Die Elemente des Euklid.

Euklid, Verlorene Schriften.

Verlorensind die Schriften, welche sich auf die eigentliche höhere Mathese seiner Zeit beziehen. Zunächst die zweiwichtigen Bücher τόποι πρὸς ἐπιϕάνειαν, Oberflächen als geometrische Orte, welche Proklos und Pappos erwähnen. Der Begriff des geometrischen Ortes wird schon von Pappos gerade so wie heute definiert als die Gesamtheit aller Punkte, denen ein und dieselbe bestimmte Eigenschaft (Symptoma) zukommt, und je nachdem diese Gesamtheit eine Linie oder eine Fläche bildete, heissen die Orte Linien- oder Flächenorte. Davon verschieden sind »körperliche Orte« (στερεοι), dies sind Linien, welche durch den Schnitt von Körpern entstehen, wie dieKegelschnitte. Die Schrift des Euklid hat nach Pappos vermutlich Ortseigenschaften der Kugel-, Kegel- und Zylinderflächen behandelt und scheint in der bedeutenderen Arbeit desArchimedesüber Konoide und Sphäroide aufgegangen zu sein.

Porismata.Elemente.

Mehr wissen wir von den 3 Büchern »Porismata«, da Pappos den Inhalt so ausführlich angegeben hat, dassMichael Chaslesdanach eine Rekonstruktion versucht hat, nach Vorarbeiten vonR. Simson, dessen Euklidbearbeitung von 1756 noch heute für England massgebend ist. Allerdings hatP. Breton de Champzuerst erkannt, dass die 29 Sätze in der Vorrede des VII. Buches beiPapposein Résumé der 171 Sätze des Euklid enthalten. Das Wort Porisma selbst bildet noch eine Streitfrage. Es hat 2 Bedeutungen, erstens Zusatz, so kommt es vielfach in den Handschriften der Elemente vor, zweitens bedeutet es ein Mittelding zwischen einem gewöhnlichen Lehrsatz und einem sogenannten Ortssatz, d. h. einem Satz der ausspricht, dass eine bestimmte Kurve eine bestimmte Eigenschaft hat. Als Beispiel diene der Satz: Der Ort der Punkte, deren Abstände von zwei festen Punkten ein festes Verhältnis haben ist der Kreis (desApollonios) dessen Durchmesser die Strecke zwischen den beiden in diesem Verhältnis zu den gegebenen Punkten harmonischen auf der gegebenen Graden ist. Ein Porisma wäre demzufolge in der Geometrie etwa das, was man in der Arithmetik einen Existenzbeweisnennt, es spräche aus, dass ein bestimmter Ort existiert, ohne ihn direkt zu konstruieren. Die Porismata bildeten vermutlich für die synthetische oder direkte Konstruktionsmethode ein Seitenstück zu den »Data« als Hilfsmittel für die analytische Methode. Nach dem Résumé bei Pappos gingen sie weit über die Elemente hinaus und mitChaslesundH. Zeuthenmüssen wir annehmen, dass sie die Grundlagen für dieprojektiveBehandlung derKegelschnitteenthalten.

Auch über diese zu seiner Zeit höchste Mathematik hat Euklid geschrieben, vier Bücher Konika. Ebenso wie Euklid die Arbeiten seiner Vorgänger insbesondere des Theudios für seine Elemente benutzte und verdrängte, wurden seine Konika nach dem Zeugnis des Pappos von dem grossartigen Werk der 8 Bücher Konika desApolloniosverdrängt, in dessen erste 4 Bücher sie vermutlich vollständig Aufnahme gefunden haben. Sie werden daher auch schwerlich aus arabischen Quellen je wieder zum Vorschein kommen, wenn sie nicht zufällig als Leichenbinde einer Mumie gefunden werden.

Verloren ist auch eine Schrift mathophilosophischen Charakters ψευδαρια, »Trugschlüsse« genannt und zwar sind absichtliche Falschschlüsse gemeint. Proklos nennt die Schrift »καθαρκεικον και γυμναστικον«, reinigend und übend durch Anstrengung d. h. die Schrift war zur Geistesgymnastik der Schüler bestimmt.

Und nun zu dem Werke das den Namen des Euklid unsterblich gemacht hat, zu den Elementen, die »στοιχεία«, wozu ich meine Schrift Euklid etc. von 1901 heranzuziehen bitte.

Die Elemente des Euklid.

Den 13 Büchern der Elemente des Euklid wurden schon früh zwei Bücher angehängt. Das 14. Buch ist eine tüchtige Arbeit des in Alexandrien etwa 150 v. Chr. lebenden Mathematikers und AstronomenHypsiklēs, über die fünf regulären (platonischen) Körper; das 15. Buch ist eine weit schwächereArbeit und hat nachTanneryundHeiberg, beides grosse Kenner der hellenischen Mathematik, einen Schüler desIsidoros, des Erbauers der Sophienkirche um 530 n. Chr. zum Verfasser.

Den Zweck der Elemente gibt Proklos S. 72 an: Elemente nennt man das, dessen Theorie hinreicht zum Verständnis von allem anderen, und mittelst dessen man im Stande ist die Schwierigkeiten, welche das andere bietet, aus dem Wege zu räumen. Stoicheion bedeutet eigentlich Buchstabe und l. c. sagt Proklos gradezu: die Elemente enthalten die Sätze, welche als Bestandteile aller folgenden auftreten, wie die Buchstaben im Wort. Die Grundbedeutung von Stoichos ist eine militärische es bedeutet das, was wir einen Zug nennen, also auch die Grundlage der Formation.

Der Zweck und die Notwendigkeit der Euklid'schen Elemente folgt aus der Entwicklung der hellenischen Mathematik. Die Pythagoräer (s. d.) waren bei den Problemen zweiten Grades auf die √2, die Savisescha gestossen oder gestossen worden und damit auf die Irrationalzahl und die Inkommensurabilität. Damit wurden alle früheren Beweise über Teilung, Ähnlichkeit, Flächenmessung hinfällig. Das 4. Jahrhundert,Platon, Theaitet, Eudoxos und die Schüler des Platon und Eudoxos, widmeten sich der methodischen Arbeit die neuen Grundlagen festzustellen. Boten doch die mathematischen Definitionen Platon vortreffliche Beispiele seinem sokratischen Hang zur Definition der Begriffe zu folgen. VonEudoxosrührt das ganze fünfte Buch der Elemente, die Lehre von den Proportionen in, ich möchte sagen, Weierstrass'scher Strenge, her, er ist der eigentliche Schöpfer der Exhaustionsmethode, die vermutlich durch ihn schon beiAristoteleserwähnt ist, und die sich später, befruchtet mit dem Demokritischen Differentialbegriff, bei Archimedes und Apollonios zur Infinitesimalrechnung auswuchs. VonTheaitetwissen wir, dass er die Einteilung der Irrationalzahlen oder genauer die Lösung von Gleichungen 4. Grades, welche auf quadratische Gleichungenreduzierbar sind, jedenfalls begonnen hat. Wahrscheinlich vonPlatonselbst, jedenfalls aus seiner Schule, rühren die Fassungen vieler Definitionen und Axiome bei Euklid her, welche Aristoteles (vgl.Heiberg, Teubnersche Abh. z. Gesch. etc. Heft 18, 1904) nach den Elementen des Magnesiers Theudios zitiert. Nach einem Jahrhundert waren die methodischen Arbeiten zum Abschluss reif und den gab Euklid, bei dem das methodische Gefühl bereits in so eminenten Grade ausgebildet ist, dass er mit dem Beweise schliesst:Mehr als fünf regelmässige Körper kann es nicht geben.

Die Aufgabe die er sich setzte auf Grund der notwendigsten Voraussetzungen die Geometrie und in geometrischer Einkleidung auch die Arithmetik als ein zusammenhängendes Ganzes unantastbar darzustellen, hat er in einer Weise gelöst, die alle Vorgänger spurlos verschwinden liess und die, niemals übertroffen, die Bewunderung aller Zeiten und aller Völker erregt hat.

Daran schliesst sich die Frage, inwieweit Euklid in den Elementen Eigenes gegeben. Die Frage ist nur summarisch zu beantworten.M. Cantorsagt: »Ein grosser Mathematiker wird auch da, wo er anderen folgt, seine Eigentümlichkeit nicht verleugnen, und so war es sicherlich auch bei Euklid.« Gewiss, denn so ist es ja bei jedem Schullehrer, der seine Elemente gedruckt oder ungedruckt traktiert. Aber ebenso klar ist es auch, dass ein Werk wie die Elemente die Kräfte eines einzelnen übersteigt, und eine ganze Reihe von Vorarbeiten erfordert, von Hippokrates, Leōn, der die Fülle der Sätze und Strenge der Beweise erhöhte (Proklos 66 unten) bis auf Theudios, der sich auch in den anderen Wissenschaften auszeichnete. Die vonHeibergl. c. gesammelten Zitate aus seinen Elementen zeigen vielfach wörtliche Übereinstimmung. Ebenso sicher ist die Form des Vortrags die zum Teil schon von den Ägyptern überkommene gewesen, samt den so berühmten Schlussformeln »quod erat demonstrandum«, was zu beweisen war, ὅπερ ἔδει δεῖξαι, und quod erat faciendum, was zu machen war, ὅπερ ἔδει ποιῆσαι.Euklid gehört wohl vor allem die Auswahl der Definitionen an, die Forderungen (Erfahrungstatsachen) sind sein Eigentum, wie Heiberg l. c. festgestellt hat, oder wenigstens ihre Trennung von den Axiomen, und dann die strenge Durchführung des Prinzips keinen früheren Satz mittelst eines späteren zu beweisen, kein Gebilde zu benutzen, dessen Existenz nicht vorher durch geforderte oder gegebene Konstruktion gesichert ist.

Ferner gehört ihm ein grosser Teil des zehnten Buches, die Vollendung der Einteilung der Irrationalitäten durch Theaetet. Dem Euklid gehört der elementare Beweis (ohne Integralrechnung) des Satzes, dass die Pyramide gleich dem dritten Teil des Prisma ist, dass mit ihr gleiche Grundfläche und Höhe hat; sodann viele Sätze des 13. Buches über die Bestimmung von Stücken der regulären Körper und mit grösster Wahrscheinlichkeit der schon erwähnte Schlusssatz. Etwa 420 war das Dodekaëder den Hellenen bekannt geworden, wenig früher war überhaupt erst das logische Element in der Geometrie, die Forderung nach dem Beweise, zur Geltung gekommen. Die Ausbildung des logischen Sinnes bis zum Bedürfnis eines solchen Existenzbeweises erforderte sicher ein Jahrhundert. Der einzige, der noch in Frage kommen konnte wäreEudoxos, doch überwog bei ihm auf der Höhe seiner Kraft das astronomische Interesse.

Parallelentheorie.

Wenn ich aber trotz der verhältnismässig geringen »Produktivität« Euklids dochM. Cantorbeipflichte, der ihn zu den drei Heroen der griechischen Mathematik im 3. Jahrh. zählt, so tue ich es mit Rücksicht auf Euklids Behandlung des Parallelenproblemes, dass er so recht eigentlich in die Welt geworfen hat und das bis auf den heutigen Tag, ja heute noch mehr als je im Zentrum des Interesses steht. Der gesamte Aufbau des grundlegenden ersten Buches wird vom Parallelenproblem beherrscht. Euklid hat rund 2000 Jahre vorSaccheriundLegendreden Zusammenhang des Problems mit dem Satz über die Winkelsumme im Dreieck erkannt. Schon Proklos hat bemerkt, dass das berühmte und berüchtigte sogen. »11. Axiom«,richtiger die 5. Forderung, hervorgegangen ist aus dem vergeblichen Bemühen den Satz: »In jedem Dreieck sind zwei Winkel zusammen kleiner als 2 Rechte« umzukehren; und so kam er zu der Forderung in der Fassung: »Und wenn eine, zwei Geraden schneidende, Gerade mit ihnen innere an derselben Seite liegende Winkel bildet, die zusammen kleiner sind als 2 Rechte, so schneiden sich jene beiden Geraden bei unbegrenzter Verlängerung an der Seite, auf der diese beiden Winkel liegen.«

Die Elemente des Euklid, Ausgaben.

Von der Bibel abgesehen, ist niemals ein Werk in so vielen Auflagen und Bearbeitungen verbreitet gewesen, als die 13 »βιβλία« des Eukleídes, dessen Namen geradezu mit der Geometrie identifiziert wird. Eine sehr vollständige Zusammenstellung findet sich in Mem. d. R. Acad. d. Sc. d. Ist. di Bologna Serie IX, T. VIII und X 1887 und 1890 vonP. Riccardi;R. Bonola, Bull. d.Loriaund Festschr. f. Joh. Bolyai 1902 zählt gegen 1700 Ausgaben. Im Mittelalter und bis in die Neuzeit wird die Professur für Geometrie häufig als die des Euklid bezeichnet, die Studenten lasen den Text, sei es ganz, sei es im Auszug, und der Professor kommentierte, wobei selten mehr als das erste Buch erledigt wurde.Savile, der die noch heute inOxfordbestehende Professur des Euklid stiftete, kam bis zum 8. Satz des ersten Buches, nurPetrus Ramus, dessen Bedeutung in erster Linie auf seiner Lehrtätigkeit und seiner grossen literarischen Bildung beruht, rühmte sich die ganzen Elemente in einer Vorlesung erledigt zu haben. Es war selbstverständlich, dass der Text im Laufe der Jahrhunderte entstellt, verdorben, erweitert wurde. Letzteres gilt besonders für die schwierigen Teile des zehnten bis letzten Buches.

Euklid, Übersetzungen der Elemente.

Ich verweise auch für die Bibliographie der Elemente auf meine Schrift von 1901, hervorzuheben ist die Bearbeitung desTheon v. Alexandria, der etwa 350 n. Chr. lebte und lehrte, sie muss die früheren fast völlig im Buchhandel verdrängt haben, obwohl sie keinen Fortschritt bedeutete. Alle bis 1808 bekannte Codices, deren Zahl sehr gross ist, alle Druckeund Übersetzungen sind, wenn man vonarabischen Quellenabsieht, aus dieser Ausgabe hervorgegangen. Erst 1808 fandF. Peyrardin einer durchNapoleondem Vatikan geraubten Handschrift (Vatic. 190, 1814 zurückgegeben) die bis jetzt einzige vollständige Handschrift, welche auf eine ältere und bessere Ausgabe zurückgeht. Aus diesem Codex konnte man die Änderungen des Theon feststellen und die Codices kritisieren, eine Arbeit, welche vonE. F. August1826–29 in seiner griechischen und noch gründlicher vonJ. L. Heibergin der griech.-lat. Ausgabe von 1882–88 geleistet ist. Ausser dem Vat. 190 geht auch der Palimpsest Bologna M. 1721 (Heiberg, Cant.-Schlöm. 29) auf ältere Quellen als Theon zurück.

Neben dürftigen Auszügen die, von oder nachBoëtius(etwa 500 n. Chr.) verfasst, sich in den Klöstern und Klosterschulen hielten und besonders durchGerbertden nachmaligen Papst Sylvester II. von Wichtigkeit wurden, verdankt Europa die Kenntnis der Elemente den arabischen Übersetzungen und Bearbeitungen. Auf sie geht die erste gedruckte Ausgabe zurück, die demGiovanni Campanoaus Novara zugeschrieben wird, der um die Mitte des 13. Jahrh. gelebt hat, und 1482 beiErhard Ratdoltin Venedig erschienen ist. Die Ausgabe ist sehr selten, sie ist vonA. G. KästnerGesch. der Math. Bd. I S. 289 f. genau beschrieben.

Als der hellenische Geist zum zweiten Male für die europäische Kultur fruchtbar wurde in jener Glanzepoche, die man dieRenaissancenennt, erschienen zunächst lateinische Ausgaben gestützt auf griechische Codices. Die erste Originalausgabe ist die des Simon Grynaeus des älteren, sie erschien 1533 beiHerwagen, der auch in Strassburg eine Druckerei besass, leider verarbeitet diese Ausgabe zwei sehr schlechte Handschriften.

Euklid-Commentatoren.

Indem ich wieder auf meine zitierte Schrift verweise, erwähne ich nur noch die beiden wichtigsten lateinischen Ausgaben,die desCommandinusPisa 1572, der zuerst unseren Euklid von dem Megarenser schied, und die desClaviusvon 1574. Die Arbeit dieses für seine Zeit hoch bedeutenden Jesuiten ist von allen Historikern der Mathematik vonMontuclaundKästnerbis aufM. Cantorgleich hoch gewertet worden; Kästner nennt sie die Pandekten der Mathematik, sie soll 22 Auflagen gefunden haben.

Die Commentatoren des Euklid, vergl. Euklid 1901 p. 16 ff.

Der festgefügte Bau der Elemente hat, wie er seinerseits die höchste Bewunderung erregte, andererseits die Versuchung erweckt die Geometrie auf andere Weise ebenfalls zu begründen. Dazu kommt, dass der Euklid in seinem ersten Buch einen mathophilosophischen Teil enthält, der die Grundbegriffe der Geometrie und die nötigen und hinreichenden Voraussetzungen angibt, von denen die ersteren ihrer Natur nach unauflöslich, die anderen variabel sind. So haben die Elemente des Euklid, und das ist vielleicht sein grösstes Verdienst, eine staunenswerte Geistesarbeit hervorgerufen, die besonders in der Geschichte des Parallelenaxioms zutage tritt. Hier will ich nur (Euklid 1901) einen Überblick über die hervorragendsten Interpretationen geben, welche zeigen, wie RechtGino Loriahat, wenn er als Prinzip seiner schönen Arbeit »Della varia fortuna di Euclide, Roma 1893« dasGesetz der Kontinuitätausspricht. Es geht ein ununterbrochener Zusammenhang von Archimedes und Apollonios bis Veronese und Hilbert.

VonApolloniossind Spuren eigener »Elemente« erhalten; darunter eine ganz allgemeine Definition des Winkels (Heiberg V S. 88).

Archimedesgab eine von Euklid abweichende mechanische Grundeigenschaft der Geraden (ebenfalls auch der Ebene) an und neue Prinzipien, darunter das nach ihm benannte, obwohl vonEudoxosoder vielleichtDemokritstammende für die Exhaustionsmethode, die er zur Integralrechnung umbildete.Ihm schliesst sichHeronvon Alexandrien, der grösste Mechaniker des 1. Jahrh. an; von seinem Kommentar sind uns Fragmente durch Proklos undAn-Narizi(s. u. bei Heron) überliefert.

Aus der Zusammenstellung der Euklidstellen beiHerondurch Heiberg geht klar hervor, dass die Definitionen des Euklid schon zu Herons Zeit die uns überlieferte Form hatten, Euklid also damals schon, wieTannerysagt, der unantastbare Klassiker der Elemente war.

Es ist das Parallelenaxiom und die Definitionen, überhaupt die ganze Anordnung der ersten Bücher, dann gewisse Inkongruenzen zwischen dem sechsten und den beiden letzten Büchern, der sonderbare Umstand, dass Euklid die Lehre von den Proportionen ganz allgemein im fünften Buch begründet, und dann die elementare Lehre von den Verhältnissen ganzer Zahlen noch einmal im siebenten Buche gibt, was von jeher die Kommentatoren in Tätigkeit gesetzt hat.

Die Inkongruenz bezieht sich besonders auf die Bewegung. In den sechs planimetrischen Büchern wird sie ängstlich vermieden; nur zum Beweis des 4. Satzes (ersten Kongruenzsatz) und seiner Umkehrung wird sie herangezogen, dagegen scheut sich Euklid im 11. und 12., den stereometrischen Büchern, absolut nicht die Definition der Körper auf die Bewegung zu stützen.

Man hat daraus schliessen wollen, »einen Homeros gab es nie, sondern acht bis zehn«, aber Euklid war Platoniker, und nach Platon und Aristoteles setzt der Begriff der Bewegung einen körperlichen Raum voraus.

Auf Heron folgt Gemīnos, bezw. Géminus, von dem Proclus berichtet, er habe die Verschiebbarkeit in sich der Schraubenlinie auf dem Rotationscylinder, wenn nicht gefunden, so doch gekannt. Es folgt eine Ära, in der die zusammenfassende eigentlich philosophische Geistesrichtung unter dem Einfluss des Aristoteles gegen die Ausbildung der einzelnen Spezialwissenschaften zurücktritt. Aus dieser Zeit, in der sich von mathematischenDisziplinen die Trigonometrie (ebene und sphärische) im Anschluss an die Astronomie entwickelt, wissen wir von besonderen Kommentaren nichts, aber von den Elementen, dass sie für unentbehrlich zur Ausbildung der angewandten Mathematiker galten.

Als gleichzeitig mit dem Christentum gegen diese nüchterne Periode in Anlehnung an den Theosophen Platon zunächst der Neupythagoreismus sich erhob, war es anfangs die arithmetische Seite des Euklid, die Bücher 7, 8, 9, die in Nikomachos von Gerasa um 100 n. Chr. dem »Elementenschreiber der Arithmetik« (M. Cantor) und in Theon von Smyrna ihre Kommentatoren fand. Um 300 lehrte dann zu AlexandriaPappos, dessen Kollektaneen von unschätzbarer Bedeutung sind. Pappos hat sicher einen Kommentar zum zehnten Buch geschrieben, von dem Reste im Vaticanus erhalten sind und der uns nach Heiberg wahrscheinlich ganz in einem noch unedierten Leydener Manuskripte erhalten ist.

Mit demNeuplatonismus, jener seltsamen Mischung christlicher und platonischer Mystik, nimmt auch die Mathematik die platonische Richtung auf die Probleme, welche die geometrischen Grundbegriffe und die Methodik bieten energisch auf. Ich nenneJamblichos,Porphyrios, von denen uns Spuren ihrer Scholien erhalten sind,TheonundProklos, dessen Kommentar zum ersten Buch uns fast ganz erhalten ist. Der Kommentar, der bis 1873 nur in der Ausgabe vonSimon Grynäus1533 bei Herwagen gedruckt war, ist für die Geschichte der Mathematik bei den Hellenen einzig; Tannery, der zuverlässigste Detailforscher hellenischer Mathematik, nennt sein Verständnis geradezu das Problem der Geschichte der Mathematik.

Die Ausgabe vonFriedlein1873 ist philologisch sehr bedeutend, wenn auch nachHeibergnoch nicht das letzte Wort über Proklos, aber griechisch; es existiert nur die lateinische Übersetzung desBaroccivon 1560, welche oft nur eineWortübersetzung ist und von Taylor ebenso wörtlich ins Englische übertragen ist.

AlsJustinian529 die Schule von Athen, mit der die hellenische Kultur begann und schloss, aufhob und die Lehrer vertrieb, kamEuklidmit ihnen nach Persien und so an die Araber, wo er, wie schon gesagt, im 8. und 9. Jahrh. an Haggag und Ishaq Übersetzer fand. Sehr bald darauf muss es auch arabische Kommentare gegeben haben, wie aus der Ausgabe des Campanus hervorgeht; der schon erwähnteNasir ed Dinim 13. Jahrh. ist keineswegs unbedeutend, der auch zuerst die Trigonometrie als eigenen Zweig behandelt hat.

Die Renaissance macht Proklos bekannt, an ihn schliesst sichCommandinusundClaviusan. Der erstere wirkte besonders auf die Engländer, aufSavile, der die Professur des Euklid in Oxford begründete, wodurchWallisund wohl auchBarrow(erste Ausgabe 1652) und durch diese Newton auf Euklid und die Beschäftigung mit den Grundlagen hingewiesen wurden.

Vor allem haben wirRobert Simsonzu nennen, der direkt Commandinus zugrunde legt und der besonders auf die englische Schulmathematik vorn allerwesentlichsten Einfluss gewesen ist. Der Kommentar erschien 1756, Titel: die sechs ersten Bücher des Euklid mit Verbesserung der Fehler, wodurch Theon und Andere sie entstellt haben etc. mit erklärenden Anmerkungen (aus dem Englischen übersetzt von Rieder. Herausg. von Niesert, Paderborn 1806).

Claviuskennt den Proklos ganz genau; auch er harrt noch der deutschen Herausgabe, der er in hohem Grade wert ist; er hat nebenBorelli(Euklides restitutus 1658) sicher auf seinen OrdensbruderSaccherigewirkt, von dessen: Euklides ab omni naevo vindicatus (Mediol. in 4. 1733), die heutige sogenannte nicht-Euklidische Geometrie gezählt wird. Es ist wahrscheinlich, dassLambertin Chur den Saccheri kennen lernte und fast sicher, dassGausswieder Lamberts Abhandlungim Hindenburg'schen Archiv von 1786 gelesen. Gauss wirkte dann auf seinen JugendfreundWolfgang Bolyaiund durch ihn auf seinen SohnJohannund durch Vermittelung von Bartels aufLobatscheffski.

Für Frankreich ist ausser Clavius nochPetrus Ramus, der sogenannte »Besieger der Scholastik«, von Bedeutung. Ramus, dem es an philosophischer Tiefe fehlte, war nicht imstande den Euklid zu würdigen wie ganz besonders seine Kritik des zehnten Buches beweist, aber seine revolutionäre Anfechtung der Autorität kommt in Frankreich im 18. Jahrh. zur Geltung. Hier geht der Weg von Clavius über Tacquet 1659 und Arnauld durch Zurückgreifen auf Ramus zuClairaut1741 undLegendre1794 undBertrand1810.Clairaut, dessen wahrhaft kühne Elemente der Geometrie vom Rechteck als der unmittelbar anschaulichen Figur ausgeht, hat sich auch auf die deutschen Ritterakademien, z. B. Ilfeld verbreitet. Es scheint, als ob auchLambertihn gekannt hat; doch ist der Ausgangspunkt vom Rechteck ein so natürlicher, dass ich selbst um 1880 ohne eine Ahnung von Clairaut oder Lambert zu haben, im Unterricht einen ganz ähnlichen Weg einschlug. Der ausserordentliche Erfolg und die grosse Verbreitung der »Elements«Legendres(1794) ist bekannt und berechtigt; noch heute beeinflussen sie den Unterricht auf den Mittelschulen nicht nur Frankreichs sondern Spaniens, Hollands und Deutschlands.

Euklid-Gegner.

Was die deutschen Schulen betrifft, so möchte ich auf eine SchriftHubert Müller'saus Metz aufmerksam machen: »Besitzt die heutige Schulgeometrie noch die Vorzüge des Euklid-Originals?« Ich kann meine Kritik in der deutschen Literaturz. 1887 No. 37 nur dahin ergänzen: die deutsche Schulgeometrie hat sie nie besessen. Weder Johannes Vogelin, bekannt durch die Vorrede Melanchthons in der Ausgabe von 1536, noch des Conrad Dasypodius Volumen I und II, noch die Mathesis juvenilis Sturms oder Wolffs oder Kästners Anfangsgründe oder Thibauts Grundriss, von Kambly, Mehler, Henrici und Treutleinganz zu schweigen, sind jemals dem Gange Euklids gefolgt. Dagegen waren die Studenten und die Lehrer bis etwa um 1860, wie die rasch auf einander folgenden Ausgaben beweisen, völlig mit dem Euklid vertraut. Von da an ändert sich die Sache, und ich bin sicher, dass es nur eine minimale Anzahl von Lehrern gibt, die den Euklid gelesen haben.

Einen Teil der Schuld an dem Sinken der Autorität Euklids tragen auch die AngriffeSchopenhauersgegen die »Mausefallenbeweise des Euklid«. Schopenhauer hatte als Künstler, der er war, für die intuitive Erkenntnis vollstes Verständnis, aber bar aller mathematischen Bildung, fehlte ihm jedes Verständnis für die logische Erkenntnis, die oft ebenso unmittelbar wie jene ist. Nun ist aber die euklidische Geometrie als Wissenschaft eine chemische Verbindung von Anschauung und Logik, und darum musste der Versuch, den z. B.Kosakin dem Nordhäuser Programm anstellte die Geometrie nur auf Anschauung zu begründen, gerade so scheitern wie der noch berühmtereBolzanosvon 1804 die Geometrie rein logisch zu begründen.Bolzanohat übrigens viel mehr von Leibniz entlehnt als bekannt ist. Der grosse »aemulus« Newtons zeigt sich auch in der Auffassung der Grundlagen als Widerpart.

Während Newton in der Vorrede der Principia phil. nat. ausdrücklich auf den Ursprung der mathematischen Grundgebilde aus der Mechanik hinweist: »Gerade Linien und Kreise zu beschreiben sind Probleme, aber keine geometrischen,« ist Leibniz bemüht der Anschauung so wenig als möglich einzuräumen. Es scheint wenig oder gar nicht bekannt, dass schon bei Lebzeiten Leibniz' Ansichten desselben über die Grundlagen der Geometrie veröffentlicht sind beiLa Montre1691: Les 47 propos. du I livre des Elém. d'Euclide avec des remarques de G. G. Leibniz.

Ähnlich wie in Deutschland liegt die Sache in Frankreich und Italien, nur in England folgt Ausgabe auf Ausgabe und noch ist der sogenannte Syllabus nicht zustande gekommen, der den Euklid verdrängen sollte, doch ist das Festhalten an Euklidmehr Schein als Wirklichkeit s. mein Referat von 1906, No. 4 p. 26. Auch in Schweden und Norwegen scheint sich Interesse für Euklid dauernd erhalten zu haben. Für Deutschland und Italien ist mit dem Ende des 19. Jahrh. ein Umschwung eingetreten, man kann geradezu sagen, dass die Kenntnis des Euklid durch die neueste Richtung, deren Haupt in DeutschlandHilbert, in ItalienVeroneseist, wieder unentbehrlich wird.

Euklid's Elemente: Definitionen.

Über den Inhalt des Euklid muss ich sehr kurz sein, von meinen Hörern kann ich erwarten, dass sie den Euklid selbst lesen. Nur wenige Worte über das Wichtigste des Wichtigsten, die ὁροι, αιτηματα, κοιναι εννοιαι, die Definitionen, Postulate und Axiome des ersten Buches. Eine Bibliothek ist gleich über die ersten Worte geschrieben: σημειον εστι ὁυ μερος ουθεν (oft auch οὐδὲν).

Punkt ist das, dessen Teil nichts ist oder das keinen Teil hat. In beiden Fällen ist klar, dass Euklid, der seinen Platon und Aristoteles kannte, hiermit ausdrücklich gesagt hat, dass der Punkt nicht unter die Kategorie Grösse fällt; so klar dies ist, ist es doch niemals gedruckt worden, ausser bei Kant (Kritik d. reinen Vernunft p. 169), wo es frei nachAristotelesheisst: Punkte und Augenblicke sind nur Grenzen, der Raum besteht nur aus Räumen, die Zeit aus Zeiten.

Die Definition ist sicher platonisch; Aristoteles sagt der Punkt ist μονας θεσιν εχουσα eine Einheit, welche Lage hat. Definition 4: ευθεια γραμμη εστιν, ἡτις εξ ισου τοις εφ' ἁυτης σημειοις κειται. Die Gerade ist diejenige Linie, welche gleichmässig durch ihre Punkte gesetzt ist. Auch über diese Definition existiert eine ganze Literatur. Man hat nicht berücksichtigt, dass Euklid die gerade Linie erst völlig definiert durch die Forderungen 1 und 2. Es soll gefordert werden 1) dass sich von jedem Punkte bis zu jedem Punkte eine und nur eine Strecke führen lasse, 2) und diese Strecke sich kontinuierlich auf ihrer Geraden (vielleicht richtiger bis zur Vollendung der Geraden)ausziehen lasse. Mit Definition 4 zusammen definiert sie die Gerade völlig, natürlich nicht anschaulich, denn die Anschauung der Geraden, die psychologisch ist und experimentell gewonnen wird, setzt Euklid bei seinen Hörern voraus. Euklid sagt, die Gerade ist eine unterschiedslose und unendliche Linie, die durch zwei ihrer Punkte völlig bestimmt ist.

Def. 7) Ein ebener Winkel entsteht, wenn zwei Linien der Ebene zusammentreffen, welche nicht in derselben Geraden liegen, durch die Biegung von der einen Linie zur andern. Die Definition des Winkels ist oft und mit Recht getadelt worden. In Schottens vergleichender Planimetrie füllen die Abänderungen 40 Seiten aus; die von mir herrührende »der Winkel ist die Grenze des Kreissektors bei über jedes Mass wachsendem Radius«, ist für den Unterricht ungemein zweckmässig, aber ich fand sie nachträglich schon 70 Jahre vor mir beiSteinin Gergonnes Annales Bd. XV (1824) p. 77. —

Das Wort κλισις. »Neigung« kann Richtungsänderung bedeuten, kann Drehung bedeuten etc. Proklos (Eudemos) setzt daher κλασις in περί γωνίας. d. h. Brechung. Apollonius definiert: der Winkel ist die Verengerung der Ebene oder des Raumes an einem Punkte infolge der Biegung von Linien oder Flächen.

Dass Euklid den gradlinigen Winkelabcim Wesentlichen als eine Flächengrösse auffasst, das folgt aus der Definition 9 des gradlinigen Winkels, wo περιεχουσαι »enthaltend« gebraucht wird, und aus der ständigen Anwendung der Winkel ὑπὸ αβγ d. h. περιεχομενη, der von dem gebrochenen Linienzug αβγ umschlossene und besonders da er unmittelbar vom Winkel als der nicht völlig begrenzten Fläche auf dieFigur»οχημα« übergeht als der völlig begrenzten.

Euklid's Elemente: Forderungen.

Nun zu den fünf Forderungen:

Proklossagt, dass die Forderungen von den Grundsätzen sich unterscheiden wie die Aufgaben von den Lehrsätzen. Die ersteren verlangen Konstruktionen, die jeder leicht ausführen kann, die andern Sätze, die jeder leicht zugibt.

Aristotelessagt: die Forderung ermangelt des Beweises, den man gern geben möchte, wenn man nur könnte, während der Grundsatz von jedem ohne Weiteres als richtig anerkannt wird.

Die Unterscheidung des Proklos passt aber nur auf das schon genannte 1. Petitum und das 3. »Und um jedes Zentrum und mit jedem Abstand sich ein und nur ein Kreis zeichnen lasse«, d. h. dass vom gegebenen Zentrum aus durch jeden Punkt der Ebene ein und nur ein Kreis geht. Es enthalten aber No. 1 und 3 Forderungen, die, ich erinnere an Newton, von der angewandten Mechanik ihre Lösungen empfangen haben. Es darf daher nicht überraschen, wenn in den Handschriften eine ziemliche Verwirrung herrscht und sich z. B. in sehr vielen No. 5, das schon erwähnte Parallelenaxiom, als 11. Grundsatz findet und das schon vor Theon rezipierte unechte »zwei Gerade schliessen keinen Raum ein« sich im Vaticanus als Forderung 6 und in andern Codices als Grundsatz 9 findet. Der richtige Unterschied ist der: die Forderungen enthalten Grundtatsachen der Anschauungen und die Axiome Grundtatsachen der Logik.

Forderung 4: »Und alle rechte Winkel einander gleich seien«.

Sie ist nach Proklos von Geminos und anderen angegriffen als beweisbar. Ich gebe hier den Beweis des Geminos: Wäre αβγ < δεζ undlegteman δεζ auf αβγ, so dass δε u. αβ zusammenfallen, so fiele εζ als βη innerhalb und dann wäre κβα das nach Definition des rechten Winkels = αβη ist > θβα > αβγ, also δεζ zugleich kleiner und grösser als αβγ (Fig.).

Der Beweis setzt voraus, dass die Verlängerung von ηβ sich nicht mit θβ deckt, d. h. also, dass eine Strecke sich nuraufeineWeise zu einer Geraden verlängern lasse. Darin hatH. Zeuthenrecht, aber dies zu sagen wäre die Forderung eine seltsame Form und Euklid hat eine ganze Reihe stillschweigender Voraussetzungen ohne die keine geometrische, d. h. anschauliche Geometrie existieren kann, und die genannte Forderung hat er in No. 1 und 2 ausgesprochen.

Dem Geminos und den andern, vermutlich den Mechanikern Heron und Archimedes ist die strenge Aristotelische Auffassung der Bewegung verloren gegangen; der Beweis verlangt ja auch die Verschiebbarkeit und Drehung der Ebene in sich selbst, bezw. die dritte Dimension und die will und kann Euklid von seinem Standpunkte aus hier nicht zu Hilfe nehmen; so bleibt ihm nur übrig zur Forderung seine Zuflucht zu nehmen.

Euklid's Elemente: Grundsätze.

Über die 5. und letzte Forderung, das Parallelenaxiom, und dem was drum und dran hängt, kann ich aufF. EngelundP. Stäckel, Theorie d. Parallellinien (1895) und auf meine früheren Schriften verweisen. So gehe ich zu den Grundsätzen. Von Proklos sind als echt bezeichnet:

1) Was demselben (zu ergänzen: dritten) gleich ist, ist unter sich gleich.

2) Und wird Gleiches zu Gleichem hinzugesetzt, so sind die Ganzen gleich.

3) Und wird von Gleichem hinweggenommen, so sind die Reste gleich.

8) Und das Ganze ist grösser als sein Teil.

7) Und einander Deckendes ist gleich.

Euklid sagt: χοιναι εννοιαι. Allen Vernünftigen gemeinsame Einsicht.

Proklos sagt: Axiome eigentlich »Meinungen«, aber nach dem Sprachgebrauch des Aristoteles allgemein angenommene logische Sätze, die man nicht beweisen kann, weil sie die logischen Grundlagen des Beweises sind. Proklos hat nur die 5 angeführt, richtig 8 vor 7, da 7 nicht rein logisch ist, sondern von demZusammenfallen in der Anschauung ausgeht um daraus den logischen Schluss der Gleichheit zu ziehen.

Das Axiom 7 ist vonSchopenhauer»die Welt als Wille und Vorstellung« T. 2 S. 144 angegriffen, weil es entweder eine Tautologie ist oder eine Bewegung voraussetzt. Es ist vonBolzanoundGrassmann(Leibniz) durch das Prinzip ersetzt worden: »Dinge, deren bestimmende Stücke gleich sind, sind gleich« (eine andere Fassung für »gleiche Ursachen gleiche Wirkungen«).

Schopenhauer hat Euklid gar nicht verstanden; Euklid braucht Axiom 7 zuerst beim Beweis des ersten Theorems, Satz 4, der erste Kongruenzsatz, und dort im Grunde nur als Axiom von der Gleichförmigkeit des Raumes, bezw. in dem Sinne Bolzanos und Grassmanns. Ich halte es für einen Fehler, dass Euklid nicht den 1. und 3. Kongruenzsatz in die Forderungen aufgenommen hat.

Technologie der Elemente.

Es folgen nun die 48 »Protasis« (Propositionen d. i. Sätze) des ersten Buches. Die Sätze zerfallen in »Probleme«, Aufgaben, die zur Erzeugung eines Gebildes führen und »Theoreme« Lehrsätze. Den Unterschied definiert Proklos S. 201, wo er, um mit P. Tannery (Géométrie grecque S. 87) zu sprechen, von der Technologie der Elemente handelt wie folgt: Bei den Problemen handelt es sich darum sich Fehlendes zu beschaffen, anschaulich hinzustellen und mit den Kunstmitteln (Lineal und Zirkel) zu erzeugen. Im »Theorem« nimmt man sich vor das Vorhandensein einer Eigenschaft bezw. das Nichtvorhandensein zu sehen, zu erkennen, zu beweisen. Jedes Problem aber und jedes Theorem, das aus seinen vollständigen Teilen zusammengesetzt ist, muss folgendes in sich enthalten: 1)Vorlage(προτασις). 2) Feststellung des Gegebenen (εκθεσις.) Voraussetzung. 3)Feststellung des Geforderten(διορισμός.) Behauptung. 4) Konstruktion (κατασκευη.). 5) Beweis (απόδειξις.) 6) Schluss (συμπέρασμα).

Die Protasis sagt aus, was gegeben und was gefordert wird; denn die vollständige Protasis besteht aus beiden.

Die Ekthesis setzt das Gegebene an und für sich, (d. h. ohne Rücksicht auf das Geforderte) genau auseinander und arbeitet dadurch der Untersuchung vor.

Der Diorismos aber macht das Gesuchte, es sei, was es sei, an und für sich deutlich. Der Ausdruck Diorismos wird hier bei Proklos anders gebraucht als bei Pappos; Peyrard hat Prodiorismos: Bei Pappos bezeichnet Diorismos genau das, was wir heute Determination nennen, d. h. die Angabe derjenigen Einschränkungen in bezug auf die gegebenen Stücke, welche zur Ausführbarkeit der Konstruktion nötig sind.

Die Kataskeuē fügt das hinzu, was dem Gegebenen zur Erlangung des Gesuchten mangelt. Proklos sagt zur »Jagd« θηραν und braucht das Bild wiederholt, so alt ist das Bewusstsein des Kampfes des Mathematikers mit seinem Problem.

Die Apodeixis leitet das Vorliegende logisch von dem, was bereits feststeht, ab.

Das Symperasma aber kehrt wieder zur Vorlage zurück, indem es den bewiesenen Satz klar und deutlich ausspricht. Und dies sind alle Teile sowohl der Probleme als der Theoreme.

1) πρότασις.

Technologie, Beispiel.

Ich gebe ein Beispiel (S. 5): Im gleichschenkligen Dreieck sind die Winkel an der Basis einander gleich, und werden die gleichen Schenkel verlängert, so sind die Winkel unterhalb der Basis einander gleich.

2) εκθεσις.

ΑΒΓ sei das gleichschenklige Dreieck mit ΑΒ gleich ΑΓ und es mögen auf ihrer Geraden ΑΒ und ΑΓ verlängert werden um ΒΔ und ΓΕ.

3) διορισμός.

Ich behaupte etc.

4) κατασκευή.

Man nehme auf ΒΔ einen beliebigenPunkt Ζ an, von ΑΕ nehme man ΑΗ gleich ΑΖ weg und ziehe ΖΓ und ΗΒ. (Fig.)

5) αποδειξις.

Dann ist ◁ΑΖΓ ≅ ΑΗΒ (Satz 4), folglich ◁ΑΓΖ = ΑΒΗ und ∢ΑΖΓ = ΑΗΒ, und da ΑΖ = ΑΗ und ihr Teil ΑΒ und ΑΓ auch gleich, so ist (Ax. 3) ΒΖ = ΓΗ; und, da bereits bewiesen, dass ΖΓ = ΒΗ und ∢ΒΖΓ = ΒΗΓ, so ist (4) Dreieck ΒΖΓ ≅ ΒΗΓ, folglich ∢ΖΒΓ = ΗΓΒ, und ΒΓΖ = ΓΒΗ. Da nun der ganze Winkel ΑΒΗ = dem ganzen Winkel ΑΓΖ erwiesen wurde, und die Teile ΓΒΗ und ΒΓΖ gleich, so ist (Ax. 3) ∢ΑΒΓ = ΑΓΒ und dies sind die Basiswinkel. Die Gleichheit aber von ΖΒΓ und ΗΓΒ wurde schon gezeigt und sie liegen unterhalb der Basis.

6) συμπέρασμα.

Also sind im gleichschenkligen Dreieck etc.

M. H.! ich habe dies Beispiel absichtlich gewählt, weil es zeigt, wie turmhoch Euklid über den Beweisen unserer geometrischen Lehrbücher steht, und weil aus Heibergs zitierter Arbeit über die Mathematik bei Aristoteles folgt, dass hier ein bedeutender Fortschritt desEukleidesüber denTheudiosvorliegt. Es fällt Euklid gar nicht ein den Satz zu benutzen: wenn die Winkel gleich sind, so sind ihre Nebenwinkel gleich.

Proklosfährt fort: Am notwendigsten aber und in allem vorhanden sind die Vorlage, der Beweis und der Schluss. Denn man muss a) vorher wissen, was zu suchen ist und b) es durch eine Kette von Schlüssen beweisen und c) das Resultat einsammeln. Die andern Teile fehlen mitunter wie Diorismos und Ekthesis bei dem Problem: Ein gleichschenkliges Dreieck zu konstruieren, worin jeder Basiswinkel das Doppelte des Winkels an der Spitze. Dies Fehlen tritt ein, sagt Proklos, wenn die Vorlage kein Gegebenes enthält (d. h. wenn es ausgelassen ist) wie in dem zitierten Beispiel die Basis des Dreiecks wie in B. X S. 20 eine 4. Wurzel zu konstruieren (nämlich bei gegebener aber nicht erwähnter Einheitsstrecke).

Technologie der Elemente, Lemma, Porisma.

Die Konstruktion aber fehlt in weitaus den meisten Theoremen, da die Ekthesis hinreicht um ohne einen Zusatz (nämlich von Zeichnung) das Vorgesetzte (d. i. die Figur, um die es sich handelt) sichtbar zu machen. Hin und wieder findet sich ein Hilfssatz, Lemma, (von λαμβάνω) und Zugaben, Porisma. Lemma ist eigentlich in der Geometrie ein Satz, der noch des Beweises bedarf, den wir für eine Konstruktion oder einen Beweis einstweilen annehmen vorbehaltlich des Beweises, und der sich durch diesen Vorbehalt von den Axiomen und Forderungen unterscheidet, welche wir ohne dass sie bewiesen, zur Rechtfertigung anderer Sätze herbeiziehen. Porisma ist ein Zusatz, der sich beim Beweis eines anderen als eine »Gottesgabe« ungewollt von selbst ergibt, im wesentlichen also eine andere Fassung des bewiesenen Satzes. Übrigens sind die meisten, ich möchte sagen alle Lemmata und vielleicht auch die Porismata verdächtig, so fehlt z. B. das Porisma zu I, 15: (Scheitelwinkel sind gleich) »Wenn zwei Gerade einander schneiden, so sind die vier Winkel vier Rechten gleich«, obwohl es sich bei Proklos findet in den besten Handschriften.

Zu bemerken ist, dass in den guten Handschriften sich weder Überschriften noch Bezeichnungen der einzelnen Teile finden. Die Sätze sind numeriert und dies ist sicher nicht original, da Euklid nicht auf die betreffende Nummer verweist, sondern den einschlagenden Satz vollständig angibt. Dies Schleppende der Darstellung veranlasste vermutlich die Bezifferung und zwang zu Abkürzungen. Übrigens erklärt sich die Breite, wenn man sich vergegenwärtigt, dass das Original zu mündlichem Vortrag im Kolleg vor Studenten der Universität Alexandria bestimmt war. Und dies ist ein Umstand, der bei der Klage über Euklid und Euklids Methode viel zu wenig berücksichtigt ist; das Buch war für reife Männer bestimmt nur die Torheit der Scholarchen hat aus einem der tiefsinnigsten Werke aller Zeiten ein Buch für Schulknaben gemacht.


Back to IndexNext