Chapter 4

SUBTERRANEAN FORCES.

76. There have been many speculations as to the condition of the interior of the earth. Some have inferred that the external crust of the globe incloses a fluid or molten mass; others think it more probable that the interior is solid, but contains scattered throughout its bulk, especially towards the surface of the earth, irregular seas of molten matter, occupying large vesicles or tunnels in the solid honey-combed mass. At present, the facts known would appear to be best explained by the latter hypothesis. All that we know from observation is, that the temperature increases as we descend from the surface. The rate of increase is very variable. Thus, in the Artesian well at Neuffen, in Würtemberg, it was as much as 1°F. for every 19 feet. In the mines of Central Germany, however, the increase is only 1°F. for every 76 feet; while in the Dukinfield coal-pit, near Manchester, the increase was still less, being only 1°F. in 89 feet. Taking the average of many observations, it may be held as pretty well proved that the temperature of the earth's crust increases 1° for every 50 or 60 feet of descent after the first hundred.

77. The crust of the earth is subject to certain movements,which are either sudden and paroxysmal, or protracted and tranquil. The former are known as earthquakes, which may or may not result in a permanent alteration of the relative level of land and sea; the latter always effect some permanent change, either of upheaval or depression.

78.Earthquakeshave been variously accounted for. Those who uphold the hypothesis of a fluid interior think the undulatory motion experienced at the surface is caused by movements in the underlying molten mass—an earthquake being thus 'the reaction of the liquid nucleus against the outer crust.' By others, again, earthquakes are supposed to be caused by the fall of large rock-masses from the roofs of subterranean cavities, or by any sudden impulse or blow, such as might be produced by the cracking of rocks in a state of tension, by a sudden volcanic outburst, or sudden generation or condensation of steam. In support of this latter hypothesis, many facts may be adduced. The undulatory motion communicated to the ground during gunpowder explosions, or by the fall of rocks from a mountain, is often propagated to great distances from the scene of these catastrophes, and the phenomena closely resemble those which accompany a true earthquake. When the level of a district has been permanently affected by an earthquake, the movement has generally resulted in a lowering of the surface. Thus, in 1819, the Great Runn of Cutch, in Hindustan, was depressed over an area of several thousand square miles, so as during the monsoons to become a salt lagoon. Occasionally, however, we find that elevation of the land has taken place during an earthquake. This was the case in New Zealand in 1855, when the ground on which the town of Wellington stands rose about two feet, and a cape in the neighbourhood nearly ten feet. Sometimes the ground so elevated is, after a shorter or longer period, again depressed to its former level. A good example of this occurred in South America in 1835. The shore at Concepcion was raised a yard and a half; and the Isle Santa Maria was pushed up two and a half yards at one end, and three and a half yards at the other. But only a few months afterwards the ground sank again, andeverything returned to its old position. The heaving and undulatory motion of an earthquake produces frequently considerable changes at the surface of the ground, besides an alteration of level. Rocks are loosened, and sometimes hurled down from cliff and mountain-side, and streams are occasionally dammed with the soil and rubbish pitched into them. Sometimes also the ground opens, and swallows whatever chances to come in the way. If these chasms close again permanently, no change in the physiography of the land may take place, but sometimes they remain open, and affect the drainage of the country.

79.Movements of Upheaval and Depression.—Besides the permanent alteration of level which is sometimes the result of a great earthquake, it is now well known that the crust of the earth is subject to long-continued and tranquil movements of elevation and depression. The cause of these movements is at present merely matter for speculation, some being of opinion that they may be caused by the gradual contraction of the slowly cooling nucleus of the earth, which would necessarily give rise to depression, while this movement, again, would be accompanied by some degree of elevation—the result of the lateral push or thrust effected by the descending rock-masses. It is doubtful, however, if this hypothesis will explain all the appearances. The Scandinavian peninsula affords a fine example of the movements in question. At the extremity of the peninsula (Scania), the land is slowly sinking, while to the north of that district gradual elevation is taking place at a very variable rate, which in some places reaches as much as two or three feet in a century. Movements of elevation are also affecting Spitzbergen, Northern Siberia, North Greenland, the whole western borders of South America, Japan, the Kurile Islands, Asia Minor, and many other districts in the Mediterranean area, besides various islets in the great Pacific Ocean. The proofs of a slow movement of elevation are found in oldsea-beachesandsea-caves, which now stand above the level of the sea. In the case of Scandinavia, it has been noticed that the pine-woods which clothe the mountains are being slowly elevated to ungenial heights, andare therefore gradually dying out along their upper limits. The proofs of depression of the land are seen in submerged forests and peat, which occur frequently around our own shores, and there is also strong human testimony to such downward movements of the surface. The case of Scania has already been referred to. Several streets in some of its coast towns have sunk below the sea, and it is calculated that the Scanian coast has lost to the extent of thirty-two yards in breadth within the past hundred and thirty years. The coral reefs of southern oceans also afford striking evidence of a great movement of depression.

Not long ago a theory was started by a French savant, M. Adhémar, to account for changes in the sea-level, without having recourse to subterranean agency. He pointed out that a vast ice-cap, covering the northern regions of our hemisphere, as was certainly the case during what is termed the glacial epoch, would cause a rise of the sea by displacing the earth's centre of gravity. Mr James Croll has recently strongly supported this opinion; and there can be no doubt that we have here avera causaof considerable mutations of level. It is unquestionably true, however, that great oscillatory movements, such as described above, and which can only be attributed to subterranean agencies, have frequently taken and are still taking place.

80. Such movements of the earth's crust cannot take place without effecting some change upon the strata of which that crust is composed. Duringdepressionof the curved surface of the earth, the under strata must necessarily be subjected to intense lateral pressure, since they are compelled to occupy less space, and contortion and plication will be the result. It is evident also that contortion will diminish from below upwards, so that we can conceive that excessive contortion may be even now taking place at a great depth from the surface in Greenland. During a movement ofelevation, on the other hand, the strata are subjected to excessive tension, and must be seamed with great rents: when the elevating force is removed, the disrupted rocks will settle down unequally—in other words, they will befaulted, and their continuity will be broken. But both contortion and faulting may be due, on a small scale, to local causes, such as the intrusion of igneous rocks, the consolidation of strata, the falling in of old water-courses, &c.Cleavageis believed to have been caused by compression, such as the rocks might well be subjected to during great movements of the earth's crust. The particles of which the rock is composed are compressed in one direction, and of course are at the same time drawn out at right angles to the pressure. This is observed not only as regards the particles of the rock themselves, but imbedded fossils also are distorted and flattened in precisely the same way.

81.Volcanoes.—Besides movements of elevation and depression, there are certain other phenomena due to the action of the subterranean forces. Such are the ejection from the interior of the earth of heated matters, and their accumulation upon the surface. The erupted materials consist of molten matter (lava), stones and dust, gases and steam—the lava, ashes, and stones gradually accumulating round the focus of ejection, and thus tending to form a conical hill or mountain. Could we obtain a complete section of such a volcanic cone, we should find it built up of successive irregular beds of lava, and layers of stones and ashes, dipping outwards and away from the source of eruption, but having round the walls of thecrater(that is, the cavity at the summit of the truncated cone) a more or less perceptible dip inwards.Fig. 25gives a condensed view of the general phenomena accompanying an eruption. In this ideal section,ais the funnel or neck of the volcano filled with lava;b,b, the crater. The molten lava is highly charged with elastic fluids, which continually escape from its surface with violent explosions, and rise in globular clouds,d,d, to a certain height, after which they dilate into a dark cloud,c. From this cloud showers of rain,e, are frequently discharged. Large and small portions of the incandescent lava are shot upwards as the imprisoned vapour of water explodes and makes its escape, and, along with these, fragments of the rocks forming the walls of the crater and the funnel are also violently discharged; thecooled bombs, angular stones, andlapilli, as the smaller stones are called, falling in showers,f, upon the exterior parts of the cone or into the crater, from which they are again and again ejected. Most frequently the great weight of the lava inside the crater suffices to break down the side of the cone, and the molten rock escapes through the breach. Sometimes, however, it issues from beneath the base of the cone. At other times, finding for itself some weak place in the cone, it may flow out by a lateral fissure,g. In the diagram,i,irepresents the lava streaming down the outward slopes, jets of steam and fumaroles escaping from almost every part of its surface. Forked lightning often accompanies an eruption, and is supposed to be generated by the intense mutual friction in the air of the ejected stones. The trituration to which these are subjected reduces them, first, to a kind of coarse gravel (lapillo); then to sand (puzzolana);and lastly, to fine dust or ashes (ceneri).

82.Lava.—Any rock which has been erupted from a volcano in a molten state is calledlava. Some modern lava-streams cover a great extent of surface. One of two streams which issued from the volcano of Skaptur Jokul (Iceland) in 1783 overflowed an area fifty miles in length, with a breadth in places of fifteen; the other was not much less extensive, being forty miles in length, with an occasional breadth of seven. In some places the lava exceeded 500 feet in thickness. Again, in 1855, an eruption in the island of Hawaii sent forth a stream of lava sixty-five miles long, and from one to ten miles wide. The surface of a stream quickly cools and consolidates, and in doing so shrinks, so as to become seamed with cracks, through which the incandescent matter underneath can be seen. As the current flows on, the upper crust separates into rough ragged scoriform blocks, which are rolled over each other and jammed into confused masses. The slags that cake upon the face or front of the stream roll down before it, and thus a kind of rude pavement is formed, upon which the lava advances and is eventually consolidated. Thus, in most cases, a bed of lava is scoriaceous as well below as above. Other kinds of lava are much more ductile and viscous, and coagulate superficially in glossy or wrinkled crusts. When lava has inclosed fragments of aqueous rocks, such as limestone, clay, or sandstone, these are observed to have undergone some alteration. The sandstone is often much hardened, the clay is porcelainised, and the limestone, still retaining its carbonic acid, assumes a crystalline texture. But the aqueous rock upon which lava has cooled does not usually exhibit much change, nor does the alteration, as a rule, extend more than a few feet (often only a few inches) into the rock. A lava-current which entered a lake or the sea, however, has sometimes caught up much of the sediment gathering there, and become so commingled with it, that in some parts it is hard to say whether the resulting rock is more igneous or aqueous. Lava which has been squirted up from below into cracks and crevices, and thereconsolidated so as to formdykes, sometimes, but not often, produces considerable alteration upon the rocks which it intersects. The basaltic structure is believed to be due to the contraction of lava consequent upon its cooling. The axes of the prisms are always perpendicular to the cooling surface or surfaces, and in some cases the columns are wonderfully regular. There are numerous varieties of lava, such asbasalt,obsidian,pitchstone,pearlstone,trachyte, &c.; some are heavy compact rocks, others are light and porous. Many are finely or coarsely crystalline; others have a glassy and resinous or waxy texture. Some shew a flaky or laminated structure; others are concretionary. Most of the lava rocks, however, are granularly crystalline. In many, a vesicular character is observed. These vesicles, being due to the bubbles of vapour that gathered in the molten rock, usually occur in greatest abundance towards the upper surface of a bed of lava. They are also more or less well developed near the bottom of a bed, which, as already explained, is frequently scoriaceous. Occasionally the vesicles are disseminated throughout the entire rock. As a rule, those lavas which are of inferior specific gravity are much more vesicular than the denser and heavier varieties. The vesicles are usually more or less flattened, having been drawn out in the direction in which the lava-current flowed. Sometimes they are filled, or partially filled, with mineral matter introduced at the time of eruption, or subsequently brought in a state of solution and deposited there by water filtering through the rock: this forms what is calledamygdaloidal lava. In volcanic districts, the rocks are often traversed by more or less vertical dykes or veins of igneous matter. These dykes appear in some cases to have been formed by the filling up of crevices from above—the liquid lava having filtered downwards from an overflowing mass. In most cases, however, the lava has been injected from below, and not unfrequently the 'dykes' seem to have been the feeders from which lava-streams have been supplied—the feeders having now become exposed to the light of day either by some violent eruption which has torn the rocks asunder, or else by the gradualwearing away of the latter by atmospheric and aqueous agencies.

METAMORPHISM.

83. Mention has already been made of the fact, that the heated matters ejected from volcanoes, or forcibly intruded into cracks, crevices, &c., occasionallyalterthe rocks with which they come in contact. When this alteration has proceeded so far as to induce a crystalline or semi-crystalline character, the rock so altered is said to be metamorphosed. Metamorphism has likewise been produced by the chemical action of percolating water, which frequently dissolves out certain minerals, and replaces these with others having often a very different chemical composition. But metamorphism on the large scale—that is to say, metamorphism which has affected wide areas, such as the northern Highlands of Scotland and wide regions in Scandinavia, or the still vaster areas in North America—has most probably been effected both by the agency of heat and chemical action, at considerable depths, and under great pressure. When we observe what effect can be produced by heat upon rocks, under little or no pressure, and how water percolating from above gradually changes the composition of some rock-masses, we may readily believe that at great depths, where the heat is excessive, such metamorphic action must often be intensified. Thus, for example, limestone heated in the usual way gives off its carbonic acid gas, and is reduced to quicklime; but, under sufficient pressure, this gas is not evolved, the limestone becoming converted into a crystalline marble. Some crystalline limestones, indeed, have all the appearance of having at one time been actually melted and squirted under great pressure into seams and cracks of the surrounding strata. Heated water would appear to have been the agent to which much of the metamorphism which affects the rocky strata must be attributed. But the mode or modes in which it has acted are still somewhat obscure; as may be readily understood when it is remembered how difficult, and often how impossible it is to realise or reproduce in our laboratories the conditions under which deep-seatedmetamorphic action must frequently have taken place. In foliated rocks, the minerals are chiefly quartz, felspar, and mica, talc, or chlorite. The ingredients of these minerals undoubtedly existed in a diffused state in the original rocks, and heated water charged with alkaline carbonates, as it percolated through the strata, either along the layers of bedding or lines of cleavage, slowly acted upon these, dissolving and redepositing them, and thus inducing segregation. There is every kind of gradation in metamorphism. Thus, we find certain rocks which are but slightly altered—their original character being still quite apparent; while, in other cases, the original character is so entirely effaced that we can only conjecture what that may have been. When we have a considerable thickness of metamorphic rocks which still exhibit more or less distinct traces of bedding, like the successive beds of gneiss, mica-schist, and quartz rock of the Scottish Highlands, we can hardly doubt that the now crystalline masses are merely highly altered aqueous strata. But there are cases where even the bedding becomes obliterated, and it is then much more difficult to determine the origin of the rocks. Thus, we find bedded gneiss passes often, by insensible gradations, into true amorphous granite. There has been much difference of opinion as to the origin of granite—some holding it to be an igneous rock, others maintaining its metamorphic origin. It is probably both igneous and metamorphic, however. If we conceive of certain aqueous rocks becoming metamorphosed into gneiss, we may surely conceive of the metamorphism being still further continued until the mass is reduced to a semi-fluid or pasty condition, when all trace of foliation and bedding might readily disappear, and the weight of the superincumbent strata would be sufficient to force portions of the softened mass into cracks and crevices of the still solid rocks above and around it. Hence we might expect to find the same mass of granite passing gradually in some places into gneiss, and in other places protruding asveinsanddykesinto the surrounding rocks; and this is precisely what occurs in nature.

84.Mineral veinshave, as a rule, been formed by water depositing along the walls of fissures the various matters which they held in solution, but certain kinds of veins (such as quartz veins in granite) probably owe their origin to chemical action which has induced the quartz to segregate from the rock mass. Some have maintained that the metallic substances met with in many veins owe theirdeposition to the action of currents of voltaic electricity; while others have attributed their presence to sublimation from below, the metals having been deposited in the fissures very much as lead is deposited in the chimney of a leadmill. But in many cases there seems little reason to doubt that the ores have merely been extracted from the rocks, and re-deposited in fissures, by water, in the same way as the other minerals with which they are associated.

PHYSIOGRAPHY.

85.Denudation.—By the combined action of all the geological agencies which have been described in the preceding sections, the earth has acquired its present diversified surface. Valleys, lacustrine hollows, table-lands, and mountains have all been more or less slowly formed by the forces which we see even now at work in the world around us. When we reflect upon the fact that all the inclined strata which crop out at the surface of the ground are but the truncated portions of beds that were once continuous, and formed complete anticlinal arches or curves, we must be impressed with the degree ofdenudation, or wearing-away, which the solid strata have experienced. If we protract in imagination the outcrop of a given set of strata, we shall find them curving upwards into the air to a height of, it may be, hundreds or even thousands of feet, before they roll over to come down and fit on to the truncated ends of the beds on the further side of the anticline (seefigs. 9and 11, pages 33, 34).Dislocationsorfaultsafford further striking evidence in the same direction. Sometimes these have displaced the strata for hundreds and even thousands of feet—that is to say, that a bed occurring at, for example, a few feet from the surface upon one side of a fault, has sunk hundreds or thousands of feet on the other side. Yet itoften happens that there is no irregularity at the surface to betray the existence of a dislocation. The ground may be flat as a bowling-green, and yet, owing to some great fault, the rocks underneath one end of the flat may be geologically many hundred feet, or even yards, higher or lower than the strata underneath the other end of the same level space. What has become of the missing strata? They have been carried away grain by grain by the denuding forces—by weathering, rain, frost, and fluviatile and marine action. The whole surface of a country is exposed to the abrading action of the subaërial forces, and has been carved by them into hills and valleys, the position of which depends partly upon the geological structure of the country, and partly upon the texture and composition of the rocks. The original slope of the surface, when it was first elevated out of the sea, would be determined by the action of the subterraneous forces—the dominant parts, whether table-lands or undulating ridges, forming the centres from which the waters would begin to flow. After the land had been subjected for many long ages to the wearing action of the denuding agents, it is evident that the softer rocks—those which were least capable of withstanding weathering and erosion—would be more worn away than the less easily decomposed masses. The latter would, therefore, tend to form elevations, and the former hollows. This is precisely what we find in nature. The great majority of isolated hills and hilly tracts owe their existence as such merely to the fact that they are formed of more durable materials than the rock-masses by which they are surrounded. When a line of dislocation is visible at the surface, it is simply because rocks of unequal durability have been brought into juxtaposition. The more easily denuded strata have wasted away to a greater extent than the tougher masses on the other side of the dislocation. Nearly all elevations, therefore, may be looked upon as monuments of the denudation of the land; they form hills for the simple reason that they have been better able to withstand the attacks of the denuding agents than the rocks out of which the hollows have been eroded.

86. To this general rule there are exceptions, the most obvious being hills and mountains of volcanic origin, such as Hecla, Etna, Vesuvius, &c., and, on a larger scale, the rocky ridge of the Andes. Again, it is evident that the great mountain-chains of the world are due in the first place to upheaval; but these mountains, as we now see them—peaks, cliffs, precipices, gorges, ravines—have been carved out of the solid block, as it were, by the ceaseless action of the subaërial forces. The direction of river-valleys has in like manner been determined in the first place by the original slope of the land; but the deep dells, the broad valleys and straths, have all been scooped out by running water. The northern Highlands of Scotland, for example, evidently formed at one time a broad table-land, elevated above the level of the sea by the subterranean forces. Out of this old table-land the denuding agents, acting through untold ages, have carved out all the numerous ravines, glens, and valleys, the intervening ridges left behind now forming the mountains. It is true that now and again streams are found flowing in the direction of a fault, but that is simply because the dislocation is a line of weakness, along which it is easier for the denuding forces to act. For one fault that we find running parallel to the course of a river, we may observe hundreds cutting across its course at all angles. The great rocky basins occupied by lakes, which are so abundant in the mountainous districts of temperate regions and in northern latitudes, are believed to have been excavated by the erosive power of glacier-ice; and they point, therefore, to a time when our hemisphere must have been subjected to a climate severe enough to nourish massive glaciers in the British Islands and similar latitudes. It may be concluded that the present physiography of the land is proximately due solely to the action of the denuding agents—rain, frost, rivers, and the sea. But the lines along which these agents act with greatest intensity have been determined in the first place by the subterranean forces which upheaved the solid crust into great table-lands or mountain undulations. Both the remote and the proximate causes of the earth's surface-features,however, have acted in concert and contemporaneously, for no sooner would new land emerge above the sea-level than the breakers would assail it, and all the forces of the atmosphere would be brought to bear upon it—rain, frost, and rivers—so that the beginning of the sculpturing of hill and valley dates back to the period when the present lands were slowly emerging from the ocean. So great is the denudation of the land, that in process of time the whole would be planed down to the level of the sea, if it were not for the subterranean forces, which from time to time depress and elevate different portions of the earth's crust. It can be proved that strata miles in thickness have been removed bodily from the surface of our own country by the seemingly feeble agents of denudation. All the denuded material—mud, sand, and gravel—carried down into the sea has been re-arranged into new beds, and these have ever and anon been pushed up to the light of day, and scarped and channelled by the denuding forces, the resulting detritus being swept down as before into the sea, to form fresh deposits, and so on. It follows, therefore, that the present arrangement of land and sea has not always existed. There was a time before the present distribution of land obtained, and a time will yet arrive when, after infinite modifications of surface and level, the continents and islands may be entirely re-arranged, the sea replacing the land, andvice versâ. To trace the history of such changes in the past is one of the great aims of the scientific geologist.

PALÆONTOLOGY.[F]

87.Fossils.—In our description of rock-masses, and again in our account of geological agencies, we referred to the fact that certain rocks are composed in large measure, or exclusively, of animal or vegetable organisms, or of both together; and we saw that analogous organic formations were being accumulated at the present time. But we have deferred tothis place any special account of the organic remains which are entombed in rocks.Fossils, as these are called, consist generally of the harder and more durable parts of animals and plants, such as bones, shells, teeth, seeds, bark, and ligneous tissues, &c. But it is usual to extend the term fossil to even thecastsorimpressionsof such remains, and to foot-marks and tracks, whether of vertebrates, molluscs, crustaceans, or annelids. The organic remains met with in the rocks have usually undergone some chemical change. They have becomepetrifiedwholly or in part. The gelatine which originally gave flexibility to some of them has disappeared, and even the carbonate and phosphate of lime of the harder parts have frequently been replaced by other mineral matter, by flint, pyrites, or the like. So perfect is the petrifaction in many cases, that the most minute structures have been entirely preserved—the original matter having been replaced atom by atom. As a rule, fossils occur most abundantly and in the best state in clay-rocks, like shale; while in porous rocks, like sandstone, they are generally poorly preserved, and not of so frequent occurrence. One reason for this is, that clay-rocks are much less pervious than sandstone, and their imbedded fossils have consequently escaped in greater measure the solvent powers of percolating water. But there are other reasons for the comparative paucity of fossils in arenaceous strata, as we shall see presently.

88.Proofs of varied Physical Conditions.—Organic remains are either of terrestrial, fresh-water, or marine origin, and they are therefore of the utmost value to the geologist in deciphering the history of those great changes which have culminated in the present. But we can go a step further than this. We know that at the present day the distribution of animal and vegetable life is due to a variety of causes—to climatic and physical conditions. The creatures inhabiting arctic and temperate regions contrast strongly with those that tenant the tropics. So also we observe a change in animal and vegetable forms as we ascend from the low grounds of a country to its mountain heights. Similar changes take place in the sea.The animals and plants of littoral regions differ from those whose habitat is in deeper water. Now, the fossiliferous strata of our globe afford similar proofs of varying climatic and physical conditions. There are littoral deposits and deep-sea accumulations: the former are generally coarse-grained (conglomerates, grit, and sandstone); the latter are for the most part finer-grained (clay, shale, limestone, chalk, &c.); and both inshore and deep-water formations have each their peculiar organic remains. Again, we know that some parts of the sea-bottom are not so prolific in life as others—where, for example, any considerable deposit of sand is taking place, or where sediment is being constantly washed to and fro upon the bottom, shells and other creatures do not appear in such numbers as where there is less commotion, and a finer and more equable deposit is taking place. It is partly for the same reason that certain rocks are more barren of organic remains than others.

89.Fossil Genera and Species frequently extinct.—It might perhaps at first be supposed that similar rocks would contain similar fossils. For example, we might expect that formations resembling in their origin those which are now forming in our coral seas would also, like the latter, contain corals in abundance, with some commingling of shells, crustaceans, fish, &c., such as are peculiar to the warm seas in which corals flourish. And this in some measure holds good. But when we examined carefully the fossils in certain of the limestones of our own country, we should find that while the same great orders and classes were actually present, yet the genera and species were frequently entirely different; and not only so, but that often none of these were now living on the earth. Moreover, if we extended our research, we should soon discover that similar wide differences actually obtained between many of the limestones themselves and other fossiliferous strata of our country.

90.Fossiliferous Strata of Different Ages.—Another fact would also gradually dawn upon us—this, namely, that in certain rocks the fossils depart much more widely fromanalogous living forms, than the organic remains in certain other rocks do. The cause of this lies in the fact that the fossiliferous strata are of different ages; they have not all been formed at approximately the same time. On the contrary, they have been slowly amassed, as we have seen, during a long succession of eras. While they have been accumulating, great vicissitudes in the distribution of land and sea have taken place, climates have frequently altered, and the whole organic life of the globe has slowly changed again and again—successive races of plants and animals flourishing each for its allotted period, and then becoming extinct for ever.[G]Thus, strata formed at approximately the same time contain generally the same fossils; while, on the other hand, sedimentary deposits accumulated at different periods are charged with different fossils. Fossils in this way become invaluable to the geologist. They enable him to identify formations in separate districts, and to assign to them their relative antiquity.[H]If, for example, we have a series of formations, A, B, C, piled one on the top of the other, A being the lowest, and C the highest, and each charged with its own peculiar fossils, we may compare the fossils met with in other sets of strata with the organic remains found in A, B, C. Should the former be found to correspond with the fossil contents of B, we conclude that the rocks in which they occur are approximately of contemporaneous origin with B, even although the equivalents of the formations A and C should be entirely wanting. Further, we soon learn that the orderof the series A, B, C, is never inverted. If A be the lowest, and C the highest stratum in one place, it is quite certain that the same order of succession will obtain wherever the equivalents of these strata happen to occur together. But the succession of strata is not invariably the same all the world over; in some countries, we may have dozens of separate formations piled one on the top of the other; in other countries, many members of the series are absent; in brief,blanks in the successionare of constant occurrence. But by dovetailing, as it were, all the formations known to us, we are enabled to form a more or less complete series of rocks arranged in the order of their age. A little reflection will serve to shew that the partial mode in which the strata are distributed over the globe arises chiefly from two causes. We have to remember,first, that the deposits themselves were laid down only here and there in irregular spreads and patches—opposite the mouths of rivers, at various points along the ancient coast-lines, and over certain areas in the deeper abysses of the ocean—the coarser accumulations being of much less extent than those formed of finer materials. And,second, we must not forget the intense denudation which they have experienced, so that miles and miles of strata which once existed have been swept away, and their materials built up into new formations.

91.Gradual Extinction of Species.—When a sufficient number of fossils has been diligently compared, we discover that those in the younger strata approach most nearly to the present living forms, and that the older the strata are, the more widely do their organic remains depart from existing types of animals and plants. We may notice also, that when a series of beds graduate up into each other, so that no strongly marked line separates the overlying from the underlying strata, there is also a similar gradation amongst the fossils. The fossils in the highest beds may differ entirely from those in the lowest; but in the middle beds there is an intermingling of forms. In short, it is evident that the creatures gradually became extinct, and were just as gradually replaced by new forms, until a time came when all the species that were living while the lowest beds werebeing amassed, at last died out, and a complete change was effected.

92.Proofs of Cosmical Changes of Climate.—From the preceding remarks it will be also apparent that fossils teach us much regarding the climatology of past ages. They tell us how the area of the British Islands has experienced many vicissitudes of climate, sometimes rejoicing in a warm or almost tropical temperature, at other times visited with a climate as severe as is now experienced in arctic and antarctic regions. Not only so, but we learn from fossils that Greenland once supported myrtles and other plants which are now only found growing under mild and genial climatic conditions; while, on the other hand, remains of arctic mammals are met with in the south of France. Such great changes of climate are due, according to Mr Croll, to variations in the eccentricity of the earth's orbit combined with the precession of the equinox. It is well known that the orbit of our earth becomes much more elliptical at certain irregularly recurring periods than it is at present. During a period of extreme ellipticity, the earth is, of course, much further away from the sun inaphelion[I]than it is at a time of moderate ellipticity, while, inperihelion,[J]it is considerably nearer. Now, let us suppose that, at a time when the ellipticity is great, the movement known as the precession of the equinox has changed the incidence of our seasons, so that our summer happens in perihelion and not in aphelion, while that of the southern hemisphere occurs in aphelion, and not, as at present, in perihelion. Under such conditions, the climate of the globe would experience a complete change. In the northern hemisphere, so long and intensely cold would the winter be, that all the moisture that fell would fall as rain, and although the summer would be very warm, it would nevertheless be very short, and the heat then received would be insufficient to melt the snow and ice which had accumulated during the winter. Thus gradually snow and ice would cover all thelands down to temperate latitudes. In the southern hemisphere, the reverse of all this would obtain. The winter there would be short and mild, and the summer, although cool, would be very long. But such changes would bring into action a whole series of physical agencies, every one of which would tend still further to increase the difference between the climates of the two hemispheres. Owing to the vast accumulation of snow and ice in the northern hemisphere, the difference of temperature between equatorial and temperate and polar regions would be greater in that hemisphere than in the southern. Hence the winds blowing from the north would be more powerful than those coming from the southern and warmer hemisphere, and consequently the warm water of the tropics would necessarily be impelled into the southern ocean. This would tend still further to lower the temperature of our hemisphere, while, at the same time, it would raise correspondingly the temperature at our antipodes. The general result would be, that in our hemisphere ice and snow would cover the ground down to low temperate latitudes—the British Islands being completely smothered under a great sea of confluent glaciers. In the southern hemisphere, on the contrary, a kind of perennial summer would reign even up to the pole. Such conditions would last for some ten or twelve thousand years, and then, owing to the precession of the equinox, a complete change would come about—the ice-cap would disappear from the north, and be replaced by continuous summer, while at the same time an excessively severe or glacial climate would characterise the south; and such great changes would occur several times during each prolonged epoch of great eccentricity. This, in few words, is an outline of Mr Croll's theory. That theory is at presentsub judice, but there can be no doubt that it gives a reasonable explanation of many geological facts which have hitherto been inexplicable. Of course, it is not maintained that all changes of climate are due directly or indirectly to astronomical causes. Local changes of climate—changes affecting limited regions—may be induced by mutations of land and sea, resulting in the partial deflection of oceancurrents, which are the chief secondary means employed by nature for the distribution of heat over the globe's surface.

From what has been stated in the foregoing paragraphs, it is clear that in our endeavours to decipher the geological history of our planet, palæontological must go hand in hand with stratigraphical evidence. We may indeed learn much from the mode of arrangement of the rocks themselves. But the test of superposition does not always avail us. It is often hard, and sometimes quite impossible, to tell from stratigraphical evidence which are the older rocks of a district. In the absence of fossils we must frequently be in doubt. But physical evidence alone will often afford us much and varied information. It will shew us what was land and what sea at some former period; it will indicate to us the sites of ancient igneous action; it will tell us of rivers, and lakes, and seas which have long since passed away. Nay, in some cases, it will even convince us that certain great climatic changes have taken place, by pointing out to us the markings, and débris, and wandered blocks which are the sure traces of ice action, whether of glaciers or icebergs. The results obtained by combining physical and palæontological evidence form what is termed Historical Geology.

HISTORICAL GEOLOGY.

93. The fossiliferous strata, as they are generally termed, have been chronologically arranged in a series offormations, each of which is characterised by its own peculiar suites of fossils. Their relative age has been determined, as we have indicated above, by their fossils, and also by certain physical tests, the chief of these beingsuperposition. It holds invariably true that a formation, A, found resting upon another series of strata, B, will always occur in precisely the same position, wherever these two deposits occur together. If B should appear in some place as resting upon A, we maybe sure that the beds have been inverted during the contortion of the strata consequent upon subterranean action (seefig. 11, page 34). Again, another useful test of the relative age of strata lies in the circumstance that one is often made up or contains fragments of the other. In this case, then, it is quite clear which is the more recent accumulation. These tests have now been applied to the strata in many parts of the world, and the result is that geologists have been able to arrive at a chronological arrangement or classification, and so to construct a table shewing the relative position which would be occupied by all the different formations, if these occurred together in one place. In the British Islands the long series of strata is well developed, but many of the formations are much more meagrely represented than their equivalents in other countries. But even when we attempt to fill up the blanks in our own series by dovetailing with them the strata of foreign countries, there yet remain numerous breaks in the succession, pointing to the fact that the stony record is a very fragmentary one at the best. No doubt there are many large tracts of the earth's surface which have not yet been investigated, and when these are known we may hope to have our knowledge greatly increased. But no one who reflects upon the mode of origin of the fossiliferous strata, and the wonderful mutations which the earth has undergone, can reasonably anticipate that a perfect and complete record of the geological history of our planet shall ever be compiled from the broken and fragmentary testimony of the rocks.

94. The following table gives the names of the different formations arranged in the order of their superposition, the youngest being at the top, and the oldest known at the bottom:


Back to IndexNext