Chapter 10

Fig. 49.—A compound colony of fossil graptolites characteristic of late Ordovician time, fully 20,000,000 years ago. Each little prong once held a tiny individual living graptolite which was a very simple type of animal belonging to the subkingdom called “Cœlenterates.” (Modified after Ruedemann.)

Fig. 49.—A compound colony of fossil graptolites characteristic of late Ordovician time, fully 20,000,000 years ago. Each little prong once held a tiny individual living graptolite which was a very simple type of animal belonging to the subkingdom called “Cœlenterates.” (Modified after Ruedemann.)

The Cœlenterates, which comprise the simplest of the many-celled animals, are saclike forms with mouth openings, but with few other differentiations of parts. All are marine animals. Of these the sponges are porous, and the other types (including corals) have tentacles around their mouths. Sponges have been more or less common from early Paleozoic time to the present, and they have undergone relatively little change. “Jellyfishes,” which are in truth not fishes at all, are wholly soft or gelatinousCœlenterates which have left some very remarkable impressions and casts in strata of very early Paleozoic age, those very ancient forms evidently having been almost exactly like those of to-day. Graptolites were slender, plumelike, delicate forms consisting of colonies of tiny individuals, in many cases in branching or radiating combinations. They existed only during the first half of the Paleozoic era. Both because they floated in the open sea, thus permitting widespread distribution, and because they underwent many distinct species changes during short geologic intervals, they are among the most useful fossils for separating the various subdivisions of strata of the earlier Paleozoic.

Fig. 50.—Corals, representing the very simple subkingdom of animals called “Cœlenterates”: a, fossil shell of an individual “cup coral” found only in Paleozoic strata; b, a compound or “chain coral” skeleton found only in relatively old Paleozoic strata; and c, part of a modern coral colony showing living corals.

Fig. 50.—Corals, representing the very simple subkingdom of animals called “Cœlenterates”: a, fossil shell of an individual “cup coral” found only in Paleozoic strata; b, a compound or “chain coral” skeleton found only in relatively old Paleozoic strata; and c, part of a modern coral colony showing living corals.

Corals comprise another important branch of the Cœlenterates. During the Cambrian period there were corallike sponges and possibly simple corals, but from the early Ordovician to the present true corals have been common, especially in the clearer, warmer seas. Their carbonate of lime skeletons have accumulated to help build up great limestone formations representing almost every geologic age from early Paleozoic time to the present. Paleozoiccorals were in general notably different from those of later time. There were three main types including the compound “honeycomb” and “chain” types, and the solitary or compound “cup” type. They all had four, or multiples of four, radiating partitions; were rarely branched; and were generally large, some individual cup corals ranging in length from half an inch to a foot or more. Modern corals (beginning with the Mesozoic) have six or eight partitions; are nearly all profusely branched; and are mostly tiny individuals.

Echinoderms are all marine animals, including the so-called “starfishes,” which are not really fishes. They have body cavity, with digestive canal, low order nervous system, and a water circulatory system. Most of them have radially segmented shells or skeletons. The oldest fossil forms are found in Cambrian strata, these being very simple or primitive types, with a bladderlike head set on the end of a segmented stem, both head and stem having been supported by carbonate of lime. Such forms lived only to middle Paleozoic time. Ordovician strata contain representatives of all the main types of Echinoderms in well-fossilized forms.

Fig. 51.—Fossil Echinoderms or so-called “starfishes”: a, simple type known as the “stone lily” with head, stem, and roots intact from Silurian strata; b and c, irregular and regular higher type Echinoderms called “sea urchins” from Cretaceous strata.

Fig. 51.—Fossil Echinoderms or so-called “starfishes”: a, simple type known as the “stone lily” with head, stem, and roots intact from Silurian strata; b and c, irregular and regular higher type Echinoderms called “sea urchins” from Cretaceous strata.

A stemmed Echinoderm of special interest, first known from the Ordovician, has persisted to the present day. It is the so-called “sea lily” or “stone lily,” consisting of a complex, headlike portion attached to the sea bottom by a long segmented stem, the whole being supported by lime carbonate. They were very numerous during the Silurian, but they seem to have culminated in variety of species and numbers of individuals during the Mississippian period when they were exceedingly profuse. Hundreds of species of “stone lilies” are known fromMississippian strata alone, and in certain localities, as at Crawfordsville, Ind., and Burlington, Ia., the “stone lily” remains are so numerous that when living they must have literally forested parts of the sea bottom. From Mississippian time to middle Mesozoic time they occupied a relatively subordinate position when they again developed in great profusion.The Mesozoic forms were distinctly more like those of to-day, and it scarcely seems credible that any creature could have contained such a multiplicity of hard parts, more than 600,000 segments having been counted in a single fossil from Jurassic strata. The “sea lilies” of to-day are relatively unimportant.

The familiar five-pointed “starfishes,” so common along our seacoasts, are first known from the Ordovician, and they persisted through the many millions of years to the present time with remarkably little change. The so-called “sea urchins” live in rounded, segmented lime-carbonate shells bristling with movable spines. “Sea urchins” are first known from the Ordovician, but they did not become abundant and diversified until Mesozoic time, when many of them took on a very modern aspect.

Worms are known to have existed ever since late Proterozoic time, as proved by the occurrence of tracks, borings and more rarely delicate impressions on rock surfaces. Because of their softness they have rarely been well fossilized and are, therefore, of no great evolutionary or geological importance.

Fig. 52.—Fossil brachiopods belonging to the subkingdom of animals known as “Molluscoids”: a, b, c, forms characteristic of the Ordovician, Devonian, and Triassic periods, respectively.

Fig. 52.—Fossil brachiopods belonging to the subkingdom of animals known as “Molluscoids”: a, b, c, forms characteristic of the Ordovician, Devonian, and Triassic periods, respectively.

The subkingdom Molluscoids has been richly represented by both the so-called “sea mosses” and brachiopods. The “sea mosses” form colonies of tiny mosslike tufts, resembling corals outwardly, though they are much more highly organized. They have been common from Ordovician time to the present, their carbonate of lime skeletons often having contributed to the building of limestone formations. Brachiopods always have two external shells or valves, in most cases working on a hinge, and also a pair of long, spiral-fringed arms associated with the soft part of the animal inside the shells.They differ from the other type of bivalve (e.g., clam, oyster) in that they are symmetrical with reference to a plane passed through the middle of the shells at right angles to the hinge line. They have rarely grown to be more than a few inches long. A few scant brachiopod remains are known from the late Proterozoic, but throughout known geologic time they reached their greatest development in the Paleozoic era, more especially in the Devonian period. Combining number of species and number of individuals, the brachiopods probably hold the record of all important groups of fossil animals, more than 7,000 species being known. Many layers of rock are filled with their shells (Plate 14). Since the close of the Paleozoic they have fallen off notably, and are now represented by relatively few small forms. From the standpoint of evolution it is interesting to note that in very early Paleozoic time the brachiopods were mostly small, of relatively simple organization, and their thin shells were not joined by hinges. Later they became larger and more complex and their thicker shells worked on hinges. Nearly all the Paleozoic forms had long, straight hinge lines, which made it difficult for their enemies to open them. Along with the change to narrower, curved hinge lines came the decline of the tribe. They have been ofgreat value to the geologist in subdividing the geological column of strata into its many formations.

The Mollusks, which are more highly organized than the Molluscoids, have more or less distinctly developed heads and locomotive organs. Many thousands of species are now extinct, the classes of most geological importance being represented by clams, snails, and the pearly nautilus. Most of them have shells and gills for breathing. The members of the simplest group, well represented by the clam tribe, possess two similar shells working on hinges, so that in this regard they are much like brachiopods, but, unlike the latter, they are not symmetrical with reference to a plane at right angles to the hinge line. Cambrian strata contain the oldest known of the fossil forms where they are small, relatively thin-shelled, and rare. In marked contrast to the brachiopods these bivalves have rather steadily increased in numbers of species and individuals to the present time, now being represented by thousands of forms. During the Mesozoic era they greatly out-numbered the brachiopod bivalves and took on a more distinctly modern aspect, when the oyster tribe and closely related types were prominently developed. Culmination in size and thickness of shell seem to have been reached in early Cenozoic time, strata of that age in certain places, for example in Georgia and southern California, being filled with oyster shells 10 to 20 inches long and 4 to 6 inches thick! In addition to their gigantic size and thickness, many of the shells were fluted or ribbed, and so they represented an extreme type of defensive armor among the lower animals.

Snails have existed from the earliest Paleozoic era to the present time, and the outstanding fact of interestconcerning them is that they furnish one of the finest illustrations of an important class of animals which has undergone practically no conspicuous change or evolution during all those millions of years of time.

Fig. 53.—Sketches of chambered cephalopods showing the main steps in the evolution of the shell forms and compartment partitions: a, b, the only kinds in Cambrian time; c, d, forms added in the Ordovician; e, added in the Devonian; f, added in the late Paleozoic; g, h, characteristic of the Mesozoic era; and i, a living form (pearly nautilus) cut through. (Drawn by the author.)

Fig. 53.—Sketches of chambered cephalopods showing the main steps in the evolution of the shell forms and compartment partitions: a, b, the only kinds in Cambrian time; c, d, forms added in the Ordovician; e, added in the Devonian; f, added in the late Paleozoic; g, h, characteristic of the Mesozoic era; and i, a living form (pearly nautilus) cut through. (Drawn by the author.)

We shall now turn our attention to the highest order of Mollusks—the cephalopods. These creatures, whose heads are armed with powerful tentacles and supplied with complex eyes, propel themselves by forcible ejection of water. One general type—the chambered cephalopod—has a shell divided into compartments (e.g., modern pearly nautilus) which are successively built up and abandoned by the animal as it grows larger. These chamber-shelled cephalopods constitute one of the most remarkable and instructive illustrations of evolutionary change within any important subgroup of invertebrate animals, ranging from early Paleozoic to the present. Both because of the abundance of fossil forms in rocks of all these periods of geological times, and because certain of the evolutionary changes are so clearly expressed in the well preserved shell portions, they are specially adapted for study. In the late Cambrian only straight and slightly curved forms with smooth, nearly straight chamber partitions existed. Notable advance took place during the next (Ordovician) period when there were straight, curved, open-coiled, and even close-coiled forms. All had simple partitions, and the straighter forms predominated. "The size attained by the Ordovician cephalopods was probably never surpassed by representatives of the class. Some of the (straight) shells were twelve to fifteen feet in length, and a foot in diameter. From this great size they ranged down to or below the sizeof a pipe stem." (Chamberlin and Salisbury.) They were more than likely the undisputed masters of the Ordovician seas. Silurian time marked no importantchange in their structures, but the coiled forms predominated for the first time. During the second half of the Paleozoic era all preceding types with simple partitions persisted, but in some forms the simple partitions gradually became angled and finally rather complexly curved. During the Mesozoic era the partition lines of the close-coiled forms evolved until a most remarkable degree of complexity was attained, comparable, indeed, to the sutures of the human skull plates. These remarkable forms called ammonites, of which more than 2,000 species are known, began with the Mesozoic, reached their climax, and passed out of existence toward the close of the same era. Certain strata of Jurassic age are literally filled with ammonites, some shells being several feet in diameter. Various eccentric changes took place in the ammonites shortly before their extinction. Some shells became uncoiled and even straight, thus outwardly at least showing reversion to the original early Paleozoic ancestors, but with retention of the complex partitions. Others assumed spiral shapes and still others became curved or coiled at each end. While these extraordinary evolutionary changes were going on among the chambers of cephalopods during Mesozoic time, some of the ancient close-coiled forms with very simple partitions managed to persist. In fact this simple type, almost exactly like its early Paleozoic ancestor, has been the only one out of this whole remarkable class of animals to persist to the present time, being now barely represented by the well-known pearly nautilus of the Indian Ocean.

During the Mesozoic era the highest type of cephalopod, represented by modern squids and so-called “cuttlefishes,” branched off and developed ingreat profusion. These had slender internal shells, but no external chambered shells. An inky black liquid secreted in a bag was forced out to cloud the water when the animal was escaping its enemy, thus antedating by millions of years the principle of smoke screen so effectively used by ships during the World War. Some Jurassic species got to be over two feet long, and a few specimens of that age have been found in such perfect state of preservation that drawings of the fossils have actually been made with the ink (after moistening) taken from their own ink bags.

Fig. 54.—A fossil nonchambered cephalopod of Jurassic age. It was closely related to the modern squid, and its ink bag is well shown just to the left of the middle. (Modified after Mantell.)

Fig. 54.—A fossil nonchambered cephalopod of Jurassic age. It was closely related to the modern squid, and its ink bag is well shown just to the left of the middle. (Modified after Mantell.)

Before concluding this chapter we shall take up the salient points in the geological history of Arthropods which constitute the highest subkingdom of all animals except the Vertebrates. They are now very abundant and varied, familiar examples being crabs and insects. A few scant remains of simpler forms are known from the Proterozoic, but since very early Paleozoic time they have been very common and have undergone great evolutionary changes. A few striking examples only will be dwelt upon. Among the most common and interesting of all Paleozoic animals were the trilobites, distantly related to modern lobsters and crabs.

Fig. 55.—Restorations of trilobites based upon actual fossils characteristic of earlier Paleozoic time: a, Cambrian; b, Ordovician; c, Devonian; b shows the appendages.

Fig. 55.—Restorations of trilobites based upon actual fossils characteristic of earlier Paleozoic time: a, Cambrian; b, Ordovician; c, Devonian; b shows the appendages.

Some of these grew to be two feet long, but usually they were only one or two inches long. First known from the earliest Paleozoic, they reached their culmination relatively early in the era and then dwindled away to utter extinction before its close. "They were characteristic of the Paleozoic era, beginning in great variety in the Lower Cambrian and dominating the seas of the Cambrian (300 species) and Ordovician (950 species). In the Silurian, though they were still common, the trilobites were nevertheless on the decline (485 species), and this ebbing of their vital force is seemingly shown in many picturesque forms replete with protuberances, spines, and exaggeration of parts. As a rule, in evolution, one finds that when an organic stock is losing its vital force there arises in it an exaggeration of parts, as if heroic efforts were being made to maintain the race. Spinosity in animals is often the prophecy of tribal death. In the Devonian, the variety and number of the trilobites were greatly reduced (105 species),at a time when the ancient types of fishes, which undoubtedly fed on these crustaceans (trilobites), began to be common in the seas. In the later Paleozoic seas, the trilobites were relics, or animals surviving from a time better suited to their needs, and one by one they vanished, until a little before the close of the Paleozoic era none were left." (Schuchert.)

Fig. 56.—A giant, sea scorpion of Devonian time. Length nearly 3 feet. (After Clarke and Ruedemann, New York State Museum.)

Fig. 56.—A giant, sea scorpion of Devonian time. Length nearly 3 feet. (After Clarke and Ruedemann, New York State Museum.)

An extraordinary type of Arthropod which ranged throughout Paleozoic time and became extinct at its close was the so-called “sea scorpion,” closely related to the modern scorpion. Their five or six pairs of appendages all came out from the head portion, one pair in some cases having been developed as powerful pincers. Their culmination in size was reached during the Devonian when some forms grew to the astonishing length of over eight feet! Such gigantic creatures must have been tyrants of the seas until they were subdued by the oncoming powerful fishes. True scorpions are known from rocks as old as the Silurian. Lobstersand crabs made their appearance during the Mesozoic era.

Since insects constitute the highest subdivision of Arthropods, they include the very highest forms of animal life except the Vertebrates. The oldest known fossil insects are from Pennsylvanian strata, more than 1,000 species having been described from rocks of that age. They were all simple or primitive types like cockroaches and dragon flies, and were remarkable for size. Giant cockroaches got to be four inches long. One form of dragon fly, with a spread of wing of over two feet, was probably the largest insect which ever lived (Plate 15). Development of insect life was especially favored during the great Coal Age because of the prolific vegetation, but more than likely insects originated somewhat earlier. Early in the Mesozoic era a great progressive change began to come over insect life and higher forms gradually evolved until by the close of the era many of the highest types like flies, ants, and bees were common. As might be expected, the highest insects did not develop until after the appearance of the true flowering plants in later Mesozoic time, butterflies apparently not having evolved until early in Cenozoic time. Many of the thousands of known species of fossil insects are from strata of Tertiary age during which time they may have been even more numerous than to-day, although there are about 400,000 species now living. An almost incredible case is a Tertiary stratum only a few feet thick in Switzerland from which nearly 1,000 species of insects have been unearthed. Another famous locality is Florissant, Colorado, where during early Tertiary time there was a small lake into which showers of fine volcanic dust fell andentombed vast numbers of insects, more than 2,000 species having been unearthed. Still another extraordinary occurrence is along the shores of the southern Baltic Sea where more than 2,000 species of insects have been found in a fossil resin called amber. The insects were caught in the still soft sticky resin while it was exuding from the trees, and thus we have the insects, fully two or three million years old, literally embalmed and marvelously preserved, often in beautifully transparent amber.

CHAPTER XIX

GEOLOGICAL HISTORY OF VERTEBRATE ANIMALS (INCLUDING MAN)

V

VERTEBRATES comprise the highest subkingdom of all animals with man himself at the very top. They are characterized by the possession of a vertebral column, which, in all but the very simple or primitive forms, is an ossified backbone. Their main subdivisions are given in the classification table near the beginning of the preceding chapter. The oldest known Vertebrates, found in fossil form in middle Ordovician strata, were represented by curious and bizarre creatures called ostracoderms, or more popularly “armor fishes.” They were not true fishes because they were really somewhat lower in the scale of organization than fishes. Some were distinctly fishlike in appearance, and others notably resembled certain of the Arthropods, so that some students consider them to have formed the connecting link between the highest Invertebrates (Arthropods) and low order fishes of the Vertebrates. The vertebral column always consisted of cartilage or gristle and, in most forms, it extended through tail fin. None had true side fins like fishes, but many were provided with a pair of jointed flappers or paddles. The jawlike portions of the heads moved over each other sidewise as, for example, in beetles and not up and down in true Vertebrate fashion. Two eyes were always very close together.One of the most striking features was the protection of the head and fore part of the body by an armor of bony plates, while the rest of the body had scales. They seldom grew to be more than six or seven inches long. Beginning in the Devonian, they remained rare during the Silurian, and then in the Devonian period they reached their climax of development only to become extinct at its close. Many species were abundantly represented in many parts of the world. By some the Ostracoderms are thought to have been a primitive (sharklike) fish development in the wrong direction, and hence they became extinct.

Fig. 57.—Two restored forms of very primitive and ancient (Devonian) types of Vertebrates called “ostracoderms.” They were lower in organization than true fishes. (After Dean-Woodward and British Museum, respectively.)

Fig. 57.—Two restored forms of very primitive and ancient (Devonian) types of Vertebrates called “ostracoderms.” They were lower in organization than true fishes. (After Dean-Woodward and British Museum, respectively.)

Fishes, represented only by very primitive sharks, are known to have existed as early as the Silurian period, but the remains are scant. During the Devonian period, however, they showed a marvelous development into many species and countless myriadsof individuals. The Devonian is, therefore, commonly called the “Age of Fishes.” These very ancient (Devonian) primitive (fish) types of Vertebrate animal life are of profound significance in organic evolution because they were the direct progenitors of the great groups of still higher Vertebrates which since later Paleozoic time gradually increased in diversity and complexity of structure through amphibians, reptiles, birds, and mammals finally to man himself.

Fig. 58.—Restorations of characteristic Devonian fishes, based upon actual fossils: a, a “lung fish” with leglike fins (after Huasakof); b, a “ganoid.” (After Nicholson.)

Fig. 58.—Restorations of characteristic Devonian fishes, based upon actual fossils: a, a “lung fish” with leglike fins (after Huasakof); b, a “ganoid.” (After Nicholson.)

In marked contrast to the most typical and highly organized fishes so abundant to-day, all Devonian fishes were of simple types with cartilaginous skeletons and vertebrated tails. Many of them were also generalized types, that is, associated with their clearly defined fish characters were others connecting them with certain higher Vertebrates, as, for example, amphibians and reptiles. Thus all their tail fins were vertebrated as in reptiles; theirlabyrinthine, internal tooth structure was to be an amphibian feature when those creatures evolved; many had protective armor or bony scales like most early amphibians and many modern reptiles; and many had paired fins which were something like jointed legs. Most abundant and highly organized of the Devonian fishes were “ganoids,” characterized by a covering of small plates or bony scales set together but not overlapping like in typical modern fishes. Their intricate tooth structure and limblike fins strongly suggest the amphibians of later Paleozoic time. The skeleton of cartilage gradually became somewhat ossified during succeeding geologic periods. From their great profusion and diversity in the Devonian period the ganoids have steadily fallen away until they now have very few descendants like the gar pike.

Another important group of remarkable fishes, now totally extinct, but common in Devonian and somewhat later time, had heavy, bony armor plates over the fore part of the body. Those which grew to be fifteen to twenty-five feet long were probably the rulers of the middle Paleozoic seas. Another remarkable Devonian fish was able to breathe in both water and air because, like their few modern descendants, they had both gills and lungs. Because of their leglike fins and lung sac, it is commonly believed that they were progenitors of the later Paleozoic amphibians. The simplest of all fishes, the sharks, began in the Silurian, underwent no important change through the millions of years since, and are now of course well represented. During early Cenozoic time the sharks seem to have reached culmination in size—sixty to eighty feet long, with teeth five or six inches long.

Among modern fishes the most abundant by far, and the most highly organized, are the true bony fishes, called the “teleosts,” which made their first appearance in the middle of the Mesozoic era. Those earliest forms clearly show their descent from the ganoids. Apparently they have not yet passed their prime.

We shall now consider the next higher group of Vertebrates, the amphibians, which breathe by gills when young and later develop lungs. Many live both on land and in water like the frogs. Unlike fishes they have legs with toes and not fins. Beginning probably in the Devonian as a branch of the fishes, amphibians showed a marvelous development during later Paleozoic and very early Mesozoic times when they reached their climax, after which they fell off remarkably, being now relatively unimportant like the frogs and salamanders. They are of special significance because they were the first of all the back-boned animals (Vertebrates) to inhabit the land which they dominated only until the great rise of reptiles of Mesozoic time. The reptiles in fact evolved from the amphibians in the late Paleozoic when many transition forms occurred. (Plate 15.) During those ancient days the numerous and very diversified amphibians were like giant salamanders, commonly five to eight feet long, with one Triassic form fifteen to twenty feet long, and with heavily armored skulls two to four feet long.

Turning now to the reptiles we find that they are much more distinctly land animals than the preceding types of Vertebrates. Reptilian life of the earth began in late Paleozoic time as an evolutionary branch of the amphibians. The earliest forms were in many ways much like the amphibians, but graduallythey diversified and progressed so that before the close of the Mesozoic era, which has long been called the “Age of Reptiles,” they were the rulers of the world. “They covered the land with gigantic herbivorous and carnivorous forms; they swarmed in the sea, and, as literal dragons, they dominated the air.” (Scott.) Mesozoic reptiles are of special interest and significance not only in themselves, but also because from one of their branches the birds were evolved, and from another the mammals. “In advancing from the amphibian to the reptile the evolution of the Vertebrates was far from finished. The cold-blooded, clumsy and sluggish, small-brained and unintelligent reptile is as far inferior to the higher mammals, whose day was still to come, as it is superior to the amphibian and the fish.” (Norton.)

Since the reptiles of the Mesozoic era constitute one of the few most remarkable and diversified classes of animals which ever inhabited the earth, we shall attempt to give the reader a fair idea of the most typical groups which have been totally extinct since the close of the Mesozoic era some millions of years ago. Of the swimming reptiles which lived in the seas many types are known and only a few will be described. Among these one important type was the ichthyosaur, a fishlike form which not uncommonly grew to be twenty to even forty feet long (Plate 18). The large head, sometimes four or five feet long, contained as many as 200 big sharp teeth and enormous eyes up to a foot in diameter. The body was heavy set, and the neck very short. There were four short, stout swimming paddles, and the tail was vertebrated. Some specimens of ichthyosaurs have been so perfectly preserved in Mesozoic strata that even the unborn young are plainly seen in the bodies! In some cases it is actually possible to tell what was the last meal of a particular ichthyosaur those millions of years ago; in one specimen, for example, remains of 200 creatures of the “cuttle-fish” tribe having been found in the exact position of the stomach.

Fig. 59.—Chart showing the main branches in the history of Vertebrate (back-boned) animal life reaching its culmination in man. (By the author, in part after Cleland.)

Fig. 59.—Chart showing the main branches in the history of Vertebrate (back-boned) animal life reaching its culmination in man. (By the author, in part after Cleland.)

The mosasaurs of the late Mesozoic were the only real sea serpents of the geologic ages. They were something like the ichthyosaurs, but with smaller heads and much longer, more slender, serpentlike bodies. Some grew to be thirty or forty feet long.

Plesiosaurs were perhaps the strangest of all the Mesozoic marine reptiles. They grew to be forty to fifty feet long, with stout body, very long, slender neck, small head, short tail, and four long, powerful swimming paddles which were distinctly leglike. These and the mosasaurs were both flesh eaters, as shown by the sharp teeth.

Plate 15.—(a)Restoration of a Late Paleozoic (Coal Age) Landscape.Showing the main kinds of plants which have entered into the making of most of our coal. Giant “club mosses” both with and without branches, in the left background; giant “horsetail” (or “scouring rush”) plants on the right; and seed ferns in the left foreground. A primitive reptile in the water; two large amphibians or giant salamanders, called “stegocephalians,” on the land; and a great “dragon fly,” two feet wide, in the air. (From a drawing by Prof. Williston. Courtesy of D. Van Nostrand Co.)

Plate 15.—(a)Restoration of a Late Paleozoic (Coal Age) Landscape.Showing the main kinds of plants which have entered into the making of most of our coal. Giant “club mosses” both with and without branches, in the left background; giant “horsetail” (or “scouring rush”) plants on the right; and seed ferns in the left foreground. A primitive reptile in the water; two large amphibians or giant salamanders, called “stegocephalians,” on the land; and a great “dragon fly,” two feet wide, in the air. (From a drawing by Prof. Williston. Courtesy of D. Van Nostrand Co.)

Plate 15.—(b)Photograph of a Fossil Fern or Seed Fern Frond on a Piece of Shale Millions of Years Old.The specimen is of the Pennsylvanian Age and was taken from the coal fields of Pennsylvania. (After White, U. S. Geological Survey.)

Plate 15.—(b)Photograph of a Fossil Fern or Seed Fern Frond on a Piece of Shale Millions of Years Old.The specimen is of the Pennsylvanian Age and was taken from the coal fields of Pennsylvania. (After White, U. S. Geological Survey.)

Plate 16.—Restoration Showing the General Appearance of Some of the Largest Animals Which Ever Trod the Earth.A mounted skeleton in the American Museum of Natural History is sixty-seven feet long, and the skeleton of a similar creature in the Carnegie Museum, Pittsburgh, is eighty-seven feet long. They lived millions of years ago during the middle and late Mesozoic era. (After C. R. Knight. Courtesy of the American Museum of Natural History, New York.)

Plate 16.—Restoration Showing the General Appearance of Some of the Largest Animals Which Ever Trod the Earth.A mounted skeleton in the American Museum of Natural History is sixty-seven feet long, and the skeleton of a similar creature in the Carnegie Museum, Pittsburgh, is eighty-seven feet long. They lived millions of years ago during the middle and late Mesozoic era. (After C. R. Knight. Courtesy of the American Museum of Natural History, New York.)

The most remarkable walking reptiles of all time were the dinosaurs or “terrible lizards.” We shall describe enough types of these unique creatures to give the reader a fair idea of their appearance and habits. Most astonishing of all were the sauropods including the largest animals which ever trod the earth. They grew to be as much as sixty to ninety feet or more in length. Remarkably well preserved skeletons have been found, one from Utah, eighty-seven feet long, being mounted in the Carnegie Museum of Pittsburgh. The largest of these brutes stood fifteen to twenty feet high and they must have weighed thirty to fifty tons. The very long, serpentlike neck and tail, and very small head were grotesque features. Considering the structure of the dinosaurs, the kind of strata in which they are embedded, and the associated fossil remains, it seems clear that they mostly lived in and near fresh water and on near-by lowlands. The character of their teeth shows that they fed entirely on soft plants which they must have habitually bolted because their teeth were not well adapted to grinding food. It is difficult to believe that a single huge beast could have consumed less than a few hundred pounds of vegetable matter per day, and, on account of the very small size of the head, he must have spent most of his time eating. Also the comparatively very small size of the brain, and its simplicity of structure, render it certain that they were extremely stupid creatures. “To make up for this they had an enormous enlargement of the spinal cord in the sacral region (i.e., over the hind legs). This sacral brain—if we may so call it—was ten to twenty times bigger than the cranial brain. It was necessary in order to work the powerful hind legs and tail.” (Le Conte.)

Fig. 60.—Skeleton of a great four-legged (sauropod) dinosaur. A mounted skeleton in the American Museum of Natural History, New York, is sixty-seven feet long. This creature lived millions of years ago during the Jurassic period. (After Marsh.)

Fig. 60.—Skeleton of a great four-legged (sauropod) dinosaur. A mounted skeleton in the American Museum of Natural History, New York, is sixty-seven feet long. This creature lived millions of years ago during the Jurassic period. (After Marsh.)

Another dinosaur, in some respects like the sauropod, was the stegosaur which grew to be twenty to thirty feet long, and heavier than the elephant. Unlike the sauropod, it had a short neck and was armored with a double row of great plates over itsback, and sharp spines (one to three feet long) toward the end of the tail. The excessive stupidity of the creature is proved by the fact that its very simple brain weighed less than three ounces! Stegosaurs were plant eaters as indicated by the tooth structure, and, though they looked ferocious, they were probably not fighters, certainly at least nothing like the carnivorous types of dinosaurs we shall soon describe.

Fig. 61.—Skeleton of the curious kind of dinosaur (stegosaur) of Mesozoic Age with great bony plates over the back. Length about thirty feet. (After Marsh.)

Fig. 61.—Skeleton of the curious kind of dinosaur (stegosaur) of Mesozoic Age with great bony plates over the back. Length about thirty feet. (After Marsh.)

The ferocious dinosaurs of Mesozoic time were carnivorous, or flesh eaters, as shown by their numerous sharp teeth in relatively large heads. The largest known type is the tyrannosaur, an almost perfect skeleton of which, 40 feet long and 16 feet high, is mounted in the American Museum of Natural History in New York (Plate 17). So far as known, this was the largest carnivorous animal which ever walked on the earth. It is evident from the structure that it walked on its hind legs, the front ones having been much shorter and used something like arms. There were also various othersmaller forms of two-legged flesh-eating dinosaurs, many of the wonderfully preserved tracks in the Triassic sandstones of the Connecticut River Valley having been made by such creatures when they walked around over soft, sandy mud flats at least eight or ten million years ago. The sandy mud with its tracks became somewhat hardened and then deeply buried under much more sediment which, through the ages, has been eroded off, thus exposing to view certain of the layers covered with tracks. Some bones of dinosaurs have also been found in the Connecticut Valley.

Fig. 62.—Skeleton (restored) of a great two-legged dinosaur of the Mesozoic era. This type of plant eater grew to be fully twenty-five feet long. (After Marsh.)

Fig. 62.—Skeleton (restored) of a great two-legged dinosaur of the Mesozoic era. This type of plant eater grew to be fully twenty-five feet long. (After Marsh.)

Another remarkable type of two-legged dinosaur was much like the flesh eaters just described, but they were plant eaters. The largest of these grew to be 30 feet long and 15 to 20 feet high, comparable, therefore, to the tyrannosaur in size. A wonderful collection of almost perfect skeletons may be seen in the museum in Brussels, Belgium.In mining coal 1,000 feet below the surface in Belgium, twenty-two complete skeletons and several partial skeletons were found in an ancient river deposit of Cretaceous Age. A marvelously preserved specimen of one of these two-legged plant eaters found in Wyoming, has been called a “dinosaur mummy” because the skin and much of the flesh of the creature had shriveled down upon its bones. The minutest details of the texture of its skin are almost perfectly preserved.

Fig. 63.—Skeleton of a dinosaur (triceratops) with a large remarkable head. This creature grew to be twenty-five feet long during Cretaceous time. (After Marsh.)

Fig. 63.—Skeleton of a dinosaur (triceratops) with a large remarkable head. This creature grew to be twenty-five feet long during Cretaceous time. (After Marsh.)

Another type of dinosaur, so different from the others, should be briefly described. This was triceratops, or the “three-horned face” beast, so named because of the three powerful horns which projected forward from the top of the very large, flattened skull. It grew to be twenty to twenty-five feet long. Skulls six to eight feet long have been unearthed. Just where the brain might have developed, the skull dished downward, and so one authority considers triceratops to have had the largest head and smallest brain of all the great reptiles.

It is well known that dinosaurs of many types lived during the great “Age of Reptiles,” though by no means all types ranged through the wholeera. No dinosaurs are definitely known to have crossed the line into the Cenozoic era. One of the most astonishing facts in the history of animal life is the extinction of the mighty dinosaurs, but no very satisfactory explanation has yet been offered. Probably their great size was a contributing factor, for it is well known “that while very large animals spend nearly all their time in eating, small animals spend a small proportion of theirs, and most of it in other activities. Now, as long as food is abundant, the larger animals of a race have the better chances, but if a scarcity of food ensues, the larger animals may all be suddenly swept out of existence.” (Matthew.) Whatever may have been the real reason for dinosaur extinction we can at least be sure “that with the extensive changes in the elevation of land areas (Rocky Mountain Revolution) which mark the close of the Mesozoic, came the withdrawing of the great inland Cretaceous seas along the low-lying shores of which the dinosaurs had their home, and with the consequent restriction of old haunts, came the blotting out of a heroic race. Their career was not a brief one, for the duration of their recorded evolution was twice that of the subsequent mammalian (Cenozoic) age. They do not represent a futile attempt on the part of nature to people the world with creatures of insignificant moment, but are comparable in majestic rise, slow culmination, and dramatic fall to the greatest nations of antiquity.” (Schuchert.)

Among the most extraordinary animals not only of the Mesozoic, but also of all time, were the flying reptiles or literal dragons of the air. Some were very small, while others were the largest creatures which ever flew, with a spread of wing of twenty to twenty-fivefeet—twice that of any modern bird. Unlike birds they had no feathers, but the two wings consisted of large membranes (batlike) supported by one enormously elongated finger of each front limb. The other fingers were armed with sharp claws. The early Mesozoic flying reptiles had sharp teeth, while the later ones were mostly entirely toothless, but all were carnivorous. Their short bodies were supplied with tails of varying lengths, one long-tailed species having a rudder at the end. Their heads were fairly large, but of light build. The creature called “pteranodon” was not only the largest of the flying reptiles, but also probably the most highly specialized creature which ever lived, everything possible apparently having been sacrificed to facilitate flight (Plate 18). The hollow bones were so wonderfully light and strong that it has been estimated that the living animal, with twenty-five foot spread of wing, and head four feet long, could not have weighed more than twenty-five pounds! The rear portions of the body and hind limbs were very weak.

Fig. 64.—A small carnivorous flying reptile of Mesozoic time. Spread of wings about two feet. (Restored by Marsh.)

Fig. 64.—A small carnivorous flying reptile of Mesozoic time. Spread of wings about two feet. (Restored by Marsh.)

It should not be thought that the above-described groups of reptiles were the only ones which existedduring Mesozoic time. There were also certain groups still living, like turtles, lizards, and crocodiles, but they were doubtless mostly completely under the dominance of certain of the now long-extinct types above described. The oldest-known fossil snakes are from very late Mesozoic rocks, where they are small and comparatively rare. More than likely they evolved from lizards by deterioration of the legs. Poisonous snakes were not evolved until early in the next (Cenozoic) era.

We shall now turn our attention to next to the highest class of Vertebrate animals—the birds. They and the mammals are the only warm-blooded animals. What is their ancestry? From what original stock did they branch off? The oldest-known bird lived during the Jurassic period, and it was so decidedly reptilian in character as to render it practically certain that birds are specialized descendants of certain Mesozoic reptiles, though not, as might be supposed, of the flying reptiles. The few known specimens of the Jurassic birds were found in the famous lithographic limestone quarries of Bavaria. At least two of the specimens are in a marvelous state of preservation, with practically the whole skeleton intact and almost perfect impressions of the feathers on the rock. That the creature was really a bird is proved not only by its feathers, but also its beak, brain, limb bones, and feet. Among the reptilian characters are its long, vertebrated tail, teeth set in sockets, and long claws on the wings. This reptilian bird was about the size of a small crow.

By late Cretaceous time the birds made notable evolutionary progress and they became diversified, more than thirty species being known from Cretaceousrocks. These were distinctly more modern in structure and appearance than the Jurassic bird. The only important reptilian characteristic still retained was the possession of teeth. The tail had become much shortened and the brain was still relatively smaller than in modern birds. One type, about nine inches high, was a powerful flier, as shown by the strong keel and wing bones. Another important Cretaceous type was almost wholly a water dweller, with powerfully developed legs used in swimming. Its teeth were set in grooves instead of in sockets, thus indicating degeneration of tooth structure. This type was notable for its size—five to six feet in length.


Back to IndexNext