Dr. J. A. Jeffries, author of an essay “On the Epidermal System of Birds,” in a later paper[252]thus frankly expresses his views as to the relations of natural selection to the Lamarckian factors. Referring to Darwin’s case of the leg bones of domestic ducks compared with those of wild ducks, and the atrophy of disused organs, he adds:
“In this case, as with most of Lamarck’s laws, Darwin has taken them to himself wherever natural selection, sexual selection, and the like have fallen to the ground.“Darwin’s natural selection does not depend, asis popularly supposed, on direct proof, but is adduced as an hypothesis which gains its strength from being compatible with so many facts of correlation between an organism and its surroundings. Yet the same writer who considers natural selection proved will call for positive experimental proof of Lamarck’s theory, and refuse to accept its general compatibility with the facts as support. Almost any case where natural selection is held to act by virtue of advantage gained by use of a part is equally compatible with Lamarck’s theory of use and development. The wings of birds of great power of flight, the relations of insects to flowers, the claws of beasts of prey, are all cases in point.”
“In this case, as with most of Lamarck’s laws, Darwin has taken them to himself wherever natural selection, sexual selection, and the like have fallen to the ground.
“Darwin’s natural selection does not depend, asis popularly supposed, on direct proof, but is adduced as an hypothesis which gains its strength from being compatible with so many facts of correlation between an organism and its surroundings. Yet the same writer who considers natural selection proved will call for positive experimental proof of Lamarck’s theory, and refuse to accept its general compatibility with the facts as support. Almost any case where natural selection is held to act by virtue of advantage gained by use of a part is equally compatible with Lamarck’s theory of use and development. The wings of birds of great power of flight, the relations of insects to flowers, the claws of beasts of prey, are all cases in point.”
Professor J. A. Thomson’s usefulSynthetic Summary of the Influence of the Environment upon the Organism(1887) takes for its text Spencer’s aphorism, that the direct action of the medium was the primordial factor of organic evolution. Professor Geddes relies on the changes in the soil and climate to account for the origin of spines in plants.
The botanist Sachs, in hisPhysiology of Plants(1887), remarks: “A far greater portion of the phenomena of life are [is] called forth by external influences than one formerly ventured to assume.”
Certain botanists are now strong in the belief that the species of plants have originated through the direct influence of the environment. Of these the most outspoken is the Rev. Professor G. Henslow. His view is that self-adaptation, by response to the definite action of changed conditions of life, is the true origin of species. In 1894[253]he insisted, “in thestrictest sense of the term, that natural selection is not wanted as an ‘aid’ or a ‘means’ in originating species.” In a later paper[254]he reasserts that all variations are definite, that there are no indefinite variations, and that natural selection “can take no part in the origination of varieties.” He quotes with approval the conclusion of Mr. Herbert Spencer in 1852, published
“seven years before Darwin and Dr. Wallace superadded natural selection as an aid in the origin of species. He saw no necessity for anything beyond the natural power of change with adaptation; and I venture now to add my own testimony, based upon upwards of a quarter of a century’s observations and experiments, which have convinced me that Mr. Spencer was right and Darwin was wrong. His words are as follows: ‘The supporters of the development hypothesis can show ... that any existing species, animal or vegetable, when placed under conditions different from its previous ones, immediately begins to undergo certain changes of structure fitting it for the new conditions; ... that in the successive generations these changes continue until ultimately the new conditions become the natural ones.... They can show that throughout all organic nature there is at work a modifying influence of the kind they assign as the causes of specific differences; an influence which, though slow in its action, does in time, if the circumstances demand it, produce marked changes.’”[255]
“seven years before Darwin and Dr. Wallace superadded natural selection as an aid in the origin of species. He saw no necessity for anything beyond the natural power of change with adaptation; and I venture now to add my own testimony, based upon upwards of a quarter of a century’s observations and experiments, which have convinced me that Mr. Spencer was right and Darwin was wrong. His words are as follows: ‘The supporters of the development hypothesis can show ... that any existing species, animal or vegetable, when placed under conditions different from its previous ones, immediately begins to undergo certain changes of structure fitting it for the new conditions; ... that in the successive generations these changes continue until ultimately the new conditions become the natural ones.... They can show that throughout all organic nature there is at work a modifying influence of the kind they assign as the causes of specific differences; an influence which, though slow in its action, does in time, if the circumstances demand it, produce marked changes.’”[255]
Mr. Henslow adduces observations and experiments by Buckman, Bailey, Lesage, Lothelier,Costantin, Bonnier, and others, all demonstrating that the environment acts directly on the plant.
Henslow also suggests that endogens have originated from exogenous plants through self-adaptation to an aquatic habit,[256]which is in line with our idea that certain classes of animals have diverged from the more primitive ones by change of habit, although this has led to the development of new class-characteristics by use and disuse, phenomena which naturally do not operate in plants, owing to their fixed conditions.
Other botanists—French, German, and English—have also been led to believe in the direct influence of themilieu, or environment. Such are Viet,[257]and Scott Elliot,[258]who attributes the growth of bulbs to the “direct influence of the climate.”
In a recent work Costantin[259]shares the belief emphatically held by some German botanists in the direct influence of the environment not only as modifying the form, but also as impressing, without the aid of natural selection, that form on the species or part of its inherited stock; and one chapter is devoted to an attempt to establish the thesis that acquired characters are inherited.
In his essay “On Dynamic Influences in Evolution” W. H. Dall[260]holds the view that—
“The environment stands in a relation to the individual such as the hammer and anvil bear to the blacksmith’s hot iron. The organism suffers during its entire existence a continuous series of mechanical impacts, none the less real because invisible, or disguised by the fact that some of them are precipitated by voluntary effort of the individual itself.... It is probable that since the initiation of life upon the planet no two organisms have ever been subjected to exactly the same dynamic influences during their development.... The reactions of the organism against the physical forces and mechanical properties of its environment are abundantly sufficient, if we are granted a single organism, with a tendency to grow, to begin with; time for the operation of the forces; and the principle of the survival of the fittest.”
“The environment stands in a relation to the individual such as the hammer and anvil bear to the blacksmith’s hot iron. The organism suffers during its entire existence a continuous series of mechanical impacts, none the less real because invisible, or disguised by the fact that some of them are precipitated by voluntary effort of the individual itself.... It is probable that since the initiation of life upon the planet no two organisms have ever been subjected to exactly the same dynamic influences during their development.... The reactions of the organism against the physical forces and mechanical properties of its environment are abundantly sufficient, if we are granted a single organism, with a tendency to grow, to begin with; time for the operation of the forces; and the principle of the survival of the fittest.”
In his paper on the hinge of Pelecypod molluscs and its development, he has pointed out a number of the particular ways in which the dynamics of the environment may act on the characters of the hinge and shell of bivalve molluscs. He has also shown that the initiation and development of the columellar plaits in Voluta, Mitra, and othergasteropodmolluscs “are the necessary mechanical result of certain comparatively simple physical conditions; and that the variations and peculiarities connected with these plaits perfectly harmonize with the results which follow within organic material subjected to analogous stresses.”
In the same line of study is Dr. R. T. Jackson’s[261]work on the mechanical origin of characters in the lamellibranch molluscs. “The bivalve nature of the shell doubtless arose,” he says, “from the splitting on the median line of a primitive univalvular ancestor;” and he adds: “A parallel case is seen in the development of a bivalve shell in ancient crustaceans;” in both types of shells “the form is induced by the mechanical conditions of the case.” The adductor muscles of bivalve molluscs and crustaceans are, he shows plainly, the necessary consequence of the bivalvular condition.
In his theory as to the origin of the siphon of the clam (Mya arenaria), he explains it in a manner identical with Lamarck’s explanations of the origin of the wading and swimming birds, etc., even to the use of the words “effort” and “habit.”
“InMya arenariawe find a highly elongated siphon. In the young the siphon hardly extends beyond the borders of the valves, and then the animal lives at or close to the surface. In progressive growth, as the animal burrows deeper, the siphon elongates, until it attains a length many times the total length of the valves.“The ontogeny of the individual and the paleontology of the family both show that Mya came from a form with a very abbreviated siphon, and it seems evident that the long siphon of this genus was brought about by the effort to reach the surface induced by the habit of deep burial.”“The tendency to equalize the form of growth in a horizontal plane, or the geomalic tendency of Professor Hyatt,[262]is seen markedly in pelecypods. In forms which crawl on the free borders of the valves, the right and left growth in relation to the perpendicular is obvious, and agrees with the right and left sides of the animal. In Pecten the animal at rest lies on the right valve, and swims or flies with the right valve lowermost. Here equalization to the right and left of the perpendicular line passing through the centre of gravity is very marked (especially in the Vola division of the group); but the induced right and left aspect corresponds to the dorsal and ventral sides of the animal, not the right and left sides, as in the former case. Lima, a near ally of Pecten, swims with the edges of the valves perpendicular. In this case the geomalic growth corresponds to the right and left sides of the animal.“The oyster has a deep or spoon-shaped attached valve, and a flat or flatter free valve. This form, or a modification of it, we find to be characteristic of all pelecypods which are attached to a foreign object of support by the cementation of one valve. All are highly modified, and are strikingly different from the normal form seen in locomotive types of the group. The oyster may be taken as the type of the form adopted by attached pelecypods. The two valves are unequal, the attached valve being concave, the free valve flat; but they are not only unequal, they are often very dissimilar—as different as if they belonged to a distinct type in what would be considered typical forms. This is remarkable as a case of acquired and inherited characteristics finding very different expression in the two valves of a group belonging to a class typically equivalvular. Theattached valve is the most highly modified, and the free is least modified, retaining more fully ancestral characters. Therefore, it is to the free young before fixation takes place and to the free, least-modified valve that we must turn in tracing genetic relations of attached groups. Another characteristic of attached pelecypods is camerated structure, which is most frequent and extensive in the thick attached valve. The form as above described is characteristic of the Ostreidæ, Hinnites, Spondylus, and Plicatula, Dimya, Pernostrea, Aetheria, and Mulleria; and Chama and its near allies. These various genera, though ostreiform in the adult, are equivalvular and of totally different form in the free young. The several types cited are from widely separated families of pelecypods, yet all, under the same given conditions, adopt a closely similar form, which is strong proof that common forces acting on all alike have induced the resulting form. What the forces are that have induced this form it is not easy to see from the study of this form alone; but the ostrean form is the base of a series, from the summit of which we get a clearer view.” (Amer. Nat., pp. 18–20.)
“InMya arenariawe find a highly elongated siphon. In the young the siphon hardly extends beyond the borders of the valves, and then the animal lives at or close to the surface. In progressive growth, as the animal burrows deeper, the siphon elongates, until it attains a length many times the total length of the valves.
“The ontogeny of the individual and the paleontology of the family both show that Mya came from a form with a very abbreviated siphon, and it seems evident that the long siphon of this genus was brought about by the effort to reach the surface induced by the habit of deep burial.”
“The tendency to equalize the form of growth in a horizontal plane, or the geomalic tendency of Professor Hyatt,[262]is seen markedly in pelecypods. In forms which crawl on the free borders of the valves, the right and left growth in relation to the perpendicular is obvious, and agrees with the right and left sides of the animal. In Pecten the animal at rest lies on the right valve, and swims or flies with the right valve lowermost. Here equalization to the right and left of the perpendicular line passing through the centre of gravity is very marked (especially in the Vola division of the group); but the induced right and left aspect corresponds to the dorsal and ventral sides of the animal, not the right and left sides, as in the former case. Lima, a near ally of Pecten, swims with the edges of the valves perpendicular. In this case the geomalic growth corresponds to the right and left sides of the animal.
“The oyster has a deep or spoon-shaped attached valve, and a flat or flatter free valve. This form, or a modification of it, we find to be characteristic of all pelecypods which are attached to a foreign object of support by the cementation of one valve. All are highly modified, and are strikingly different from the normal form seen in locomotive types of the group. The oyster may be taken as the type of the form adopted by attached pelecypods. The two valves are unequal, the attached valve being concave, the free valve flat; but they are not only unequal, they are often very dissimilar—as different as if they belonged to a distinct type in what would be considered typical forms. This is remarkable as a case of acquired and inherited characteristics finding very different expression in the two valves of a group belonging to a class typically equivalvular. Theattached valve is the most highly modified, and the free is least modified, retaining more fully ancestral characters. Therefore, it is to the free young before fixation takes place and to the free, least-modified valve that we must turn in tracing genetic relations of attached groups. Another characteristic of attached pelecypods is camerated structure, which is most frequent and extensive in the thick attached valve. The form as above described is characteristic of the Ostreidæ, Hinnites, Spondylus, and Plicatula, Dimya, Pernostrea, Aetheria, and Mulleria; and Chama and its near allies. These various genera, though ostreiform in the adult, are equivalvular and of totally different form in the free young. The several types cited are from widely separated families of pelecypods, yet all, under the same given conditions, adopt a closely similar form, which is strong proof that common forces acting on all alike have induced the resulting form. What the forces are that have induced this form it is not easy to see from the study of this form alone; but the ostrean form is the base of a series, from the summit of which we get a clearer view.” (Amer. Nat., pp. 18–20.)
Here we see, plainly brought out by Jackson’s researches, that the Lamarckian factors of change of environment and consequently of habit, effort, use and disuse, or mechanical strains resulting in the modifications of some, and even the appearance of new organs, as the adductor muscles, have originated new characters which are peculiar to the class, and thus a new class has been originated. The mollusca, indeed, show to an unusual extent the influence of a change in environment and of use and disuse in the formation of classes.
Lang’s treatment, in hisText-book of Comparative Anatomy(1888), of the subjects of the musculature of worms and crustacea, and of the mechanism of the motion of the segmented body in the Arthropoda, is of much value in relation to the mechanical genesis of the body segments and limbs of the members of this type. Dr. B. Sharp has also discussed the same subject (American Naturalist, 1893, p. 89), also Graber in his works, while the present writer in hisText-book of Entomology(1898) has attempted to treat of the mechanical origin of the segments of insects, and of the limbs and their jointed structure, along the lines laid down by Herbert Spencer, Lang, Sharp, and Graber.
W. Roux[263]has inquired how natural selection could have determined the special orientation of the sheets of spongy tissue of bone. He contends that the selection of accidental variation could not originate species, because such variations are isolated, and because, to constitute a real advantage, they should rest on several characters taken together. His example is the transformation of aquatic into terrestrial animals.
G. Pfeffer[264]opposes the efficacy of natural selection, as do C. Emery[265]and O. Hertwig. The essence of Hertwig’sThe Biological Problem of To-day(1894) is that “in obedience to different externalinfluences the same rudiments may give rise to different adult structures” (p. 128). Delage, in hisThéories sur l’Hérédité, summarizes under seven heads the objections of these distinguished biologists. Species arise, he says, from general variations, due to change in the conditions of life, such as food, climate, use and disuse, very rarely individual variations, such as sports or aberrations, which are more or less the result of disease.
Mention should also be made of the essays and works of H. Driesch,[266]De Varigny,[267]Danilewsky,[268]Verworn,[269]Davenport,[270]Gadow,[271]and others.
In his address on “Neodarwinism and Neolamarckism,” Mr. Lester F. Ward, the palæobotanist, says:
“I shall be obliged to confine myself almost exclusively to the one great mind, who far more than all others combined paved the way for the new science of biology to be founded by Darwin, namely, Lamarck.” After showing that Lamarck established the functional, or what we would call the dynamic factors, he goes on to say that “Lamarck, although he clearly grasped the law of competition, or the struggle for existence, the law of adaptation, or the correspondence of the organism to the changing environment, the transmutation of species, and thegenealogical descent of all organic beings, the more complex from the more simple; he nevertheless failed to conceive the selective principle as formulated by Darwin and Wallace, which so admirably complemented these great laws.”[272]
“I shall be obliged to confine myself almost exclusively to the one great mind, who far more than all others combined paved the way for the new science of biology to be founded by Darwin, namely, Lamarck.” After showing that Lamarck established the functional, or what we would call the dynamic factors, he goes on to say that “Lamarck, although he clearly grasped the law of competition, or the struggle for existence, the law of adaptation, or the correspondence of the organism to the changing environment, the transmutation of species, and thegenealogical descent of all organic beings, the more complex from the more simple; he nevertheless failed to conceive the selective principle as formulated by Darwin and Wallace, which so admirably complemented these great laws.”[272]
As is well known, Huxley was, if we understand his expressions aright, not fully convinced of the entire adequacy of natural selection.
“There is no fault to be found with Mr. Darwin’s method, then; but it is another question whether he has fulfilled all the conditions imposed by that method. Is it satisfactorily proved, in fact, that species may be originated by selection? that there is such a thing as natural selection? that none of the phenomena exhibited by species are inconsistent with the origin of species in this way?. . . . . . . . .“After much consideration, with assuredly no bias against Mr. Darwin’s views, it is our clear conviction that, as the evidence stands, it is not absolutely proven that a group of animals, having all the characters exhibited by species in nature, has ever been originated by selection, whether artificial or natural. Groups having the morphological character of species, distinct and permanent races, in fact, have been so produced over and over again; but there is no positive evidence, at present, that any group of animals has, by variation and selective breeding, given rise to another group which was even in the least degree infertile with the first. Mr. Darwin is perfectly aware of this weak point, and brings forward a multitude of ingenious and important arguments to diminish the force of the objection.”[273]
“There is no fault to be found with Mr. Darwin’s method, then; but it is another question whether he has fulfilled all the conditions imposed by that method. Is it satisfactorily proved, in fact, that species may be originated by selection? that there is such a thing as natural selection? that none of the phenomena exhibited by species are inconsistent with the origin of species in this way?
. . . . . . . . .
“After much consideration, with assuredly no bias against Mr. Darwin’s views, it is our clear conviction that, as the evidence stands, it is not absolutely proven that a group of animals, having all the characters exhibited by species in nature, has ever been originated by selection, whether artificial or natural. Groups having the morphological character of species, distinct and permanent races, in fact, have been so produced over and over again; but there is no positive evidence, at present, that any group of animals has, by variation and selective breeding, given rise to another group which was even in the least degree infertile with the first. Mr. Darwin is perfectly aware of this weak point, and brings forward a multitude of ingenious and important arguments to diminish the force of the objection.”[273]
We have cited the foregoing conclusions and opinions of upwards of forty working biologists, many of whom were brought up, so to speak, in the Darwinian faith, to show that the pendulum of evolutionary thought is swinging away from the narrow and restricted conception of natural selection, pure and simple, as the sole or most important factor, and returning in the direction of Lamarckism.
We may venture to say of Lamarck what Huxley once said of Descartes, that he expressed “the thoughts which will be everybody’s two or three centuries after” him. Only the change of belief, due to the rapid accumulation of observed facts, has come in a period shorter than “two or three centuries;” for, at the end of the very century in which Lamarck, whatever his crudities, vagueness, and lack of observations and experiments, published his views, wherein are laid the foundations on which natural selection rests, the consensus of opinion as to the direct and indirect influence of the environment, and the inadequacy of natural selection as an initial factor, was becoming stronger and deeper-rooted each year.
We must never forget or underestimate, however, the inestimable value of the services rendered by Darwin, who by his patience, industry, and rare genius for observation and experiment, and his powers of lucid exposition, convinced the world of the truth of evolution, with the result that it has transformed the philosophy of our day. We are all of us evolutionists, though we may differ as to the nature of the efficient causes.
FOOTNOTES:[204]Vol. ii., p. 167, 1871.[205]Vol. ii., p. 195.[206]Vol. i., § 166, p. 456.[207]The Factors of Organic Evolution, 1895, p. 460.[208]Schöpfungegeschichte, 1868.The History of Creation, New York, ii., p. 355.[209]Alcide d’Orbigny,Paléontologie française, Paris, 1840–59.[210]Abstract in Proceedings of the Boston Society of Natural History, xvii., December 16, 1874.[211]Zeitschr. der deutsch. geol. Gesellschaft, 1875.[212]Palæontologica Indica. Jurassic Fauna of Kutch. I. Cephalopoda, pp. 242–243. (See Hyatt’sGenesis of the Arietidæ, pp. 27, 42.)[213]“Genera of Fossil Cephalopods,” Proc. Bost. Soc. Nat. Hist., xxii., April 4, 1883, p. 265.[214]“Revision of the North American Poriferæ.” Memoirs Bost. Soc. Nat. Hist., ii., part iv., 1877.[215]Three Cruises of the “Blake,”1888, ii., p. 158.[216]The earliest paper in which he adopted the Lamarckian doctrines of use and effort was his “Methods of Creation of Organic Types” (1871). In this paper Cope remarks that he “has never read Lamarck in French, nor seen a statement of his theory in English, except the very slight notices in theOrigin of SpeciesandChambers’ Encyclopædia, the latter subsequent to the first reading of this paper.” It is interesting to see how thoroughly Lamarckian Cope was in his views on the descent theory.[217]Proceedings of the American Association for the Advancement of Science, Troy meeting, 1870. Printed in August, 1871.[218]American Naturalist, v., December, 1871, p. 750. See also pp. 751, 759, 760.[219]Printed in advance, being chapter xiii. ofOur Common Insects, Salem, 1873, pp. 172, 174, 179, 180, 181, 185.[220]“A New Cave Fauna in Utah.”Bulletin of the United States Geological Survey, iii., April 9, 1877, p. 167.[221]Memoirs of the National Academy of Sciences, iv., 1888, pp. 156: 27 plates. See alsoAmerican Naturalist, Sept., 1888, xxii., p. 808, and Sept., 1894, xxviii., p. 333.[222]Carl H.Eigenmann, in his elaborate memoir,The Eyes of the Blind Vertebrates of North America (Archiv für Entwickelungsmechanik der Organismen, 1899, viii.), concludes that the Lamarckian view, that through disuse and the transmission by heredity of the characters thus inherited the eyes of blind fishes are diminished, “is the only view so far examined that does not on the face of it present serious objections” (pp. 605–609).[223]“Hints on the Evolution of the Bristles, Spines, and Tubercles of Certain Caterpillars, etc.” Proceedings Boston Society of Natural History, xxiv., 1890, pp. 493–560; 2 plates.[224]E. J. Marey: “Le Transformisme et la Physiologie Expérimentale, Cours du Collège de France,”Revue Scientifique, 2mesérie, iv., p. 818. (Function makes the organ, especially in the osseous and muscular systems.) See also A. Dohrn:Der Ursprung derWirbelthiereund das Princip des Functionswechsels, Leipzig, 1875. See also Lamarck’s opinion, p. 295.[225]“On the Inheritance of Acquired Characters in Animals with a Complete Metamorphosis.” Proceedings Amer. Acad. Arts and Sciences, Boston, xxix. (N. S., xxi.). 1894, pp. 331–370; also monograph of “Bombycine Moths,” Memoirs Nat. Acad. Sciences, vii., 1895, p. 33.[226]In 1885, in the Introduction to theStandard Natural History, we proposed the term Neolamarckianism, or Lamarckism in its modern form, to designate the series of factors of organic evolution, and we take the liberty to quote the passage in which the word first occurs. We may add that the briefer form, Neolamarckism, is the more preferable.“In the United States a number of naturalists have advocated what may be called Neo-Lamarckian views of evolution, especially the conception that in some cases rapid evolution may occur. The present writer, contrary to pure Darwinians, believes that many species, but more especially types of genera and families, have been produced by changes in the environment acting often with more or less rapidity on the organism, resulting at times in a new genus, or even a family type. Natural selection, acting through thousands, and sometimes millions, of generations of animals and plants, often operates too slowly; there are gaps which have been, so to speak, intentionally left by Nature. Moreover, natural selection was, as used by some writers, more an idea than avera causa. Natural selection also begins with the assumption of a tendency to variation, and presupposes a world already tenanted by vast numbers of animals among which a struggle for existence was going on, and the few were victorious over the many. But the entire inadequacy of Darwinism to account for the primitive origin of life forms, for the original diversity in the different branches of the tree of life forms, the interdependence of the creation of ancient faunas and floras on geological revolutions, and consequent sudden changes in the environment of organisms, has convinced us that Darwinism is but one of a number of factors of a true evolution theory; that it comes in play only as the last term of a series of evolutionary agencies or causes; and that it rather accounts, as first suggested by the Duke of Argyll, for thepreservationof forms than for their origination. We may, in fact, compare Darwinism to the apex of a pyramid, the larger mass of the pyramid representing the complex of theories necessary to account for the world of life as it has been and now is. In other words, we believe in a modified and greatly extended Lamarckianism, or what may be called Neo-Lamarckianism.”[227]Studies in the Theory of Descent. By Dr. August Weismann. Translated and edited, with notes, by Raphael Meldola. London, 1882. 2 vols.[228]“The Influence of Physical Conditions in the Genesis of Species,”Radical Review, i., May, 1877. See also J. A. Allen in Bull. Mus. Comp. Zoöl. ii., 1871; also R. Ridgway,American Journal of Science, December, 1872, January, 1873.[229]Annual Report of the United States Geological and Geographical Survey Territories, 1873. Pp. 543–560. See also the author’s monograph of Geometrid Moths or Phalænidæ of the United States, 1876, pp. 584–589, and monograph of Bombycine Moths (Notodontidæ), p. 50.[230]Proceedings Academy of Natural Science, Philadelphia (1877), p. 318.[231]Proceedings of the American Philosophical Society (1889), p. 546.[232]Transactions American Philosophical Society, xvi. (1890), and later papers.[233]American Journal of Morphology(1891), pp. 395, 398.[234]“Über die Darwinische Theorie in Besug auf die geographische Verbreitung der Organismen.” Sitzenb. der Akad. München, 1868. Translated by J. L. Laird under the title,The Darwinian Theory and the Law of the Migration of Organisms. London, 1873. AlsoUeber den Einfluss der geographischen Isolirung und Colonierbildung auf die morphologischen Veränderungen der Organismen. München, 1870.[235]Linnæan Society’s Journal: Zoölogy, xi., 1872.[236]Linnæan Society’s Journal: Zoölogy, xx., 1887, pp. 189–274, 496–505: alsoNature, July 18, 1872.[237]Evolution without Natural Selection; or, The Segregation of Species without the aid of the Darwinian Hypothesis, London (1885), pp. 1–80.[238]Revue Scientifique, xix. (1877). p. 669. Quoted by Giard inRev. Sci., 1889, p. 646.[239]Animal Life as Affected by the Natural Conditions of Existence.By Karl Semper. The International Scientific Series. New York, 1881.[240]Organic Evolution as the Result of the Inheritance of Acquired Characters, according to the Laws of Organic Growth.Translated by J. T. Cunningham, 1890.[241]On Orthogenesis and the Impotence of Natural Selection in Species Formation.Chicago, 1898.[242]Die Farbenevolution bei den Pieriden. Leiden, 1898.[243]“On Mechanical Selection and Other Problems.”Novitates Zoologicæ, iii. Tring, 1896.[244]Entwicklung der Raupenzeichnung und Abhängigkeit der letzeren von der Farbe der Umgebung, 1894.[245]Transmutation der Schmetterlinge infolge Temperatur-veränderungen, 1895.[246]Ueber den Einfluss der Temperatur bei der Erzeugung der Schmetterlings-varietäten, 1880.[247]Ueber Farbenwechsel bei niederen Wirbelthieren, bedingt durch directe Wirkung des Lichts auf die Pigmentzellen.Centralblatt für Physiologie, 1891, v., p. 326.[248]Ueber den Farbenwechsel der Frösche.Pflüger’s Archiv für Physiologie, 1892, li., p. 455.[249]Leçon d’Ouverture du Cours de l’Évolution des Êtres organisés.Paris, 1888, and “Les Facteurs de l’Évolution,”Revue Scientifique, November 23, 1889.[250]Revue Encyclopédique, 1897. p. 325. Yet we have an example of the appearance of a new organ in the case of the duckbill, in which the horny plates take the place of the teeth which Poulton has discovered in the embryo. Other cases are the adductor muscles of shelled crustacea. (See p. 418.)[251]La Philosophie Zoologique avant Darwin. Paris, 1884, p. 76.[252]“Lamarckism and Darwinism.” Proceedings Boston Society Natural History, xxv., 1890, pp. 42–49.[253]“The Origin of Species without the Aid of Natural Selection,”Natural Science, Oct., 1894. Also, “The Origin of Plant Structures.”[254]“Does Natural Selection play any Part in the Origin of Species among Plants?”Natural Science, Sept., 1897.[255]“Essay on the Development Hypothesis,” 1852, LondonTimes.[256]“A Theoretical Origin of Endogens from Exogens through Self-Adaptation to an Aquatic Habit,”Linnean Society Journal: Botany, 1892,l. c., xxix., pp. 485–528. A case analogous to kinetogenesis in animals is his statement based on mathematical calculations by Mr. Hiern, “that the best form of the margin of floating leaves for resisting the strains due to running water is circular, or at least the several portions of the margin would be circular arcs” (p. 517).[257]“De l’Influence du Milieu sur la Structure anatomique des Végétaux,”Ann. Sci. Nat. Bot., ser. 6, xii., 1881, p. 167.[258]“Notes on the Regional Distribution of the Cape Flora,”TransactionsBotanical Society, Edinburgh. 1891, p. 241.[259]Les Végétaux et les Milieux cosmiques, Paris, 1898, pp. 292.[260]Proceedings Biological Society of Washington, 1890.[261]“Phylogeny of the Pelecypoda,” Memoirs Boston Society Natural History, iv., 1890, pp. 277–400. Also,American Naturalist, 1891, xxv., pp. 11–21.[262]“Transformations of Planorbis at Steinheim, with Remarks on the Effects of Gravity upon the Forms of Shells and Animals,” Proceedings A. A. A. S., xxix., 1880.[263]Der Kampf der Theile im Organismus. Leipzig, 1881. AlsoGesammelte Abhandlungen über Entwickelungsmechanik der Organismen. Leipzig, 1895.[264]Die Unwandlung der Arten ein Vorgang functioneller Selbsgestaltung. Leipzig, 1894.[265]Gedanken zur Descendenz- und Vererbungstheorie; Biol. Centralblatt, xiii., 1893, 397–420.[266]Entwickelungmecanische Studien, 1892–93.[267]Experimental Evolution, 1892; also, “Recherches sur le Nanisme experimental,”Journ. Anat. et Phys., 1894.[268]“Ueber die organsplastischen Kräfte der Organismen,”Arbeit. nat. Ges., Petersburg, xvi., 1885; Protok, 79–82.[269]General Physiology, 1899.[270]Experimental Morphology, 1897–99. 2 vols.[271]“Modifications of Certain Organs which seem to be Illustrations of the Inheritance of Acquired Characters in Mammals and Birds.”Zool. Jahrb. Syst. Abth., 1890, iv., pp. 629–646; also,The Lost Link, by E. Haeckel, with notes, etc., by H. Gadow, 1899.[272]Proceedings Biological Society of Washington, vi., 1892, pp. 13, 19.[273]Lay Sermons, Addresses, and Reviews, 1870, p. 323.
[204]Vol. ii., p. 167, 1871.
[204]Vol. ii., p. 167, 1871.
[205]Vol. ii., p. 195.
[205]Vol. ii., p. 195.
[206]Vol. i., § 166, p. 456.
[206]Vol. i., § 166, p. 456.
[207]The Factors of Organic Evolution, 1895, p. 460.
[207]The Factors of Organic Evolution, 1895, p. 460.
[208]Schöpfungegeschichte, 1868.The History of Creation, New York, ii., p. 355.
[208]Schöpfungegeschichte, 1868.The History of Creation, New York, ii., p. 355.
[209]Alcide d’Orbigny,Paléontologie française, Paris, 1840–59.
[209]Alcide d’Orbigny,Paléontologie française, Paris, 1840–59.
[210]Abstract in Proceedings of the Boston Society of Natural History, xvii., December 16, 1874.
[210]Abstract in Proceedings of the Boston Society of Natural History, xvii., December 16, 1874.
[211]Zeitschr. der deutsch. geol. Gesellschaft, 1875.
[211]Zeitschr. der deutsch. geol. Gesellschaft, 1875.
[212]Palæontologica Indica. Jurassic Fauna of Kutch. I. Cephalopoda, pp. 242–243. (See Hyatt’sGenesis of the Arietidæ, pp. 27, 42.)
[212]Palæontologica Indica. Jurassic Fauna of Kutch. I. Cephalopoda, pp. 242–243. (See Hyatt’sGenesis of the Arietidæ, pp. 27, 42.)
[213]“Genera of Fossil Cephalopods,” Proc. Bost. Soc. Nat. Hist., xxii., April 4, 1883, p. 265.
[213]“Genera of Fossil Cephalopods,” Proc. Bost. Soc. Nat. Hist., xxii., April 4, 1883, p. 265.
[214]“Revision of the North American Poriferæ.” Memoirs Bost. Soc. Nat. Hist., ii., part iv., 1877.
[214]“Revision of the North American Poriferæ.” Memoirs Bost. Soc. Nat. Hist., ii., part iv., 1877.
[215]Three Cruises of the “Blake,”1888, ii., p. 158.
[215]Three Cruises of the “Blake,”1888, ii., p. 158.
[216]The earliest paper in which he adopted the Lamarckian doctrines of use and effort was his “Methods of Creation of Organic Types” (1871). In this paper Cope remarks that he “has never read Lamarck in French, nor seen a statement of his theory in English, except the very slight notices in theOrigin of SpeciesandChambers’ Encyclopædia, the latter subsequent to the first reading of this paper.” It is interesting to see how thoroughly Lamarckian Cope was in his views on the descent theory.
[216]The earliest paper in which he adopted the Lamarckian doctrines of use and effort was his “Methods of Creation of Organic Types” (1871). In this paper Cope remarks that he “has never read Lamarck in French, nor seen a statement of his theory in English, except the very slight notices in theOrigin of SpeciesandChambers’ Encyclopædia, the latter subsequent to the first reading of this paper.” It is interesting to see how thoroughly Lamarckian Cope was in his views on the descent theory.
[217]Proceedings of the American Association for the Advancement of Science, Troy meeting, 1870. Printed in August, 1871.
[217]Proceedings of the American Association for the Advancement of Science, Troy meeting, 1870. Printed in August, 1871.
[218]American Naturalist, v., December, 1871, p. 750. See also pp. 751, 759, 760.
[218]American Naturalist, v., December, 1871, p. 750. See also pp. 751, 759, 760.
[219]Printed in advance, being chapter xiii. ofOur Common Insects, Salem, 1873, pp. 172, 174, 179, 180, 181, 185.
[219]Printed in advance, being chapter xiii. ofOur Common Insects, Salem, 1873, pp. 172, 174, 179, 180, 181, 185.
[220]“A New Cave Fauna in Utah.”Bulletin of the United States Geological Survey, iii., April 9, 1877, p. 167.
[220]“A New Cave Fauna in Utah.”Bulletin of the United States Geological Survey, iii., April 9, 1877, p. 167.
[221]Memoirs of the National Academy of Sciences, iv., 1888, pp. 156: 27 plates. See alsoAmerican Naturalist, Sept., 1888, xxii., p. 808, and Sept., 1894, xxviii., p. 333.
[221]Memoirs of the National Academy of Sciences, iv., 1888, pp. 156: 27 plates. See alsoAmerican Naturalist, Sept., 1888, xxii., p. 808, and Sept., 1894, xxviii., p. 333.
[222]Carl H.Eigenmann, in his elaborate memoir,The Eyes of the Blind Vertebrates of North America (Archiv für Entwickelungsmechanik der Organismen, 1899, viii.), concludes that the Lamarckian view, that through disuse and the transmission by heredity of the characters thus inherited the eyes of blind fishes are diminished, “is the only view so far examined that does not on the face of it present serious objections” (pp. 605–609).
[222]Carl H.Eigenmann, in his elaborate memoir,The Eyes of the Blind Vertebrates of North America (Archiv für Entwickelungsmechanik der Organismen, 1899, viii.), concludes that the Lamarckian view, that through disuse and the transmission by heredity of the characters thus inherited the eyes of blind fishes are diminished, “is the only view so far examined that does not on the face of it present serious objections” (pp. 605–609).
[223]“Hints on the Evolution of the Bristles, Spines, and Tubercles of Certain Caterpillars, etc.” Proceedings Boston Society of Natural History, xxiv., 1890, pp. 493–560; 2 plates.
[223]“Hints on the Evolution of the Bristles, Spines, and Tubercles of Certain Caterpillars, etc.” Proceedings Boston Society of Natural History, xxiv., 1890, pp. 493–560; 2 plates.
[224]E. J. Marey: “Le Transformisme et la Physiologie Expérimentale, Cours du Collège de France,”Revue Scientifique, 2mesérie, iv., p. 818. (Function makes the organ, especially in the osseous and muscular systems.) See also A. Dohrn:Der Ursprung derWirbelthiereund das Princip des Functionswechsels, Leipzig, 1875. See also Lamarck’s opinion, p. 295.
[224]E. J. Marey: “Le Transformisme et la Physiologie Expérimentale, Cours du Collège de France,”Revue Scientifique, 2mesérie, iv., p. 818. (Function makes the organ, especially in the osseous and muscular systems.) See also A. Dohrn:Der Ursprung derWirbelthiereund das Princip des Functionswechsels, Leipzig, 1875. See also Lamarck’s opinion, p. 295.
[225]“On the Inheritance of Acquired Characters in Animals with a Complete Metamorphosis.” Proceedings Amer. Acad. Arts and Sciences, Boston, xxix. (N. S., xxi.). 1894, pp. 331–370; also monograph of “Bombycine Moths,” Memoirs Nat. Acad. Sciences, vii., 1895, p. 33.
[225]“On the Inheritance of Acquired Characters in Animals with a Complete Metamorphosis.” Proceedings Amer. Acad. Arts and Sciences, Boston, xxix. (N. S., xxi.). 1894, pp. 331–370; also monograph of “Bombycine Moths,” Memoirs Nat. Acad. Sciences, vii., 1895, p. 33.
[226]In 1885, in the Introduction to theStandard Natural History, we proposed the term Neolamarckianism, or Lamarckism in its modern form, to designate the series of factors of organic evolution, and we take the liberty to quote the passage in which the word first occurs. We may add that the briefer form, Neolamarckism, is the more preferable.“In the United States a number of naturalists have advocated what may be called Neo-Lamarckian views of evolution, especially the conception that in some cases rapid evolution may occur. The present writer, contrary to pure Darwinians, believes that many species, but more especially types of genera and families, have been produced by changes in the environment acting often with more or less rapidity on the organism, resulting at times in a new genus, or even a family type. Natural selection, acting through thousands, and sometimes millions, of generations of animals and plants, often operates too slowly; there are gaps which have been, so to speak, intentionally left by Nature. Moreover, natural selection was, as used by some writers, more an idea than avera causa. Natural selection also begins with the assumption of a tendency to variation, and presupposes a world already tenanted by vast numbers of animals among which a struggle for existence was going on, and the few were victorious over the many. But the entire inadequacy of Darwinism to account for the primitive origin of life forms, for the original diversity in the different branches of the tree of life forms, the interdependence of the creation of ancient faunas and floras on geological revolutions, and consequent sudden changes in the environment of organisms, has convinced us that Darwinism is but one of a number of factors of a true evolution theory; that it comes in play only as the last term of a series of evolutionary agencies or causes; and that it rather accounts, as first suggested by the Duke of Argyll, for thepreservationof forms than for their origination. We may, in fact, compare Darwinism to the apex of a pyramid, the larger mass of the pyramid representing the complex of theories necessary to account for the world of life as it has been and now is. In other words, we believe in a modified and greatly extended Lamarckianism, or what may be called Neo-Lamarckianism.”
[226]In 1885, in the Introduction to theStandard Natural History, we proposed the term Neolamarckianism, or Lamarckism in its modern form, to designate the series of factors of organic evolution, and we take the liberty to quote the passage in which the word first occurs. We may add that the briefer form, Neolamarckism, is the more preferable.
“In the United States a number of naturalists have advocated what may be called Neo-Lamarckian views of evolution, especially the conception that in some cases rapid evolution may occur. The present writer, contrary to pure Darwinians, believes that many species, but more especially types of genera and families, have been produced by changes in the environment acting often with more or less rapidity on the organism, resulting at times in a new genus, or even a family type. Natural selection, acting through thousands, and sometimes millions, of generations of animals and plants, often operates too slowly; there are gaps which have been, so to speak, intentionally left by Nature. Moreover, natural selection was, as used by some writers, more an idea than avera causa. Natural selection also begins with the assumption of a tendency to variation, and presupposes a world already tenanted by vast numbers of animals among which a struggle for existence was going on, and the few were victorious over the many. But the entire inadequacy of Darwinism to account for the primitive origin of life forms, for the original diversity in the different branches of the tree of life forms, the interdependence of the creation of ancient faunas and floras on geological revolutions, and consequent sudden changes in the environment of organisms, has convinced us that Darwinism is but one of a number of factors of a true evolution theory; that it comes in play only as the last term of a series of evolutionary agencies or causes; and that it rather accounts, as first suggested by the Duke of Argyll, for thepreservationof forms than for their origination. We may, in fact, compare Darwinism to the apex of a pyramid, the larger mass of the pyramid representing the complex of theories necessary to account for the world of life as it has been and now is. In other words, we believe in a modified and greatly extended Lamarckianism, or what may be called Neo-Lamarckianism.”
[227]Studies in the Theory of Descent. By Dr. August Weismann. Translated and edited, with notes, by Raphael Meldola. London, 1882. 2 vols.
[227]Studies in the Theory of Descent. By Dr. August Weismann. Translated and edited, with notes, by Raphael Meldola. London, 1882. 2 vols.
[228]“The Influence of Physical Conditions in the Genesis of Species,”Radical Review, i., May, 1877. See also J. A. Allen in Bull. Mus. Comp. Zoöl. ii., 1871; also R. Ridgway,American Journal of Science, December, 1872, January, 1873.
[228]“The Influence of Physical Conditions in the Genesis of Species,”Radical Review, i., May, 1877. See also J. A. Allen in Bull. Mus. Comp. Zoöl. ii., 1871; also R. Ridgway,American Journal of Science, December, 1872, January, 1873.
[229]Annual Report of the United States Geological and Geographical Survey Territories, 1873. Pp. 543–560. See also the author’s monograph of Geometrid Moths or Phalænidæ of the United States, 1876, pp. 584–589, and monograph of Bombycine Moths (Notodontidæ), p. 50.
[229]Annual Report of the United States Geological and Geographical Survey Territories, 1873. Pp. 543–560. See also the author’s monograph of Geometrid Moths or Phalænidæ of the United States, 1876, pp. 584–589, and monograph of Bombycine Moths (Notodontidæ), p. 50.
[230]Proceedings Academy of Natural Science, Philadelphia (1877), p. 318.
[230]Proceedings Academy of Natural Science, Philadelphia (1877), p. 318.
[231]Proceedings of the American Philosophical Society (1889), p. 546.
[231]Proceedings of the American Philosophical Society (1889), p. 546.
[232]Transactions American Philosophical Society, xvi. (1890), and later papers.
[232]Transactions American Philosophical Society, xvi. (1890), and later papers.
[233]American Journal of Morphology(1891), pp. 395, 398.
[233]American Journal of Morphology(1891), pp. 395, 398.
[234]“Über die Darwinische Theorie in Besug auf die geographische Verbreitung der Organismen.” Sitzenb. der Akad. München, 1868. Translated by J. L. Laird under the title,The Darwinian Theory and the Law of the Migration of Organisms. London, 1873. AlsoUeber den Einfluss der geographischen Isolirung und Colonierbildung auf die morphologischen Veränderungen der Organismen. München, 1870.
[234]“Über die Darwinische Theorie in Besug auf die geographische Verbreitung der Organismen.” Sitzenb. der Akad. München, 1868. Translated by J. L. Laird under the title,The Darwinian Theory and the Law of the Migration of Organisms. London, 1873. AlsoUeber den Einfluss der geographischen Isolirung und Colonierbildung auf die morphologischen Veränderungen der Organismen. München, 1870.
[235]Linnæan Society’s Journal: Zoölogy, xi., 1872.
[235]Linnæan Society’s Journal: Zoölogy, xi., 1872.
[236]Linnæan Society’s Journal: Zoölogy, xx., 1887, pp. 189–274, 496–505: alsoNature, July 18, 1872.
[236]Linnæan Society’s Journal: Zoölogy, xx., 1887, pp. 189–274, 496–505: alsoNature, July 18, 1872.
[237]Evolution without Natural Selection; or, The Segregation of Species without the aid of the Darwinian Hypothesis, London (1885), pp. 1–80.
[237]Evolution without Natural Selection; or, The Segregation of Species without the aid of the Darwinian Hypothesis, London (1885), pp. 1–80.
[238]Revue Scientifique, xix. (1877). p. 669. Quoted by Giard inRev. Sci., 1889, p. 646.
[238]Revue Scientifique, xix. (1877). p. 669. Quoted by Giard inRev. Sci., 1889, p. 646.
[239]Animal Life as Affected by the Natural Conditions of Existence.By Karl Semper. The International Scientific Series. New York, 1881.
[239]Animal Life as Affected by the Natural Conditions of Existence.By Karl Semper. The International Scientific Series. New York, 1881.
[240]Organic Evolution as the Result of the Inheritance of Acquired Characters, according to the Laws of Organic Growth.Translated by J. T. Cunningham, 1890.
[240]Organic Evolution as the Result of the Inheritance of Acquired Characters, according to the Laws of Organic Growth.Translated by J. T. Cunningham, 1890.
[241]On Orthogenesis and the Impotence of Natural Selection in Species Formation.Chicago, 1898.
[241]On Orthogenesis and the Impotence of Natural Selection in Species Formation.Chicago, 1898.
[242]Die Farbenevolution bei den Pieriden. Leiden, 1898.
[242]Die Farbenevolution bei den Pieriden. Leiden, 1898.
[243]“On Mechanical Selection and Other Problems.”Novitates Zoologicæ, iii. Tring, 1896.
[243]“On Mechanical Selection and Other Problems.”Novitates Zoologicæ, iii. Tring, 1896.
[244]Entwicklung der Raupenzeichnung und Abhängigkeit der letzeren von der Farbe der Umgebung, 1894.
[244]Entwicklung der Raupenzeichnung und Abhängigkeit der letzeren von der Farbe der Umgebung, 1894.
[245]Transmutation der Schmetterlinge infolge Temperatur-veränderungen, 1895.
[245]Transmutation der Schmetterlinge infolge Temperatur-veränderungen, 1895.
[246]Ueber den Einfluss der Temperatur bei der Erzeugung der Schmetterlings-varietäten, 1880.
[246]Ueber den Einfluss der Temperatur bei der Erzeugung der Schmetterlings-varietäten, 1880.
[247]Ueber Farbenwechsel bei niederen Wirbelthieren, bedingt durch directe Wirkung des Lichts auf die Pigmentzellen.Centralblatt für Physiologie, 1891, v., p. 326.
[247]Ueber Farbenwechsel bei niederen Wirbelthieren, bedingt durch directe Wirkung des Lichts auf die Pigmentzellen.Centralblatt für Physiologie, 1891, v., p. 326.
[248]Ueber den Farbenwechsel der Frösche.Pflüger’s Archiv für Physiologie, 1892, li., p. 455.
[248]Ueber den Farbenwechsel der Frösche.Pflüger’s Archiv für Physiologie, 1892, li., p. 455.
[249]Leçon d’Ouverture du Cours de l’Évolution des Êtres organisés.Paris, 1888, and “Les Facteurs de l’Évolution,”Revue Scientifique, November 23, 1889.
[249]Leçon d’Ouverture du Cours de l’Évolution des Êtres organisés.Paris, 1888, and “Les Facteurs de l’Évolution,”Revue Scientifique, November 23, 1889.
[250]Revue Encyclopédique, 1897. p. 325. Yet we have an example of the appearance of a new organ in the case of the duckbill, in which the horny plates take the place of the teeth which Poulton has discovered in the embryo. Other cases are the adductor muscles of shelled crustacea. (See p. 418.)
[250]Revue Encyclopédique, 1897. p. 325. Yet we have an example of the appearance of a new organ in the case of the duckbill, in which the horny plates take the place of the teeth which Poulton has discovered in the embryo. Other cases are the adductor muscles of shelled crustacea. (See p. 418.)
[251]La Philosophie Zoologique avant Darwin. Paris, 1884, p. 76.
[251]La Philosophie Zoologique avant Darwin. Paris, 1884, p. 76.
[252]“Lamarckism and Darwinism.” Proceedings Boston Society Natural History, xxv., 1890, pp. 42–49.
[252]“Lamarckism and Darwinism.” Proceedings Boston Society Natural History, xxv., 1890, pp. 42–49.
[253]“The Origin of Species without the Aid of Natural Selection,”Natural Science, Oct., 1894. Also, “The Origin of Plant Structures.”
[253]“The Origin of Species without the Aid of Natural Selection,”Natural Science, Oct., 1894. Also, “The Origin of Plant Structures.”
[254]“Does Natural Selection play any Part in the Origin of Species among Plants?”Natural Science, Sept., 1897.
[254]“Does Natural Selection play any Part in the Origin of Species among Plants?”Natural Science, Sept., 1897.
[255]“Essay on the Development Hypothesis,” 1852, LondonTimes.
[255]“Essay on the Development Hypothesis,” 1852, LondonTimes.
[256]“A Theoretical Origin of Endogens from Exogens through Self-Adaptation to an Aquatic Habit,”Linnean Society Journal: Botany, 1892,l. c., xxix., pp. 485–528. A case analogous to kinetogenesis in animals is his statement based on mathematical calculations by Mr. Hiern, “that the best form of the margin of floating leaves for resisting the strains due to running water is circular, or at least the several portions of the margin would be circular arcs” (p. 517).
[256]“A Theoretical Origin of Endogens from Exogens through Self-Adaptation to an Aquatic Habit,”Linnean Society Journal: Botany, 1892,l. c., xxix., pp. 485–528. A case analogous to kinetogenesis in animals is his statement based on mathematical calculations by Mr. Hiern, “that the best form of the margin of floating leaves for resisting the strains due to running water is circular, or at least the several portions of the margin would be circular arcs” (p. 517).
[257]“De l’Influence du Milieu sur la Structure anatomique des Végétaux,”Ann. Sci. Nat. Bot., ser. 6, xii., 1881, p. 167.
[257]“De l’Influence du Milieu sur la Structure anatomique des Végétaux,”Ann. Sci. Nat. Bot., ser. 6, xii., 1881, p. 167.
[258]“Notes on the Regional Distribution of the Cape Flora,”TransactionsBotanical Society, Edinburgh. 1891, p. 241.
[258]“Notes on the Regional Distribution of the Cape Flora,”TransactionsBotanical Society, Edinburgh. 1891, p. 241.
[259]Les Végétaux et les Milieux cosmiques, Paris, 1898, pp. 292.
[259]Les Végétaux et les Milieux cosmiques, Paris, 1898, pp. 292.
[260]Proceedings Biological Society of Washington, 1890.
[260]Proceedings Biological Society of Washington, 1890.
[261]“Phylogeny of the Pelecypoda,” Memoirs Boston Society Natural History, iv., 1890, pp. 277–400. Also,American Naturalist, 1891, xxv., pp. 11–21.
[261]“Phylogeny of the Pelecypoda,” Memoirs Boston Society Natural History, iv., 1890, pp. 277–400. Also,American Naturalist, 1891, xxv., pp. 11–21.
[262]“Transformations of Planorbis at Steinheim, with Remarks on the Effects of Gravity upon the Forms of Shells and Animals,” Proceedings A. A. A. S., xxix., 1880.
[262]“Transformations of Planorbis at Steinheim, with Remarks on the Effects of Gravity upon the Forms of Shells and Animals,” Proceedings A. A. A. S., xxix., 1880.
[263]Der Kampf der Theile im Organismus. Leipzig, 1881. AlsoGesammelte Abhandlungen über Entwickelungsmechanik der Organismen. Leipzig, 1895.
[263]Der Kampf der Theile im Organismus. Leipzig, 1881. AlsoGesammelte Abhandlungen über Entwickelungsmechanik der Organismen. Leipzig, 1895.
[264]Die Unwandlung der Arten ein Vorgang functioneller Selbsgestaltung. Leipzig, 1894.
[264]Die Unwandlung der Arten ein Vorgang functioneller Selbsgestaltung. Leipzig, 1894.
[265]Gedanken zur Descendenz- und Vererbungstheorie; Biol. Centralblatt, xiii., 1893, 397–420.
[265]Gedanken zur Descendenz- und Vererbungstheorie; Biol. Centralblatt, xiii., 1893, 397–420.
[266]Entwickelungmecanische Studien, 1892–93.
[266]Entwickelungmecanische Studien, 1892–93.
[267]Experimental Evolution, 1892; also, “Recherches sur le Nanisme experimental,”Journ. Anat. et Phys., 1894.
[267]Experimental Evolution, 1892; also, “Recherches sur le Nanisme experimental,”Journ. Anat. et Phys., 1894.
[268]“Ueber die organsplastischen Kräfte der Organismen,”Arbeit. nat. Ges., Petersburg, xvi., 1885; Protok, 79–82.
[268]“Ueber die organsplastischen Kräfte der Organismen,”Arbeit. nat. Ges., Petersburg, xvi., 1885; Protok, 79–82.
[269]General Physiology, 1899.
[269]General Physiology, 1899.
[270]Experimental Morphology, 1897–99. 2 vols.
[270]Experimental Morphology, 1897–99. 2 vols.
[271]“Modifications of Certain Organs which seem to be Illustrations of the Inheritance of Acquired Characters in Mammals and Birds.”Zool. Jahrb. Syst. Abth., 1890, iv., pp. 629–646; also,The Lost Link, by E. Haeckel, with notes, etc., by H. Gadow, 1899.
[271]“Modifications of Certain Organs which seem to be Illustrations of the Inheritance of Acquired Characters in Mammals and Birds.”Zool. Jahrb. Syst. Abth., 1890, iv., pp. 629–646; also,The Lost Link, by E. Haeckel, with notes, etc., by H. Gadow, 1899.
[272]Proceedings Biological Society of Washington, vi., 1892, pp. 13, 19.
[272]Proceedings Biological Society of Washington, vi., 1892, pp. 13, 19.
[273]Lay Sermons, Addresses, and Reviews, 1870, p. 323.
[273]Lay Sermons, Addresses, and Reviews, 1870, p. 323.
Flore française ou description succinte de toutes les plantes qui croissent naturellement en France, disposées selon une nouvelle méthode d’analyse et à laquelle on a joint la citation de leurs vertus les moins équivoques en médecine et de leur utilité dans les arts. Paris (Impr. Nationale), 1778. 8vo, 3 vol.
Idem.2e édit. Paris, 1793.
Flore française ou description succinte de toutes les plantes qui croissent naturellement en France, disposées selon une nouvelle méthode d’analyse, et précédées par un exposé des principes élémentaires de la Botanique.
(En collaboration avec A. P. de Candolle). Édition III. Paris (Agasse), 1805. 4 vol., 8vo.
Même édition, augmentée du tome 5 et tome 6, contenant 1300 espèces non décrites dans les cinq premiers volumes. Paris (Desray), 1815. 8vo, pp. 622.
Lettre de M. A. P. de Candolle à M. Lamarck, pp. 10.
Dictionnaire botanique.—(En Encyclopédie méthodique. Paris, in 4to.) I, 1783; II, 1786; pour le IIIe volume, 1789, Lamarck a été aidé par Desrousseaux. Le IVe, 1795, est de Desrousseaux, Poiret et Savigny. Les derniers: V, 1804; VI, 1804; VII, 1806; et VIII, 1808, sont de Poiret.
Lamarck et Poiret. Encyclopédie méthod.: Botanique. 8 vols. et suppl. 1 à 3, avec 900 pl.
Mémoire sur un nouveau genre de plante nommé Brucea, et sur le faux Brésillet d’Amérique. Mém. Acad. des Sci. 21 janvier 1784. pp. 342–347.
Mémoire sur les classes les plus convenables à établir parmi les végétaux et sur l’analogie de leur nombre avec celles déterminées dans le règne animal, ayant égard de part et d’autre à la perfection graduée des organes. (De la classification des végétaux.) Mém. Acad. des Sci. 1785. pp. 437–453.
Mémoire sur le genre du Muscadier, Myristica. Mém. Acad. des Sci. 1788. pp. 148–168, pl. v.–ix.
Mémoire sur les cabinets d’histoire naturelle, et particulièrement sur celui du Jardin des Plantes; contenant l’exposition du régime et de l’ordre qui conviennent à cet établissement, pour qu’il soit vraiment utile. (No imprint.) 4to, pp. 15.
Considérations en faveur du Chevalier de la Marck, ancien officier au Régiment de Beaujolais, de l’Académie Royale des Sciences;Botaniste du Roi, attaché au Cabinet d’Histoire Naturelle. [Paris] 1790. 8vo, pp. 7.
Instruction aux voyageurs autour du monde, sur les observations les plus essentielles à faire en botanique. Soc. Philom. (Bull.) Paris, 1791, pp. 8.
Illustrations des genres, ou exposition des caractères de tous les genres de plantes établis par les botanistes (Encyclopédie méthodique): I, 1791; II, 1793; III, 1800, avec 900 planches. (Le supplément, qui constitue le tome IV, 1823, est de Poiret.)
Extrait de la flore française. Paris, 1792. 1 vol. in-8vo.
Tableau encyclopédique et méthodique des trois règnes de la nature. Botanique continuée par J. L. M. Poiret. Paris (Panckoucke), 1791–1823. Text, 3 v.; Pls., 4 v. (Encyclopédie méthodique.) 4to.
Tableau encyclopédique et méthodique des trois règnes de la nature. Mollusques testacés (et polypes divers). Paris (Panckoucke) [etc.], 1791–1816. Text (3), 180 pp. Pls. 2 v. (Encyclopédie méthodique.) 4to.
Idem.Continuator Bruguière, Jean Guillaume. Histoire naturelle des vers. Par Bruguière [et J. B. P. A. de Lamarck; continuée par G. P. Deshayes]. Paris (Panckoucke) [etc.], 1792–1832, 3 v. (Encyclopédie méthodique.) 4to.
Journal d’Histoire naturelle, rédigé par MM. Lamarck, Bruguière, Olivier, Haüy et Pelletier. Tomes I, II. Pl. 1–24, 25–40. Paris (Impr. du Cercle social), 1792. In-8vo, 2 vol.
Le même, sous le titre: Choix de mémoires sur divers objets d’histoire naturelle, par Lamarck; formant les collections du Journal d’Hist. nat. 3 vol. in-8vo, tirés de format in-4to, dont le 3me contient 42 pl. Paris (Imprim. du Cercle social), 1792.
Nota.—Tous les exemplaires de cet ouvrage que l’on rencontre sont incomplets. Un exemplaire de format in-8vo, provenant de la Bibliothèque Cuvier (et qui se trouve à la Bibliothèque du Muséum), contient les pages 320 à 360; 8 pages copiées à la main terminent le volume, dont on connaît complet un seul exemplaire.
Sur l’histoire naturelle en général.
Sur la nature des articles de ce journal qui concernent la Botanique.
Philosophie botanique. L’auteur propose dans cet article un nouveau genre de plante: le Genre Rothia (Rothia Carolinensis, p. 17,pl. 1). Journ. d’Hist. nat. I, 1792. pp. 1–19. (Ce recueil porte aussi le titre suivant: Choix de mémoires sur divers objets d’Histoire naturelle, par MM. Lamarck, Bruguière, Olivier, Haüy et Pelletier.)
Sur le Calodendron (Calodendron Capense), pp. 56, pl. 3. Journ. d’Hist. nat. I, 1792. pp. 56–62.
Philosophie botanique. Journ. d’Hist. nat. I, 1792. pp. 81–92. (Dans cet article l’auteur donne la description de: Mimosa obliqua. pp. 89, pl. 5.)
Sur les travaux de Linné. Journ. d’Hist. nat. I, 1792. pp. 136–144. (L’auteur conclut que tout ce que fit Linnæus pour la botanique, il le fit aussi pour la zoologie; et ne donna pas moins de preuves de son génie en traitant le règne minéral, quoique dans cette partie de l’histoire naturelle il fut moins heureux en principes et en convenances dans les rapprochements et les déterminations, que dans les deux autres règnes.)
Sur une nouvelle espèce de Vantane. Ventanea parviflora. p. 145, pl. 7. Journ. d’Hist. nat. I, 1792. pp. 144–148.
Exposition d’un nouveau genre de plante nommé Drapètes. Drapetes muscosus et seq. p. 159, pl. 10, fig. 1. Journ. d’Hist. nat. I, 1792. pp. 1–190.
Sur le Phyllachne. Phyllachne uliginosa. p. 192, pl. 10, fig. 2. Journ. d’Hist. nat. I, 1792. pp. 190–192.
Sur l’Hyoseris Virginica. p. 222, pl. 12. Journ. d’Hist. nat. I, 1792. pp. 222–224.
Sur le genre des Acacies; et particulièrement sur l’Acacie hétérophille. Mimosa heterophylla. p. 291, pl. 15. Journ. d’Hist. nat. I, 1792. pp. 288–292.
Sur les Systèmes et les Méthodes de Botanique et sur l’Analyse. Journ. d’Hist. nat. I, 1792. pp. 300–307.
Sur une nouvelle espèce de Grassette. Pinguicula campanulata, p. 336, pl. 18, fig. I. Journ. d’Hist. nat. I, 1792. pp. 334–338.
Sur l’étude des rapports naturels. Journ. d’Hist. nat. I, 1792. pp. 361–371.
Sur les relations dans leur port ou leur aspect, que les plantes de certaines contrées ont entre elles, et sur une nouvelle espèce d’Hydrophylle. Hydrophyllum Magellanicum. p. 373, pl. 19. Journ. d’Hist. nat. I. 1792. pp. 371–376.
Notice sur quelques plantes rares ou nouvelles, observées dans l’Amérique Septentrionale par M. A. Michaux; adressée à la Société d’Histoire naturelle de Paris par l’auteur; et rédigée avec desobservations. Canna flava—Pinguicula lutea—Ilex Americana—Ilex æstivalis—Ipomæa rubra—Mussænda frondosa—Kalmia hirsuta—Andromeda mariana—A. formosissima. Journ. d’Hist. nat I, 1792. pp. 409–419.
Sur une nouvelle espèce de Loranthe. Loranthus cucullaris. p. 444, pl. 23. Journ. d’Hist. nat. I, 1792. pp. 444–448.
Sur le nouveau genre Polycarpea. Polycarpæa Teneriffæ. p. 5, pl. 25. Journ. d’Hist. nat. II, 1792. pp. 3–8.
Sur l’augmentation continuelle de nos connaissances à l’égard des espèces et sur une nouvelle espèce de Sauge. Salvia scabiosæfolia. p. 44, pl. 27. Journ. d’Hist. nat. II, 1792. pp. 41–47.
Sur une nouvelle espèce de Pectis. Pectis pinnata. p. 150, pl. 31. Journ. d’Hist. nat. II, 1792. pp. 148–154.
Sur le nouveau genre Sanvitalia. Sanvitalia procumbens. p. 178, pl. 35. Journ. d’Hist. nat. II, 1792. pp. 176–179.
Sur l’augmentation remarquable des espèces dans beaucoup de genres qui n’en offraient depuis longtemps qu’une, et particulièrement sur une nouvelle espèce d’Hélénium. Helenium caniculatum. p. 213, pl. 35. Journ. d’Hist. nat. II, 1792. pp. 210–215.
Observations sur les coquilles, et sur quelques-uns des genres qu’on a établis dans l’ordre des Vers testacés. Purpurea, Fusus, Murex, Terebra, etc. Journ. d’Hist. nat. II, 1792. pp. 269–280.
Sur l’Administration forestière, et sur les qualités individuelles des bois indigènes, ou qui sont acclimatés en France; auxquels on a joint la description des bois exotiques, que nous fournit le commerce. ParP. C. Varenne-Tenille, Bourg (Philippon), 1792. 2 vol. 8vo. Journ. d’Hist. nat. II, 1792. pp. 299–301.
Sur quatre espèces d’Hélices. Journ. d’Hist nat. II, 1792. pp. 347–353.
Prodrome d’une nouvelle classification des coquilles, comprenant une rédaction appropriée des caractères génériques et l’établissement d’un grand nombre de genres nouveaux.—In Mém. Soc. Hist. nat. Paris, I, 1792. p. 63.
Sur les ouvrages généraux en Histoire naturelle; et particulièrement sur l’édition du Systema Naturæ de Linnæus, que M. Gmelin vient de publier. Act. Soc. Hist. nat., Paris, I. 1re Part., 1792. pp. 81–85.
Recherches sur les Causes des principaux Faits physiques, et particulièrement sur celles de la Combustion, de l’Elévation de l’eau dansl’état de vapeurs; de la Chaleur produite par le frottement des corps solides entre eux; de la Chaleur qui se rend sensible dans les décompositions subites, dans les effervescences et dans le corps de beaucoup d’animaux pendant la durée de leur vie; de la Causticité, de la Saveur et de l’Odeur de certains composés; de la Couleur des corps; de l’Origine des composés et de tous les minéraux; enfin, de l’Entretien de la vie des êtres organiques, de leur accroissement, de leur état de vigueur, de leur dépérissement et de leur mort. Avec une planche. Tomes 1, 2. Paris, seconde année de la république [1794]. 8vo.
Mémoire sur les molécules essentiels des composés. Soc. philom. Rapp., 1792–98. pp. 56–57.
Voyage de Pallas dans plusieurs provinces de l’empire de Russie et dans l’Asie septentrionale, traduit de l’allemand par Gauthier de la Peyronnerie. Nouvelle édition revue et enrichie de notes par Lamarck, Langlès et Billecoq. Paris, an II (1794). 8 vol. in-8vo, avec un atlas de 108 pl. folio.
Voyage au Japon, par le cap de Bonne-Espérance, les îles de la Sonde, etc., par Thunberg, traduit, rédigé (sur la version anglaise), etc., par Langlès, etrevu, quant à l’histoire naturelle, par Lamarck. Paris. 1796. 2 vol. in-4to (8vo, 4 vol.), av. fig.
Réfutation de la théorie pneumatique et de la nouvelle théorie des chimistes modernes, etc. Paris, 1796. 1 vol. 8vo.
Mémoires de physique et d’histoire naturelle, établis sur des bases de raisonnement indépendantes de toute théorie; avec l’explication de nouvelles considérations sur la cause générale des dissolutions, sur la matière du feu; sur la couleur des corps; sur la formation des composés; sur l’origine des minéraux; et sur l’organisation des corps vivants. Lus à la première classe de l’Institut national, dans ses séances ordinaires. Paris, an V (1797). 1 vol. 8vo. pp. 410.
De l’influence de la lune sur l’atmosphère terrestre, etc. Bull. Soc. philom. I., 1797; pp. 116–118. Gilbert Annal. VI, 1800; pp. 204–223; et Nicholson’s Journal, III, 1800; pp. 438–489.
Mémoires de Physique et d’Histoire naturelle. Paris, 1797. 8vo. Biogr. un., Suppl. LXX. p. 22.
De l’influence de la lune sur l’atmosphère terrestre. Journ. de Phys. XLVI, 1798; pp. 428–435. Gilbert Annal. VI, 1800; pp. 204–233.Tilloch, Philos. Mag. I, 1798; pp. 305–306. Paris, Soc. philom. (Bull.) II, 1797; pp. 116–118. Nicholson’s Journ. III, 1800. pp. 488–489.
Sensibility of Plants. (Translated from the Mémoires de Physique.) Tilloch, Philos. Mag. I, 1798. pp. 305–306.
Mollusques testacés du tableau encyclopédique et méthodique des trois règnes de la nature, Paris, an VI (1798). 1 vol. in-4to de 299 pl., formant suite à l’Histoire des Vers de Bruguière (1792), continuée par Deshayes (1830), de l’Encyclopédie méthodique.
Mémoire sur la matière du feu, considéré comme instrument chimique dans les analyses. 1º, De l’action du feu employé comme instrument chimique par la voie sèche; p. 134. 2º, De l’action du feu employé comme instrument chimique par la voie humide; p. 355. Journ. de Phys. XLVIII, 1799. pp. 345–361.
Mémoire sur la matière du son. (Lu à l’Institut national, le 16 brumaire an VIII, et le 26 du même mois.) Journ. de Phys. XLIX, 1799. pp. 397–412.
Sur les genres de la Sèche, du Calmar et du Poulpe, vulgairement nommés polypes de mer. (Lu à l’Institut national le 21 floréal an VI.) Soc. Hist. nat., Paris (Mém.), 1799. pp. 1–25, pl. 1, 2. Bibl. Paris, Soc. philom. (Bull.) I, Part. 2, 1799. pp. 129–131 (Extrait).
Prodrome d’une nouvelle Classification des coquilles, comprenant une rédaction appropriée des caractères génériques, et l’établissement d’un grand nombre de genres nouveaux. (Lu à l’Institut national le 21 frimaire an VII.) Soc. Hist. nat., Paris (Mém.), 1789. pp. 63–91. Tableau systématique des Genres—126 g.
Sur les fossiles et l’influence du mouvement des eaux, considérés comme indices du déplacement continuel du bassin des mers, et de son transport sur différents points de la surface du globe. (Lu à l’Institut national le 21 pluviôse an VII [1799].) Hydrogéologie, p. 172.
Annuaire météorologique pour l’an VIII de la République française, etc. (Annonce.) Paris, Soc. philom. (Bull.) III, 1799. p. 56.
Annuaire météorologique pour l’an VIII de la République. Paris, 1800. 1 vol. 16mo; 116 pp. Bibl., Gilbert Annal. VI, 1800. pp. 216–217.
Mémoire sur le mode de rédiger et de noter les observations météorologiques, afin d’en obtenir des résultats utiles, et sur les considérations que l’on doit avoir en vue pour cet objet. Journ. de Phys. LI, 1800. pp. 419–426.
Annuaire météorologique, contenant l’exposé des probabilités acquises par une longue suite d’observations sur l’état du ciel et sur les variations de l’atmosphère, etc. Paris, 1800–1810, 11 volumes, dont les 2 premiers in-18mo, les autres in-8vo.
Système des Animaux sans Vertèbres ou Tableau général des classes, des ordres et des genres de ces animaux. Présentant leurs caractères essentiels et leur distribution d’après leurs rapports naturels, et de leur organisation; et suivant l’arrangement établi dans les galeries du Muséum d’Histoire naturelle parmi les dépouilles conservées. Précédé du discours d’Ouverture du Cours de Zoologie donné dans le Muséum d’Histoire naturelle l’an VIII de la République, le 21 floréal. Paris (Déterville), an IX (1801), VIII. pp. 452. Bibl., Paris, Soc. philom. (Bull.) III, 1802–4. pp. 7–8.
Recherches sur la périodicité présumée des principales variations de l’atmosphère, et sur les moyens de s’assurer de son existence et de sa détermination. (Lues à l’Institut national de France, le 26 ventôse an IX.) Journ. de Phys. LII. 1801. pp. 296–316.
Réfutation des résultats obtenus par le C. Cotte, dans ses recherches sur l’influence des constitutions lunaires, et imprimés dans le Journal de Physique, mois de fructidor an IX. p. 221. Journ. de Phys. LIII, 1801. pp. 277–281.
Sur la distinction des tempêtes d’avec les orages, les ouragans, etc. Et sur le caractère du vent désastreux du 18 brumaire an IX (9 novembre 1800). (Lu à l’Institut national le 11 frimaire an IX.) Journ. de Phys. LII, floréal, 1801. pp. 377–380.
Sur les variations de l’état du ciel dans les latitudes moyennes entre l’équateur et le pôle, et sur les principales causes qui y donnent lieu. Journ. de Phys. LVI. 1802. pp. 114–138.
Recherches sur l’Organisation des Corps vivants et particulièrement sur son origine, sur la cause de ses développements et des progrès de sa composition, et sur celles qui, tendant continuellement à la détruire, dans chaque individu, amènent nécessairement sa mort. (Précédé duDiscours d’Ouverture du Cours de Zoologie au Mus. nat. d’Hist. nat., an X de la République.) Paris (Maillard) [1802]. 1 vol. 8vo. pp. 216.
Affinités chimiques, p. 73.—Anéantissement de la colonne vertébrale, p. 21.—Du cœur, p. 26.—De l’organe de la vue, p. 32.—Annélides, p. 24.—Arachnides, p. 27.—La Biologie, p. 186.—Création de la faculté de se reproduire, p. 114.—Crustacés, p. 25.—Dégradation de l’organisation d’une extrémité à l’autre de la chaîne des animaux, p. 7.—Échelle animale, p. 39.—Les éléments, p. 12.—Les espèces, pp. 141–149.—Exercice d’un organe, pp. 53, 56, 65, 125.—Les facultés, pp. 50, 56, 84, 125.—Fécondation, p. 95.—Fluide nerveux, pp. 114, 157, 166, 169.—Formation directe des premiers traits de l’organisation, pp. 68, 92, 94, 98.—Générations spontanées, pp. 46, 100, 115.—Habitudes des animaux, pp. 50, 125, 129.—Homme, p. 124.—Imitation, p. 130.—Influence du fluide nerveux sur les muscles, p. 169.—Insectes, p. 28.—Irritabilité, pp. 109, 179, 186.—Mammaux, p. 15.—Molécules intégrants des composés, p. 150.—Mollusques, p. 23.—Mouvement organique, pp. 7–9.—Multiplication des individus, pp. 117–120.—Nature animale, p. 8.—Nutrition, p. 8.—Oiseaux, p. 16.—Orgasme vital, pp. 79–83.—Organes des corps vivants, p. 111.—Organes de la pensée, p. 127.—Organisation, pp. 9, 98, 104, 134.—Pensée, p. 166.—Poissons, p. 20.—Polypes, p. 35.—Quadrumanes, pp. 131, 135, 136.—Radiaires, p. 32.—Raison, p. 125.—Reptiles, p. 18.—Sentiment, p. 177.—Troglodyte, p. 126.—Tableau du règne animal, p. 37.—Vie, p. 71.
Affinités chimiques, p. 73.—Anéantissement de la colonne vertébrale, p. 21.—Du cœur, p. 26.—De l’organe de la vue, p. 32.—Annélides, p. 24.—Arachnides, p. 27.—La Biologie, p. 186.—Création de la faculté de se reproduire, p. 114.—Crustacés, p. 25.—Dégradation de l’organisation d’une extrémité à l’autre de la chaîne des animaux, p. 7.—Échelle animale, p. 39.—Les éléments, p. 12.—Les espèces, pp. 141–149.—Exercice d’un organe, pp. 53, 56, 65, 125.—Les facultés, pp. 50, 56, 84, 125.—Fécondation, p. 95.—Fluide nerveux, pp. 114, 157, 166, 169.—Formation directe des premiers traits de l’organisation, pp. 68, 92, 94, 98.—Générations spontanées, pp. 46, 100, 115.—Habitudes des animaux, pp. 50, 125, 129.—Homme, p. 124.—Imitation, p. 130.—Influence du fluide nerveux sur les muscles, p. 169.—Insectes, p. 28.—Irritabilité, pp. 109, 179, 186.—Mammaux, p. 15.—Molécules intégrants des composés, p. 150.—Mollusques, p. 23.—Mouvement organique, pp. 7–9.—Multiplication des individus, pp. 117–120.—Nature animale, p. 8.—Nutrition, p. 8.—Oiseaux, p. 16.—Orgasme vital, pp. 79–83.—Organes des corps vivants, p. 111.—Organes de la pensée, p. 127.—Organisation, pp. 9, 98, 104, 134.—Pensée, p. 166.—Poissons, p. 20.—Polypes, p. 35.—Quadrumanes, pp. 131, 135, 136.—Radiaires, p. 32.—Raison, p. 125.—Reptiles, p. 18.—Sentiment, p. 177.—Troglodyte, p. 126.—Tableau du règne animal, p. 37.—Vie, p. 71.
Mémoire sur la Tubicinelle. (Lu à l’Assemblée des Professeurs du Muséum d’Histoire naturelle.) Ann. Mus. Hist. nat., Paris, I, 1802. pp. 4, pl. 464. Bull. Soc. philom. III, Paris, 1801–1804. pp. 170–171. (Extrait.)
Mémoires sur les Cabinets d’Histoire naturelle et particulièrement sur celui du Jardin des Plantes; contenant l’exposition du régime et de l’ordre qui conviennent à cet établissement, pour qu’il soit vraiment utile. Ext. des Ann. du Mus. (1802). Paris. in-4to. 15 p.
Des diverses sortes de Cabinets où l’on rassemble des objets d’Histoire naturelle, p. 2.Vrais principes que l’on doit suivre dans l’institution d’un Cabinet d’Histoire naturelle, p. 3.Sur le Cabinet d’Histoire naturelle du Jardin des Plantes, p. 5.
Des diverses sortes de Cabinets où l’on rassemble des objets d’Histoire naturelle, p. 2.
Vrais principes que l’on doit suivre dans l’institution d’un Cabinet d’Histoire naturelle, p. 3.
Sur le Cabinet d’Histoire naturelle du Jardin des Plantes, p. 5.
Hydrogéologie, ou recherches de l’influence générale des eaux sursurface du globe terrestre; sur les causes de l’existence du bassin des mers; de son déplacement et de son transport successif sur les différents points de la surface de ce globe; enfin, sur les changements que les corps vivants exercent sur la nature et l’état de cette surface. Paris, an X [1802]. 8vo. pp. 268.