CHAPTER XI

FIG. 59.—The candle cannot be seen unless the three pinholes are in a strait line.FIG. 59.—The candle cannot be seen unless the three pinholes are in a strait line.

102. How Light Travels.We never expect to see around a corner, and if we wish to see through pinholes in three separate pieces of cardboard, we place the cardboards so that the three holes are in a straight line. When sunlight enters a dark room through a small opening, the dust particles dancing in the sun show a straight ray. If a hole is made in a card, and the card is held in front of a light, the card casts a shadow, in the center of which is a bright spot. The light, the hole, and the bright spot are all in the same straight line. These simple observations lead us to think that light travels in a straight line.

We can always tell the direction from which light comes, either by the shadow cast or by the bright spot formed when an opening occurs in the opaque object casting the shadow. If the shadow of a tree falls towards the west, we know the sun must be in the cast; if a bright spot is on the floor, we can easily locate the light whose rays stream through an opening and form the bright spot. We know that light travels in a straight line, and following the path of the beam which comes to our eyes, we are sure to locate the light.

103. Good and Bad Mirrors.As we walk along the street, we frequently see ourselves reflected in the shop windows, in polished metal signboards, in the metal trimmings of wagons and automobiles; but in mirrors we get the best image of ourselves. We resent the image given by a piece of tin, because the reflection is distorted and does not picture us as we really are; a rough surface does not give a fair representation; if we want a true image of ourselves, we must use a smooth surface like a mirror as a reflector. If the water in apond is absolutely still, we get a clear, true image of the trees, but if there are ripples on the surface, the reflection is blurred and distorted. A metal roof reflects so much light that the eyes are dazzled by it, and a whitewashed fence injures the eyes because of the glare which comes from the reflected light. Neither of these could be called mirrors, however, because although they reflect light, they reflect it so irregularly that not even a suggestion of an image can be obtained.

Most of us are sufficiently familiar with mirrors to know that the image is a duplicate of ourselves with regard to size, shape, color, and expression, but that it appears to be back of the mirror, while we are actually in front of the mirror. The image appears not only behind the mirror, but it is also exactly as far back of the mirror as we are in front of it; if we approach the mirror, the image also draws nearer; if we withdraw, it likewise recedes.

104. The Path of Light.If a mirror or any other polished surface is held in the path of a sunbeam, some of the light is reflected, and by rotating the mirror the reflected sunbeam may be made to take any path. School children amuse themselves by reflecting sunbeams from a mirror into their companions' faces. If the companion moves his head in order to avoid the reflected beam, his tormentor moves or inclines the mirror and flashes the beam back to his victim's face.

FIG. 60.—The ray AC is reflected as CD.FIG. 60.—The rayACis reflected asCD.

If a mirror is held so that a ray of light strikes it in a perpendicular direction, the light is reflected backward along the path by which it came. If, however, the light makes an angle with the mirror, its direction is changed, and it leaves the mirror along a new path. By observation we learn that when a beam strikes the mirror and makes an angle of 30° with the perpendicular, the beam is reflected in such a way that its new path also makes an angle of 30° with the perpendicular. If the sunbeam strikes the mirror at an angle of32° with the perpendicular, the path of the reflected ray also makes an angle of 32° with the perpendicular. The ray (AC, Fig. 60) which falls upon the mirror is called the incident ray, and the angle which the incident ray (AC) makes with the perpendicular (BC) to the mirror, at the point where the ray strikes the mirror, is called the angle of incidence. The angle formed by the reflected ray (CD) and this same perpendicular is called the angle of reflection. Observation and experiment have taught us that light is always reflected in such a way that the angle of reflection equals the angle of incidence. Light is not the only illustration we have of the law of reflection. Every child who bounces a ball makes use of this law, but he uses it unconsciously. If an elastic ball is thrown perpendicularly against the floor, it returns to the sender; if it is thrown against the floor at an angle (Fig. 61), it rebounds in the opposite direction, but always in such a way that the angle of reflection equals the angle of incidence.

FIG. 61.—A bouncing ball illustrates the law of reflection.FIG. 61.—A bouncing ball illustrates the law of reflection.

105. Why the Image seems to be behind the Mirror.If a candle is placed in front of a mirror, as in Figure 62, one of the rays of light which leaves the candle will fall upon the mirror asABand will be reflected asBC(in such a way that the angle of reflection equals the angle of incidence). If an observer stands atC, he will think that the pointAof the candle is somewhere along the lineCBextended. Such a supposition would be justified from Section 102. But the candle sends out light in all directions; one ray therefore will strike the mirror asADand will be reflected asDE, and an observer atEwill think that the pointAof the candle is somewhere along the lineED. In order that both observers may be correct, that is, in order that the light may seem to be in both these directions, the image of the pointAmust seem to be at the intersection of the two lines. In a similar manner it can be shown that every point of the image of the candle seems to be behind the mirror.

FIG. 62.—The image is a duplicate of the object, but appears to be behind the mirror.FIG. 62.—The image is a duplicate of the object, but appears to be behind the mirror.

It can be shown by experiment that the distance of the image behind the mirror is equal to the distance of the object in front of the mirror.

FIG. 63.—The surface of the paper, although smooth in appearance, is in reality rough, and scatters the light in every direction.FIG. 63.—The surface of the paper, although smooth in appearance, is in reality rough, and scatters the light in every direction.

106. Why Objects are Visible.If the beam of light falls upon a sheet of paper, or upon a photograph, instead of upon a smooth polished surface, no definite reflected ray will be seen, but a glare will be produced by the scattering of the beam of light. The surface of the paper or photograph is rough, and as a result, it scatters the beam in every direction. It is hard for us to realize that a smooth sheet of paper isby no means so smooth as it looks. It is rough compared with a polished mirror. The law of reflection always holds, however, no matter what the reflecting surface is,—the angle of reflection always equals the angle of incidence. In a smooth body the reflected beams are all parallel; in a rough body, the reflected beams are inclined to each other in all sorts of ways, and no two beams leave the paper in exactly the same direction.

Hot coals, red-hot stoves, gas flames, and candles shine by their own light, and are self-luminous. Objects like chairs, tables, carpets, have no light within themselves and are visible only when they receive light from a luminous source and reflect that light. We know that these objects are not self-luminous, because they are not visible at night unless a lamp or gas is burning. When light from any luminous object falls upon books, desks, or dishes, it meets rough surfaces, and hence undergoes diffuse reflection, and is scattered irregularly in all directions. No matter where the eye is, some reflected rays enter it, and the various objects are clearly seen.

FIG. 64.—A straw or stick in water seems broken.FIG. 64.—A straw or stick in water seems broken.

107. Bent Rays of Light.A straw in a glass of lemonade seems to be broken at the surface of the liquid, the handle of a teaspoon in a cup of water appears broken, and objects seen through a glass of water may seem distorted and changed in size. When light passes from air into water, or from any transparent substance into another of different density, its direction is changed, and it emerges along an entirely new path (Fig. 64). We know that light rays pass through glass, because we can see through the window panes and through our spectacles; we know that light rays pass through water, because we can see through a glass of clear water; on the other hand, light rays cannot pass through wood, leather, metal, etc.

Whenever light meets a transparent substance obliquely, some of it is reflected, undergoing a change in its direction; and some of it passes onward through the medium, but thelatter portion passes onward along a new path. The rayRO(Fig. 65) passes obliquely through the air to the surface of the water, but, on entering the water, it is bent or refracted and takes the new pathOS. The angleAORis called the angle of incidence. The anglePOSis called the angle of refraction.

FIG. 65.—When the ray RO enters the water, its path changes to OS.FIG. 65.—When the rayROenters the water, its path changes toOS.

The angle of refraction is the angle formed by the refracted ray and the perpendicular to the surface at the point where the light strikes it.

When light passes from air into water or glass, the refracted ray is bent toward the perpendicular, so that the angle of refraction is smaller than the angle of incidence. When a ray of light passes from water or glass into air, the refracted ray is bent away from the perpendicular so that the angle of refraction is greater than the angle of incidence.

The bending or deviation of light in its passage from one substance to another is called refraction.

FIG. 66.—A fish at A seems to be at B.FIG. 66.—A fish atAseems to be atB.

108. How Refraction Deceives us.Refraction is the source of many illusions; bent rays of light make objects appear where they really are not. A fish atA(Fig. 66) seems to be atB. The end of the stick in Figure 64 seems to be nearer the surface of the water than it really is.

The light from the sun, moon, and stars can reach us only by passing through the atmosphere, but in Section 76, welearned that the atmosphere varies in density from level to level; hence all the light which travels through the atmosphere is constantly deviated from its original path, and before the light reaches the eye it has undergone many changes in direction. Now we learned in Section 102, that the direction of the rays of light as they enter the eye determines the direction in which an object is seen; hence the sun, moon, and stars seem to be along the lines which enter the eye, although in reality they are not.

109. Uses of Refraction.If it were not for refraction, or the deviation of light in its passage from medium to medium, the wonders and beauties of the magic lantern and the camera would be unknown to us; sun, moon, and stars could not be made to yield up their distant secrets to us in photographs; the comfort and help of spectacles would be lacking, spectacles which have helped unfold to many the rare beauties of nature, such as a clear view of clouds and sunset, of humming bee and flying bird. Books with their wealth of entertainment and information would be sealed to a large part of mankind, if glasses did not assist weak eyes.

By refraction the magnifying glass reveals objects hidden because of their minuteness, and enlarges for our careful contemplation objects otherwise barely visible. The watchmaker, unassisted by the magnifying glass, could not detect the tiny grains of dust or sand which clog the delicate wheels of our watches. The merchant, with his lens, examines the separate threads of woolen and silk fabrics to determine the strength and value of the material. The physician, with his invaluable microscope, counts the number of infinitesimal corpuscles in the blood and bases his prescription on that count; he examines the sputum of a patient to determine whether tuberculosis wastes the system. The bacteriologist with the same instrument scrutinizes the drinking water and learns whetherthe dangerous typhoid germs are present. The future of medicine will depend somewhat upon the additional secrets which man is able to force from nature through the use of powerful lenses, because as lenses have, in the past, been the means of revealing disease germs, so in the future more powerful lenses may serve to bring to light germs yet unknown. How refraction accomplishes these results will be explained in the following Sections.

110. The Window Pane.We have seen that light is bent when it passes from one medium to another of different density, and that objects viewed by refracted light do not appear in their proper positions.

FIG. 67.—Objects looked at through a window pane seem to be in their natural place.FIG. 67.—Objects looked at through a window pane seem to be in their natural place.

When a ray of light passes through a piece of plane glass, such as a window pane (Fig. 67), it is refracted at the pointBtoward the perpendicular, and continues its course through the glass in the new directionBC. On emerging from the glass, the light is refracted away from the perpendicular and takes the directionCD, which is clearly parallel to its original direction. Hence, when we view objects through the window, we see them slightly displaced in position, but otherwise unchanged. The deviation or displacement caused by glass as thin as window panes is too slight to be noticed, and we are not conscious that objects are out of position.

111. Chandelier Crystals and Prisms.When a ray of light passes through plane glass, like a window pane, it is shifted somewhat, but its direction does not change; that is, theemergent ray is parallel to the incident ray. But when a beam of light passes through a triangular glass prism, such as a chandelier crystal, its direction is greatly changed, and an object viewed through a prism is seen quite out of its true position.

FIG. 68.—When looked at through the prism, A seems to be at S.FIG. 68.—When looked at through the prism,Aseems to be atS.

Whenever light passes through a prism, it is bent toward the base of the prism, or toward the thick portion of the prism, and emerges from the prism in quite a different direction from that in which it entered (Fig. 68). Hence, when an object is looked at through a prism, it is seen quite out of place. In Figure 68, the candle seems to be atS, while in reality it is atA.

FIG. 69.—Rays of light are converged and focused at F.FIG. 69.—Rays of light are converged and focused atF.

112. Lenses.If two prisms are arranged as in Figure 69, and two parallel rays of light fall upon the prisms, the beamAwill be bent downward toward the thickened portion of the prism, and the beamBwill be bent upward toward the thick portion of the prism, and after passing through the prism the two rays will intersect at some pointF, called a focus.

FIG. 70.—Rays of light are diverged and do not come to any real focus.FIG. 70.—Rays of light are diverged and do not come to any real focus.

If two prisms are arranged as in Figure 70, the rayAwill be refracted upward toward the thick end, and the rayBwill be refracted downward toward the thick end; the two rays, on emerging, will therefore be widely separated and will not intersect.

Lenses are very similar to prisms; indeed, two prismsplaced as in Figure 69, and rounded off, would make a very good convex lens. A lens is any transparent material, but usually glass, with one or both sides curved. The various types of lenses are shown in Figure 71.

FIG. 71.—The different types of lenses.FIG. 71.—The different types of lenses.

The first three types focus parallel rays at some common pointF, as in Figure 69. Such lenses are called convex or converging lenses. The last three types, called concave lenses, scatter parallel rays so that they do not come to a focus, but diverge widely after passage through the lens.

113. The Shape and Material of a Lens.The main or principal focus of a lens, that is, the point at which rays parallel to the base lineABmeet (Fig. 71), depends upon the shape of the lens. For example, a thick lens, such asA(Fig. 72), focuses the rays very near to the lens;B, which is not so thick, focuses the rays at a greater distance from the lens; andC, which is a very thin lens, focuses the rays at a considerable distance from the lens. The distance of the principal focus from the lens is called the focal length of the lens, and from the diagrams we see that the more convex the lens, the shorter the focal length.

FIG. 72.—The more curved the lens, the shorter the focal length, and the nearer the focus is to the lens.FIG. 72.—The more curved the lens, the shorter the focal length, and the nearer the focus is to the lens.

The position of the principal focus depends not only on the shape of the lens, but also on the refractive power of the material composing the lens. A lens made of ice would not deviate the rays of light so much as a lens of similar shape composed of glass. The greater the refractive power of the lens, the greater the bending, and the nearer the principal focus to the lens.

There are many different kinds of glass, and each kind of glass refracts the light differently. Flint glass contains lead; the lead makes the glass dense, and gives it great refractive power, enabling it to bend and separate light in all directions. Cut glass and toilet articles are made of flint glass because of the brilliant effects caused by its great refractive power, and imitation gems are commonly nothing more than polished flint glass.

114. How Lenses Form Images.Suppose we place an arrow,A, in front of a convex lens (Fig. 73). The rayAC, parallel to the principal axis, will pass through the lens and emerge asDE. The ray is always bent toward the thick portion of the lens, both at its entrance into the lens and its emergence from the lens.

FIG. 73.—The image is larger than the object. By means of a lens, a watchmaker gets an enlarged image of the dust which clogs the wheels of his watch.FIG. 73.—The image is larger than the object. By means of a lens, a watchmaker gets an enlarged image of the dust which clogs the wheels of his watch.

In Section 105, we saw that two rays determine the position of any point of our image; hence in order to locate the image of the top of the arrow, we need to consider but one more ray from the top of the object. The most convenient ray to choose would be one passing throughO, the optical center of the lens, because such a ray passes through the lens unchanged in direction, as is clear from Figure 74. The pointwhereACandAOmeet after refraction will be the position of the top of the arrow. Similarly it can be shown that the center of the arrow will be at the pointT, and we see that the image is larger than the object. This can be easily proved experimentally. Let a convex lens be placed near a candle (Fig. 75); move a paper screen back and forth behind the lens; for some position of the screen a clear, enlarged image of the candle will be made.

FIG. 74.—Rays above O are bent downward, those below O are bent upward, and rays through O emerge from the lens unchanged in direction.FIG. 74.—Rays above O are bent downward, those below O are bent upward, and rays through O emerge from the lens unchanged in direction.

If the candle or arrow is placed in a new position, say atMA(Fig. 76), the image formed is smaller than the object, and is nearer to the lens than it was before. Move the lens so that its distance from the candle is increased, and then find the image on a piece of paper. The size and position of the image depend upon the distance of the object from the lens (Fig. 77). By means of a lens one can easily get on a visiting card a picture of a distant church steeple.

FIG. 75.—The lens is held in such a position that the image of the candle is larger than the object.FIG. 75.—The lens is held in such a position that the image of the candle is larger than the object.

FIG. 76.—The image is smaller than the object.FIG. 76.—The image is smaller than the object.

115. The Value of Lenses.If it were not for the fact that a lens can be held at such a distance from an object as tomake the image larger than the object, it would be impossible for the lens to assist the watchmaker in locating the small particles of dust which clog the wheels of the watch. If it were not for the opposite fact—that a lens can be held at such a distance from the object as to make an image smaller than the object, it would be impossible to have a photograph of a tall tree or building unless the photograph were as large as the tree itself. When a photographer takes a photograph of a person or a tree, he moves his camera until the image formed by the lens is of the desired size. By bringing the camera (really the lens of the camera) near, we obtain a large-sized photograph; by increasing the distance between the camera and the object, a smaller photograph is obtained. The mountain top may be so far distant that in the photograph it will not appear to be greater than a small stone.

FIG. 77.—The lens is placed in such a position that the image is about the same size as the object.FIG. 77.—The lens is placed in such a position that the image is about the same size as the object.

Many familiar illustrations of lenses, or curved refracting surfaces, and their work, are known to all of us. Fish globes magnify the fish that swim within. Bottles can be so shaped that they make the olives, pickles, and peaches that they contain appear larger than they really are. The fruit in bottles frequently seems too large to have gone through the neck of the bottle. The deception is due to refraction, and the material and shape of the bottle furnish a sufficient explanation.

By using combinations of two or more lenses of various kinds, it is possible to have an image of almost any desired size, and in practically any desired position.

116. The Human Eye.In Section 114, we obtained on a movable screen, by means of a simple lens, an image of acandle. The human eye possesses a most wonderful lens and screen (Fig. 78); the lens is called the crystalline lens, and the screen is called the retina. Rays of light pass from the object through the pupilP, go through the crystalline lensL, where they are refracted, and then pass onward to the retinaR, where they form a distinct image of the object.

FIG. 78.—The eye.FIG. 78.—The eye.

We learned in Section 114 that a change in the position of the object necessitated a change in the position of the screen, and that every time the object was moved the position of the screen had to be altered before a clear image of the object could be obtained. The retina of the eye cannot be moved backward and forward, as the screen was, and the crystalline lens is permanently located directly back of the iris. How, then, does it happen that we can see clearly both near and distant objects; that the printed page which is held in the hand is visible at one second, and that the church spire on the distant horizon is visible the instant the eyes are raised from the book? How is it possible to obtain on an immovable screen by means of a simple lens two distinct images of objects at widely varying distances?

The answer to these questions is that the crystalline lens changes shape according to need. The lens is attached to the eye by means of small muscles,m, and it is by the action of these muscles that the lens is able to become small and thick, or large and thin; that is, to become more or less curved. When we look at near objects, the muscles act in such a way that the lens bulges out, and becomes thick in the middle and of the right curvature to focus the near object upon thescreen. When we look at an object several hundred feet away, the muscles change their pull on the lens and flatten it until it is of the proper curvature for the new distance. The adjustment of the muscles is so quick and unconscious that we normally do not experience any difficulty in changing our range of view. The ability of the eye to adjust itself to varying distances is called accommodation. The power of adjustment in general decreases with age.

117. Farsightedness and Nearsightedness.A farsighted person is one who cannot see near objects so distinctly as far objects, and who in many cases cannot see near objects at all. The eyeball of a farsighted person is very short, and the retina is too close to the crystalline lens. Near objects are brought to a focus behind the retina instead of on it, and hence are not visible. Even though the muscles of accommodation do their best to bulge and thicken the lens, the rays of light are not bent sufficiently to focus sharply on the retina. In consequence objects look blurred. Farsightedness can be remedied by convex glasses, since they bend the light and bring it to a closer focus. Convex glasses, by bending the rays and bringing them to a nearer focus, overbalance a short eyeball with its tendency to focus objects behind the retina.

FIG. 79.—The farsighted eye.FIG. 79.—The farsighted eye.

FIG. 80.—The defect is remedied by convex glasses.FIG. 80.—The defect is remedied by convex glasses.

A nearsighted person is one who cannot see objects unless they are close to the eye. The eyeball of a nearsighted person is very wide, and the retina is too far away from the crystalline lens. Far objects are brought to a focus in front ofthe retina instead of on it, and hence are not visible. Even though the muscles of accommodation do their best to pull out and flatten the lens, the rays are not separated sufficiently to focus as far back as the retina. In consequence objects look blurred. Nearsightedness can be remedied by wearing concave glasses, since they separate the light and move the focus farther away. Concave glasses, by separating the rays and making the focus more distant, overbalance a wide eyeball with its tendency to focus objects in front of the retina.

FIG. 81.—The nearsighted eye. The defect is remedied by concave glasses.FIG. 81.—The nearsighted eye. The defect is remedied by concave glasses.

118. Headache and Eyes.Ordinarily the muscles of accommodation adjust themselves easily and quickly; if, however, they do not, frequent and severe headaches occur as a result of too great muscular effort toward accommodation. Among young people headaches are frequently caused by over-exertion of the crystalline muscles. Glasses relieve the muscles of the extra adjustment, and hence are effective in eliminating this cause of headache.

An exact balance is required between glasses, crystalline lens, and muscular activity, and only those who have studied the subject carefully are competent to treat so sensitive and necessary a part of the body as the eye. The least mistake in the curvature of the glasses, the least flaw in the type of glass (for example, the kind of glass used), means an improper focus, increased duty for the muscles, and gradual weakening of the entire eye, followed by headache andgeneral physical discomfort.

119. Eye Strain.The extra work which is thrown upon the nervous system through seeing, reading, writing, and sewing with defective eyes is recognized by all physicians as an important cause of disease. The tax made upon the nervous system by the defective eye lessens the supply of energy available for other bodily use, and the general health suffers. The health is improved when proper glasses are prescribed.

Possibly the greatest danger of eye strain is among school children, who are not experienced enough to recognize defects in sight. For this reason, many schools employ a physician who examines the pupils' eyes at regular intervals.

The following general precautions are worth observing:—

1. Rest the eyes when they hurt, and as far as possible do close work, such as writing, reading, sewing, wood carving, etc., by daylight.

2. Never read in a very bright or a very dim light.

3. If the light is near, have it shaded.

4. Do not rub the eyes with the fingers.

5. If eyes are weak, bathe them in lukewarm water in which a pinch of borax has been dissolved.

120. The Magic of the Sun.Ribbons and dresses washed and hung in the sun fade; when washed and hung in the shade, they are not so apt to lose their color. Clothes are laid away in drawers and hung in closets not only for protection against dust, but also against the well-known power of light to weaken color.

Many housewives lower the window shades that the wall paper may not lose its brilliancy, that the beautiful hues of velvet, satin, and plush tapestry may not be marred by loss in brilliancy and sheen. Bright carpets and rugs are sometimes bought in preference to more delicately tinted ones, because the purchaser knows that the latter will fade quickly if used in a sunny room, and will soon acquire a dull mellow tone. The bright and gay colors and the dull and somber colors are all affected by the sun, but why one should be affected more than another we do not know. Thousands of brilliant and dainty hues catch our eye in the shop and on the street, but not one of them is absolutely permanent; some may last for years, but there is always more or less fading in time.

Sunlight causes many strange, unexplained effects. If the two substances, chlorine and hydrogen, are mixed in a dark room, nothing remarkable occurs any more than though water and milk were mixed, but if a mixture of these substances is exposed to sunlight, a violent explosion occurs and an entirely new substance is formed, a compound entirely different in character from either of its components.

By some power not understood by man, the sun is able to form new substances. In the dark, chlorine and hydrogen are simply chlorine and hydrogen; in the sunlight they combine as if by magic into a totally different substance. By the same unexplained power, the sun frequently does just the opposite work; instead of combining two substances to make one new product, the sun may separate or break down some particular substance into its various elements. For example, if the sun's rays fall upon silver chloride, a chemical action immediately begins, and as a result we have two separate substances, chlorine and silver. The sunlight separates silver chloride into its constituents, silver and chlorine.

121. The Magic Wand in Photography.Suppose we coat one side of a glass plate with silver chloride, just as we might put a coat of varnish on a chair. We must be very careful to coat the plate in the dark room,[B]otherwise the sunlight will separate the silver chloride and spoil our plan. Then lay a horseshoe on the plate for good luck, and carry the plate out into the light for a second. The light will separate the silver chloride into chlorine and silver, the latter of which will remain on the plate as a thin film. All of the plate was affected by the sun except the portion protected by the horseshoe which, because it is opaque, would not allow light to pass through and reach the plate. If now the plate is carried back to the dark room and the horseshoe is removed, one would expect to see on the plate an impression of the horseshoe, because the portion protected by the horseshoe would be covered by silver chloride and the exposed unprotected portion would be covered by metallic silver. But we are much disappointed because the plate, when examined ever so carefully, shows not the slightest change in appearance. The change is there, but the unaided eye cannot detect the change. Some chemical,the so-called "developer," must be used to bring out the hidden change and to reveal the image to our unseeing eyes. There are many different developers in use, any one of which will effect the necessary transformation. When the plate has been in the developer for a few seconds, the silver coating gradually darkens, and slowly but surely the image printed by the sun's rays appears. But we must not take this picture into the light, because the silver chloride which was protected by the horseshoe is still present, and would be strongly affected by the first glimmer of light, and, as a result, our entire plate would become similar in character and there would be no contrast to give an image of the horseshoe on the plate.

[Footnote B:That is, a room from which ordinary daylight is excluded.]

[Footnote B:That is, a room from which ordinary daylight is excluded.]

But a photograph on glass, which must be carefully shielded from the light and admired only in the dark room, would be neither pleasurable nor practical. If there were some way by which the hitherto unaffected silver chloride could be totally removed, it would be possible to take the plate into any light without fear. To accomplish this, the unchanged silver chloride is got rid of by the process technically called "fixing"; that is, by washing off the unreduced silver chloride with a solution such as sodium thiosulphite, commonly known as hypo. After a bath in the hypo the plate is cleansed in clear running water and left to dry. Such a process gives a clear and permanent picture on the plate.

FIG. 82.—A camera.FIG. 82.—A camera.

122. The Camera.A camera (Fig. 82) is a light-tight box containing a movable convex lens at one end and a screen at the opposite end.Light from the object to be photographed passes through the lens, falls upon the screen, and forms an image there. If we substitute for the ordinary screen a plate or film coated with silver chloride or any other silver salt, the light which falls upon the sensitive plate and forms an image there will change the silver chloride and produce a hidden image. If the plate is then removed from the camera in the dark, and is treated as described in the preceding Section, the image becomes visible and permanent. In practice some gelatin is mixed with the silver salt, and the mixture is then poured over the plate or film in such a way that a thin, even coating is made. It is the presence of the gelatin that gives plates a yellowish hue. The sensitive plates are left to dry in dark rooms, and when the coating has become absolutely firm and dry, the plates are packed in boxes and sent forth for sale.

Glass plates are heavy and inconvenient to carry, so that celluloid films have almost entirely taken their place, at least for outdoor work.

123. Light and Shade.Let us apply the above process to a real photograph. Suppose we wish to take the photograph of a man sitting in a chair in his library. If the man wore a gray coat, a black tie, and a white collar, these details must be faithfully represented in the photograph. How can the almost innumerable lights and shades be produced on the plate?

The white collar would send through the lens the most light to the sensitive plate; hence the silver chloride on the plate would be most changed at the place where the lens formed an image of the collar. The gray coat would not send to the lens so much light as the white collar, hence the silver chloride would be less affected by the light from the coat than by that from the collar, and at the place where the lens produced animage of the coat the silver chloride would not be changed so much as where the collar image is. The light from the face would produce a still different effect, since the light from the face is stronger than the light from the gray coat, but less than that from a white collar. The face in the image would show less changed silver chloride than the collar, but more than the coat, because the face is lighter than the coat, but not so light as the collar. Finally, the silver chloride would be least affected by the dark tie. The wall paper in the background would affect the plate according to the brightness of the light which fell directly upon it and which reflected to the camera. When such a plate has been developed and fixed, as described in Section 121, we have the so-called negative (Fig. 83). The collar is very dark, the black tie and gray coat white, and the white tidy very dark.

FIG. 83.—A negative.FIG. 83.—A negative.

The lighter the object, such as tidy or collar, the more salt is changed, or, in other words, the greater the portion of the silver salt that is affected, and hence the darker the stain on the plate at that particular spot. The plate shows all gradations of intensity—the tidy is dark, the black tie is light. The photograph is true as far as position, form, and expression are concerned, but the actual intensities are just reversed. How this plate can be transformed into a photograph true in every detail will be seen in the following Section.

124. The Perfect Photograph.Bright objects, such as the sky or a white waist, change much of the silver chloride,and hence appear dark on the negative. Dark objects, such as furniture or a black coat, change little of the chloride, and hence appear light on the negative. To obtain a true photograph, the negative is placed on a piece of sensitive photographic paper, or paper coated with a silver salt in the same manner as the plate and films. The combination is exposed to the light. The dark portions of the negative will act as obstructions to the passage of light, and but little light will pass through that part of the negative to the photographic paper, and consequently but little of the silver salt on the paper will be changed. On the other hand, the light portion of the negative will allow free and easy passage of the light rays, which will fall upon the photographic paper and will change much more of the silver. Thus it is that dark places in the negative produce light places in the positive or real photograph (Fig. 84), and that light places in the negative produce dark places in the positive; all intermediate grades are likewise represented with their proper gradations of intensity.

FIG. 84.—A positive or true photograph.FIG. 84.—A positive or true photograph.

If properly treated, a negative remains good for years, and will serve for an indefinite number of positives or true photographs.

125. Light and Disease.The far-reaching effect which light has upon some inanimate objects, such as photographic films and clothes, leads us to inquire into the relation which exists between light and living things. We know from daily observation that plants must have light in order to thriveand grow. A healthy plant brought into a dark room soon loses its vigor and freshness, and becomes yellow and drooping. Plants do not all agree as to the amount of light they require, for some, like the violet and the arbutus, grow best in moderate light, while others, like the willows, need the strong, full beams of the sun. But nearly all common plants, whatever they are, sicken and die if deprived of sunlight for a long time. This is likewise true in the animal world. During long transportation, animals are sometimes necessarily confined in dark cars, with the result that many deaths occur, even though the car is well aired and ventilated and the food supply good. Light and fresh air put color into pale cheeks, just as light and air transform sickly, yellowish plants into hardy green ones. Plenty of fresh air, light, and pure water are the watchwords against disease.

FIG. 85—Stems and leaves of oxalis growing toward the light.FIG. 85—Stems and leaves of oxalis growing toward the light.

In addition to the plants and animals which we see, there are many strange unseen ones floating in the atmosphere around us, lying in the dust of corner and closet, growing in the water we drink, and thronging decayed vegetable and animal matter. Everyone knows that mildew and vermin do damage in the home and in the field, but very few understand that, in addition to these visible enemies of man, there are swarms of invisible plants and animals some of which do far more damage, both directly and indirectly, than the seen and familiar enemies. All such very small plants and animals are known asmicroorganisms.

Not all microörganisms are harmful; some are our friends and are as helpful to us as are cultivated plants and domesticated animals. Among the most important of the microörganisms are bacteria, which include among their number both friend and foe. In the household, bacteria are a fruitful source of trouble, but some of them are distinctly friends. The delicate flavor of butter and the sharp but pleasing taste of cheese are produced by bacteria. On the other hand, bacteria are the cause of many of the most dangerous diseases, such as typhoid fever, tuberculosis, influenza, and la grippe.

By careful observation and experimentation it has been shown conclusively that sunlight rapidly kills bacteria, and that it is only in dampness and darkness that bacteria thrive and multiply. Although sunlight is essential to the growth of most plants and animals, it retards and prevents the growth of bacteria. Dirt and dust exposed to the sunlight lose their living bacteria, while in damp cellars and dark corners the bacteria thrive, increasing steadily in number. For this reason our houses should be kept light and airy; blinds should be raised, even if carpets do fade; it is better that carpets and furniture should fade than that disease-producing bacteria should find a permanent abode within our dwellings. Kitchens and pantries in particular should be thoroughly lighted. Bedclothes, rugs, and clothing should be exposed to the sunlight as frequently as possible; there is no better safeguard against bacterial disease than light. In a sick room sunlight is especially valuable, because it not only kills bacteria, but keeps the air dry, and new bacteria cannot get a start in a dry atmosphere.

126. The Rainbow.One of the most beautiful and well-known phenomena in nature is the rainbow, and from time immemorial it has been considered Jehovah's signal to mankind that the storm is over and that the sunshine will remain. Practically everyone knows that a rainbow can be seen only when the sun's rays shine upon a mist of tiny drops of water. It is these tiny drops which by their refraction and their scattering of light produce the rainbow in the heavens.

The exquisite tints of the rainbow can be seen if we look at an object through a prism or chandelier crystal, and a very simple experiment enables us to produce on the wall of a room the exact colors of the rainbow in all their beauty.


Back to IndexNext