrols out quite close to the German wire. In the support and reserve trenches the arrangements for spreading the warning were not so good as those in the front line, and a number of men were caught by the gas before they had their helmets on. Indeed in a number of cases, especially in batteries, the gas was smelt before the receipt of the warning.
The actual gas wave lasted only about half or three-quarters of an hour, but in some places the helmets had to be kept on for four hours, as the gas hung about in hollows and dugouts for a long time. This was particularly noticeable in the neighbourhood of the canal. The cloud was felt as far back as Vlamertinghe, eighty-five hundred yards behind the line, and was still visible at thispoint. For at least three miles back behind the front-line helmets had to be put on everywhere, and for six miles behind the line the smoke helmets were generally worn, some men who did not put them on at this distance being gassed.
The actual gas wave was accompanied by a heavy bombardment of the front line and of Ypres and the villages behind it, shrapnel and high-explosive shell and also tear shell being used, the latter shell being fired particularly against our artillery. This bombardment lasted throughout the day and most of the following night. Though our wire had been cut in many places by the artillery fire, the Germans made no serious infantry attack, and small patrols which left their trenches in a few places were immediately shot down, as our fellows were continually on the alert and had not suffered to any considerable degree.
Altogether a large number of troops were exposed to the gas, but, compared with its extent, the cloud caused only a small number of casualties. This was very satisfactory after our experiences of the spring. Men who were gassed but not killed were allsubsequently questioned as to the reason for their being gassed, and in each case a definite reason was forthcoming. In no single instance was the fault laid at the door of the smoke helmet, which apparently had been quite capable of standing up to the highest concentrations in any part of the cloud.
Among the reasons given for the casualties were things like the following: Some men in the fire trenches did not get on their helmets quickly enough owing to the short distance between the trenches, lack of warning in the support line and insufficient practice. Some officers and men sleeping in dugouts did not have their helmets attached to them or they were caught away from their dugouts without helmets. Helmets in many cases were under the overcoats, which made it very difficult to get them and put them on quickly, as it was necessary to undo the overcoat, the top button of the jacket and the cardigan waistcoat before the helmet could be tucked in. One cause of casualties was that the “P” helmet smelt very strongly of carbolic, and a lot of men who had not had this explained to them thought that the peculiar smell was that of gas coming in andthey took their helmets off with a view to replacing them with other helmets. This of course was fatal. One sergeant was gassed through his helmet’s being holed by a bullet, though he himself was not wounded. In some cases wounded men tried to remove their helmets and were gassed in this way, and it was found necessary to watch men who were hit to prevent this.
In many ways this attack of the Germans was of the greatest importance, as it displayed all of the features on which the subsequent development of the gas cloud was based. These features were: Increased concentration; the use of new material; surprise. These three things are really the basis of all gas warfare, even at the present day, whether the attacks are made in the form of clouds or by the use of gas shells or other projectiles.
The increased concentration was obtained chiefly by the reduction in the time occupied by the attack. The first attack of all lasted about one hour and a half. The next attack lasted about three hours. The one in question lasted only thirty minutes, so that if the same amount of gas was used the concentrationof the cloud must obviously have been increased six times over that of May twenty-fourth, as there is little doubt that the cylinders had been installed in approximately the same numbers—that is, one to a meter of front.
Probably the most important feature of the attack was the introduction of phosgene. Now there never was any actual chemical evidence of the poisons of phosgene in the German gas clouds until some of their cylinders were captured by us when they retreated on the Somme in the beginning of 1917. But unfortunately the peculiar effects of phosgene on our men who were gassed were only too apparent. There were a large number of “delayed” cases—men who thought they were only slightly gassed but who became ill or even died several hours or sometimes a day or so later from heart failure, especially if they had taken any heavy exercise in between.
In these cases there was hardly any coughing. What was really wanted was rest, but this was not realised at the time, and many men walked to the dressing stations—sometimes a mile or more—through deep mudand became quite exhausted. One officer of the Durhams had been slightly gassed at the beginning of the attack but felt perfectly all right until about noon, when he became faint and exhausted, though not apparently seriously ill. After lying down he felt better, but in the evening got worse again, and in walking to the ambulance to go to the field dressing station he suddenly collapsed and died. This was fourteen hours after the attack.
Another weighty piece of evidence as to the nature of the gas was given by the smell, which to trained observers was quite different from the typical chloride-of-lime smell of chlorine; and by the peculiar effects on the taste of tobacco to men who had smelt the gas. If you take a good smell of dilute phosgene and then smoke a cigarette the tobacco tastes like nothing on earth. Tommy’s nearest description of the taste and smell is “mouldy hay.” This peculiar effect is quite typical of phosgene and is known as the “tobacco reaction.”
In the hope of getting samples of the German gas clouds for analysis a large number of gas vacuum bulbs were distributed up anddown the line, and selected men were taught how to use them. This was supposed to be done by nipping off the drawn-out end of the gas bulb, whereby the contaminated air would rush in. The end was then to be closed with a hollow stopper containing wax.
To get these samples was asking a great deal. Even when packed in special boxes glass bulbs are somewhat fragile things for trench life, and the wooden boxes made excellent kindling wood, which was always being sought for. The result is that when the cloud does come along the vacuum bulbs are often conspicuous only by their absence. Even if they are kept whole it is asking rather a lot of a man to take an accurate scientific sample during the excitement of a gas attack which is accompanied by a bombardment by explosive shells and gas shells.
For a long time none of the bulbs found their way back to the field laboratory. Eventually one did come, carefully packed in shavings and wadding. I happened to be present when it was brought in, and there was a good deal of excitement at the little prodigal’s return. The bulb was taken out, but under it was found a leaf from a field-servicenote book, on which was written: “Danger. This bulb was found in a hedge. It seems to have been dropped from an aeroplane and probably contains cholera germs. Fortunately it has not been broken.”
The “surprise effect,” which was mentioned above as being the third fresh feature of this new-era gas-cloud attack, took the form of making the attack in the dark and at a time when men were least prepared—that is, just before the morning “Stand to,” the hour before dawn, when all troops in the trenches stand to arms. By making the attack at night, or at any rate in the dark, the boche achieved two objects: First of all, there were better wind conditions for an attack, because the night winds tend to flow down toward the earth and keep the gas cloud low-lying and thick, whereas in the day the sun warms the ground and produces so many upward currents of air that the cloud gets lifted up and dissipated; in the second place it was impossible to see the cloud when it was first liberated, and this reduced the means of detecting the attack to only two—the hissing noise of the gasescaping from the cylinders and the smell of the advanced parts of the cloud.
Later on it was known that the best hours for all gas attacks, both cloud and shell bombardment, are in the night; and as a matter of fact practically all gas warfare is now carried out at night, but at that time the significance of this was not grasped, and many of our casualties were due to lack of preparedness, numbers of men being caught “on the hop” and overwhelmed.
Some most important steps in improving our protecting measures were taken as a result of the lessons learned from the attack; in fact, it may be taken that all measures in defence against gas have been learned from bitter experience, and to this extent the sufferings of the victims may be taken as having at any rate some compensating value. In such a new and strange and continually developing kind of warfare very little can be done bya prioriargument. This fact we have always tried to impress on the men—that the gas warfare orders, sometimes apparently trivial and frequently wearisome and annoying, have all been madeas the result of lessons learned from actual attacks.
Among the chief things that were done after the December nineteenth attack was the improvement of our system of alarms.
The bells and horns in the front line had been found quite insufficient, especially for warning people in the rear; and the telephone could not be depended on for this purpose owing to the possibilities of the wires being cut by shell fire. To protect them from being cut, all wires would have to be buried at least six feet deep in the ground, and this is practically impossible owing to the work involved.
It would consequently be fatal to depend on telephonic communication, especially as a gas attack is nearly always accompanied by a pretty heavy bombardment of rear lines. In one case I knew, during just such a bombardment, the staff captain at a brigade headquarters was talking to one of the battalions when the whole telephone instrument seemed to burst into a sheet of flame in his hands, owing to a cut wire. The battalion concerned was isolated for morethan an hour as a result, and anything might have happened in the meantime.
For these reasons it was decided to adopt for gas alarms sirens worked by compressed air, which would make a noise sufficiently loud and distinctive to be heard long distances away. The type of siren which was used has been kept in use ever since in continually increasing numbers and has proved extraordinarily useful. It is known as the Strombos horn, and consists of the horn proper and two iron cylinders of compressed air charged to a pressure of one hundred and fifty atmospheres. Only one cylinder at a time is connected to the horn, the other being kept as a reserve.
The Strombos horns are mounted in the trenches in such a way as to protect them from shell splinters as far as possible. This is generally done by packing them round carefully with sandbags, only the mouth of the horn being displayed and pointing toward the rear. Every sentry must know how and when to sound the horn. All he has to do when he realises that a gas attack is being made, or on receiving instructions from an officer to do so, is to loosen the tapon the cylinder one complete turn, when the horn will sound continuously for more than a minute. The noise is terrific and in an enclosed space or in a quiet region it is absolutely deafening. In the trenches, however, it is none too loud, and the distances between the horns in the front system of trenches are never more than four or five hundred yards. Farther back in the chain, toward the rear, the distances can be increased. Horns are now installed at battalion, brigade and divisional headquarters. By turning them on when the noise of those in front is heard it is possible to pass the alarm in an incredibly short space of time and thus forestall the cloud of gas to such an extent that every man in the support trenches or in rest billets or the villages behind the firing line is aware that an attack is in progress and gets ready to protect himself.
Naturally, things don’t always work out exactly according to schedule. The horns are frequently damaged. In one place I was at, just this side of the canal, near Boesinghe, a heavy German trench mortar wrecked three of our Strombos hornswithin a week, and another and less suitable position had to be found for the alarm. Then there are occasional false alarms. These sometimes arise from individual men “getting the wind up” from a bombardment by gas shell and thinking that a cloud attack is being made. Others I am afraid have been more in the nature of experiments “to see how it works.” After all, it must be a great temptation to a sentry to be in charge of a Strombos horn and never have the pleasure of turning it on.
False alarms are a great nuisance, however, and good arrangements have now been made to prevent their spreading. It is possible to avoid all the unnecessary disturbance to which troops are subjected by a false gas alarm. This disturbance is particularly objectionable in back areas where regiments returned from the trenches are in billets. When the alarm goes everybody has to turn out—probably in the middle of the night. Sentries wake the officers and men in all the billets; messengers have to be sent post-haste to outlying villages or farms with which there is no telephonic communications; respirators are hurriedlyinspected and placed in the alert position; the gas-proof curtains of cellars and dugouts are adjusted; the officers move about in the darkness to see that all their men are accounted for and ready; every one is in a state of expectancy—and then the word comes through that it is a false alarm, and the men go back, cursing, to their billets. Not only is an occurrence of this kind wearying to tired troops, but it has the old disadvantage of crying “Wolf, wolf!” when there is no wolf—the consequent determination on the part of the men not to take the next alarm so seriously.
Though it was not realised at the time, it is almost certain that the Germans started to use gas in shell almost simultaneously, and probably actually in the first attack, with the use of the poisonous gas clouds in the attacks of April and May, 1915. Many instances came to notice of men’s eyes being strongly affected to such an extent that they could not keep them open. There seemed to be something in the air which made an unprotected man weep copiously if he tried to keep his eyes open, and ofcourse if he closed them he could not see what he was doing.
These effects, and a peculiar smell which was noticed both during and after the gas-cloud attacks, gave rise to the belief that something like formaldehyde was being used by the Germans mixed with some chlorine gas. Others described the smell as being that of chloroform or ether, but nobody could say definitely what the material actually was. It was only after a number of blind shell had been obtained and examined that it was realised that the Germans were firing shell filled with liquid which had a powerful lachrymatory effect.
It does not appear certain whether the use of lachrymatory liquids for putting men out of action by making their eyes water is in itself contrary to The Hague Convention, as the vapours need not actually be poisonous. This was the case with the first German gas shell, as it was found that the liquid contained consisted only of a material known chemically as “xylyl bromide.” The vapour of this liquid and of many similar substances has a most powerful effect on the eyes, like that of onions but muchstronger. Except in very high concentrations it cannot be regarded as poisonous—at any rate not in the sense that chlorine is poisonous.
Examination of the German lachrymatory shells showed that the liquid was contained inside the shell in a sealed lead vessel so that the material should not come in contact with the steel of the shell, which it destroys gradually. Shell of this kind, though termed gas shell, are not really such, as the liquid has to be broken up into fine droplets by the explosive charge of the shell before the vapour can produce its effect. The liquid has no pressure of its own inside the shell and depends entirely on the bursting charge to get it distributed into the atmosphere.
The xylyl bromide used by the Germans was not pure, but contained a big proportion of benzyl bromide, showing that it had been made by the action of bromide on coal-tar light oil from which most of the toluene had been removed for the manufacture of the well-known high explosive, trinitrotoluene.
The effect of xylyl bromide on an unprotectedman is instantaneous and remarkable. Even such small proportions as one volume of vapour diluted with one million volumes of air will at once make a man weep so copiously that he cannot possible keep his eyes open.
Obviously a material of this kind has great military value, for though it does not put men out of action permanently by killing them it neutralises their effectiveness to such an extent that for the time being they may be regarded as of no military importance. In strong concentrations the effect on the eyes is most powerful. I have walked into an area which was being bombarded with lachrymatory shells and suddenly got the effect just as if I had been hit in the face. Fortunately the lachrymation has no lasting effect on the eyes, and a man on getting into pure air very quickly recovers.
Throughout the spring and summer of 1915 these lachrymatory shells were used in considerable numbers, especially in the vicinity of Ypres, and at times the ramparts of that much bombarded town reeked of lachrymatory vapour and nobody could stay in certain spots for any length of time withouthaving his eyes protected by specially constructed goggles or by wearing a gas helmet right over his head.
Taking it altogether we were not troubled nearly so much by this new type of gas as were the French, in the southern part of the line. In much the same way that the gas cloud was developed by the Germans against the English the gas shell were developed chiefly against the French, and very much larger numbers were employed against the French positions than we had to contend with during the first six months or so. Later on things were more equallised in this direction. Captured German documents and statements by prisoners showed us that the Germans were counting very considerably on the effect produced by the lachrymatory shell, and detailed instructions for their use in various circumstances were carefully laid down. The lachrymatory shell was known by the Germans as “T-Shell,” and the xylyl bromide as “T-Stoff,” and instructions were laid down for the use of this material. Another kind of shell was known as “K-Shell,” which upto that time had not been used against us, or at any rate had not been recognised.
The T-Shell was particularly to be used against positions which it was not intended to occupy immediately, the reason for this being that T-Stoff hangs about for a long time. Some of the liquid is apt to be spread about the ground and gives off enough vapour to make the neighbourhood of the shell hole uninhabitable for many hours, and in favourable condition—for the enemy—for several days. The K-Shell, on the other hand, was intended to be used against infantry positions and strong-points which it was hoped to assault and capture within an hour or two of the bombardment or on areas which it was hoped to traverse during a big attack.
The advent of the lachrymatory T-Shell incommoded us considerably, but, as it was quickly realised that the gas was not poisonous, the Tommies were not much taken back, and the “tear shell,” as they were quickly called, were not considered by the rank and file to have importance, which as a matter of fact they have; but at the same time we heard rather alarming storiesof the effects of gas shell as used against the French.
It was rumoured, for example, that in the Crown Prince’s big advance in the Argonne, in the late spring of 1915, that such enormous numbers of gas shell had been used against the French positions that the infantry occupying them were not only put out of action by the effect on their eyes but that the amount of gas used was so large that the French soldiers were actually anæsthetised and were taken prisoners by the Germans while in an unconscious condition.
Whether this was true or whether it was exaggerated is not certain, though it is certainly true that the Crown Prince’s advance was prefaced by a hurricane bombardment of gas shell, the tactical effect of which was considerable.
Stories of this kind, however, combined with the effects which we ourselves were experiencing, made us realise that protection against tear gas was essential, and for this purpose arrangements were made to supply every officer and man in the front line with a pair of anti-gas goggles. Theearliest types of these goggles were very simple in construction, and we are told were copied from a French pattern. They consisted of a waterproof fabric lined with flannel containing a wire spring for the nose and fitted with celluloid eyepieces. By bending the wire to the shape of the nose it was possible to close the nostrils and at the same time give a reasonably good fit to the flannel on the face.
In some cases the flannel was anointed with some kind of grease so as to make a still closer fit, in order to keep out small traces of gas which are quite sufficient to produce lachrymation. Later on we had a much better type of goggle backed with rubber sponge to make a tight fit to the face.
With the small numbers of gas shell used against us we had no experience of any effect on the lungs, and it was found also that the helmet form of respirator was enough to keep out, at any rate, low concentrations of the lachrymator; but we got a rude awakening when the boche began to use his tear shells in larger numbers. Such a case happened to us in the beginning of1916, at the celebrated village of Vermelles, a little ruined town just behind the lines near Loos. The enemy tried out an attack on us over about a mile front for the purpose of bagging some of our trenches, and he attempted to keep reinforcements from coming up to counter attack him by putting down a tear-shell barrage through Vermelles and north and south of it over the roads on which our fellows would have to advance. He used thousands of his tear shells and the neighbourhood absolutely stank of them. Fortunately, it was almost impossible to put down an effective standing barrage with gas, and our reserves got through on two roads that had not been blocked effectively. The boche attack was a fizzle, but Vermelles was a little private hell of its own for that day and most of the next forty-eight hours as well.
During and immediately after the bombardment, troops passing through the village wore both goggles and gas helmets, but the concentration of lachrymator was so great that many of our fellows were sick and actually vomited inside their helmets. If you can imagine men going up to a battlewith these flannelette bags over their heads and then being sick inside them, you can realise that the boche was not particularly popular with us at the time.
Besides this, Vermelles was much used by troops in reserve and was full of cellars and dugouts occupied by the waiting infantry and also by signallers, headquarters of various kinds, and so on. The vapours—and some of the shells themselves, for that matter—got down into these cellars and made them almost uninhabitable for days, except in those cases where they had been properly protected by double lines of blankets hung at the entrances.
About the same time in 1916 the enemy began making surprise bombardments with a new lachrymator and with the K-Shell mentioned previously, for the purpose of assisting in raids. Both of these gases rejoice in long names, the lachrymator being bromethylmethylketone, and the K-Shell gas monochlormethylchloroformate. These gases are much more poisonous and do not hang about as long as the old “T” tear gas.
One such raid in which they were usedwas carried out at a place called La Boiselle—afterward famous as a jumping-off point in the Somme Battle.
I was not in at the raid, but heard details of it afterward. The boche rained his gas shells into the selected area and at the same time prevented reinforcements from getting up by putting down a so-called box barrage with explosive shells round the trenches to be attacked.
Our men were taken completely by surprise. Many of them were badly gassed, all were temporarily blinded; and then after a short interval the boche came in. He timed his arrival so that most of the gas had disappeared. Then there was some very fierce fighting—so fierce that a number of our men died afterward because of the exertion following on the breathing of the K-gas.
But gassed and blinded men, however brave, cannot fight successfully against others fresh and unaffected, and the enemy captured a number of prisoners and two Lewis guns.
Curiously enough, during the Somme Battle a few months later we did in properly the regiment which had carried out theraid and captured the official report of the commander of the raiding party. In this report he said: “... the men of the Royal Irish Rifles created a fine impression both as regards their physique and their mode of repelling an assault. Had it not been for the use of the gas shells it would have been impossible to clear the section of trench attacked.”
Rather a fine tribute—and one thoroughly deserved!
Of course surprises of this kind cannot be pulled off twice, but occurrences like this and the bombardment at Vermelles let us see that the enemy intended to develop his gas-shell industry much more than we had anticipated, and our protective measures were taken in hand so as to meet future eventualities. In fact it was about this time that the box respirator was being hurriedly developed so as to protect us against any further devilment that Fritz might send along.