5Milan

Leonardo’s hygrometer.

Leonardo’s hygrometer.

Among these sketches that Leonardo made for his“Adoration of the Magi” is a page on which appears an inspiration for one of his greatest masterpieces—a drawing of the “Last Supper.” And on this same page is another drawing—one of a hygrometer. A hygrometer is an instrument for measuring the amount of moisture in the air. Leonardo’s design consists of a simple, graded disk with a balanced pointer, weighted at one end with sand and at the other with a sponge or some salt. As the sponge or salt absorbed the moisture in the air, the added weight was indicated on the graded disk, thus measuring the amount of humidity.

Leonardo’s researches for the altar painting took him almost a year. Although the monks began to grumble at his slowness, Leonardo would not be hurried. He was determined to produce a painting that was perfect in all respects. To quiet their impatience Leonardo did odd jobs for them in the cloister. He repainted their old clock and for this extra work they advanced him some much-needed money. In March of 1481 Leonardo was ready to begin the actual drawing for the altarpiece. As he progressed with the composition, the monks crowded around with exclamations of delight. So different was it from all the other Adoration pictures they had ever seen, that the monks sent Leonardo some sacks of corn as a token of their appreciation.

One day, Leonardo was walking slowly toward the monastery over the Ponte Vecchio—the Old Bridge—across the Arno River. He made his way slowly up the hill past the construction for the new Pitti Palace. The morning was hot and the farmers moving into the city with their heavily laden carts were short-tempered. Leonardo stood to one side as he watched a pair of oxen straining to haul a wagon up a rise in the road. Their owner, his shirt unbuttoned to the waist, was shouting angrily, lashing the animals with his leather-thonged whip. It was a cruel sight and Leonardo turned away. From some experiments he had been making, Leonardo realized that the poor animals were struggling not only with the hill, but the drag of friction on the creaking axle. This drag could be eased, he thought to himself, by simply resting the axle in two sets of roller-bearings attached to the bottom of the cart near each wheel. In his mind he formed the plan for such a model as hemade his way to the monastery.

The drawing of the altarpiece was nearing completion. The monks were fascinated by the spectacle of the Adoration appearing before their eyes. The soft, umber outlines deepened with gray, the ochre highlighting the central figures charmed them and they sent another gift to Leonardo’s house—a cask of Tuscan red wine.

As it turned out, Leonardo never finished this altarpiece. It is not known why. But the drawing for it can be seen today in the Uffizi Gallery in Florence just as Leonardo left it.

It is certain, however, that Leonardo was far from idle during this time. He drew the design for eliminating the friction of a turning axle by mounting the axle in roller-bearings. He experimented with, and solved the problem of, transmitting motion to revolving machine parts by friction—the possible forerunner of our modern friction clutch. Another device, found in modern automobiles—the differential—was also drawn by Leonardo. This idea provided for the difference in speed between the two drive wheels when rounding a curve.

Leonardo also drew the first known plans for a self-propelledvehicle—an “automobile.” It was designed to operate by a system of elastic springs wound by hand by the person on the vehicle; the “car” was then supposed to run the short distance allowed it by the unwinding of the springs.

In addition, Leonardo continued designing machines for both offensive and defensive military action. One of these was a breech-loading cannon, together with the first known projectiles that took into consideration better penetration through the air and greater stability in their trajectory. Indeed, these very much resembled present-day aerial bombs, with pointed noses and stabilizing fins.

As the months passed, however, Leonardo began to feel that his time and talents were being wasted in Florence. Although the monks and friends of the monastery were pleased with the work he was doing, other artists were being called to greater tasks in Rome. For example, Domenico di Tommaso del Ghirlandaio, Sandro Botticelli, and even Leonardo’s fellow student, Pietro Perugino, had left Florence to work in the chapel of Pope Sixtus IV in Rome—known to us as the Sistine Chapel. Now, too, it was becoming clear that Lorenzo and his court had no time for this solitary genius whose ideas stretched beyond his age.

So Leonardo looked about him. He was thirty years old and the walls of Florence seemed to bind his spirit. To what city could he go where his talents would be put to fruitful use? Rome seemed to hold out no hope, for no one had offered him a position there.

But Leonardo remembered that there had been a visitorto the Medicis from another city in recent months. This man was Ludovico Sforza, the ruling prince of Milan, the great city-state of the north. Ludovico, who was also called “Il Moro” (the Moor) because of his dark complexion, was seeking the friendship and alliance of the Medicis. He was fascinated with the art and culture of Florence and sought to gather to his own court of Milan as many artists, scientists, philosophers, and musicians as he could.

Perhaps, thought Leonardo, his future lay in Milan. So he began collecting his countless drawings, diagrams of machines and instruments of war, his notes, his plans for canals and irrigation—even a drawing for a monument that he knew Ludovico wanted to erect to his father—and made a package of it to send to Ludovico. Then he sat down to write a letter to that nobleman. In it he set forth in ten numbered paragraphs his qualifications as military and naval engineer, architect, and hydraulics expert. Almost as an afterthought to the tenth item, he wrote: “I can carry out sculpture in marble, bronze, or clay, and also I can do in painting whatever may be done, as well as any other, be he who he may.”

When he had finished the letter, Leonardo took out a strange instrument. It was a lyre of silver in the shape of a horse’s head. He had designed it himself, and now with an air of peace, he commenced to play. Its rich tone was sweet to hear and the music was his own composition.

Leonardo had also designed other instruments—lyres,lutes, viols, and a kind of zither. He had perfected the single-stringed monochord of Pythagoras, replacing the tablet of wood with thin strips of drum that gave the instrument a low or high note according to the tightness of the string. In addition, he introduced stops or small pistons in the holes of wooden reed instruments; and, he had even invented a set of mechanical chords by using a wheel of reeds which plucked a set of strings as it was turned. His skill as a musician, composer, and singer was well known among his friends and his bass voice had retained the pureness of his boyhood.

As it happened, news of Leonardo’s silver lyre had reached Lorenzo de’ Medici. All Leonardo’s paintings, all his designs for cannons and fortifications, all his inventions for commercial machinery had failed to interest Lorenzo—yet this single musical oddity excited the ruler’s curiosity. Leonardo was summoned to the Medici palace.

Lorenzo was enchanted both by the instrument and Leonardo’s musical talent. When Leonardo had finished playing, Lorenzo, surrounded by members of his court, applauded and said,

“It would please us if Master Leonardo da Vinci would present us with this beautiful instrument so that we, in turn, could make a gift of it to His Highness, Ludovico Sforza, of Milan.”

Leonardo bowed and replied,

“Your Grace’s request is my pleasure. Moreover, Sire, it would further that pleasure to bear the gift myself to His Excellency in Milan.”

The idea delighted Lorenzo. He immediately directed that Leonardo be given a letter to Ludovico and that every protection be given Leonardo for his journey.

Leonardo, with the silver lyre and the letter of recommendation, hurried home to make his final preparations. He called on a friend and pupil, young Atalante Migliorotti, to accompany him.

Toward the end of 1482 or the beginning of 1483, with the letter to Ludovico folded in a leather pouch, Leonardo and Atalante mounted their horses and left Florence for the long journey to Milan.

Milan at this time was one of the greatest and wealthiest city-states in all Europe. Its battlements and the spires of its mighty cathedral rose impressively from the lush plain of Lombardy. Towering over the city in the distance were the snow-capped peaks of the Alps. Groves of mulberry trees for the production of its famous silk industry and vast stretches of rice paddies extended far into the surrounding countryside.

Leonardo and Atalante rode along the embankmentof one of the many canals. The sight of the city hastened their pace although the journey had been a long one. Frequently on the trip Leonardo had stopped to make notes. Riding over the mountains and ravines surrounding Florence he had drawn some of the rushing streams and the stratifications of exposed cliffs. And when they had descended to the plains he observed the irrigation ditches and made notes on ways of improving the crude systems of dams and waterwheels.

Leonardo was excited by this new city and by his prospects at the court of Ludovico. On the way to his lodgings, he also noticed that Milan was a great center of arms manufacture. Shop after shop displayed its wares of swords, spears, shields, armor for man and horse, and signs advertising foundries for the making of cannon. Perhaps here he might find an outlet for his military inventions.

In the inn where he and Atalante stayed, Leonardo overheard the current political rumors. All around him was talk of the war. Girolamo Riario was again in the field, and Ludovico’s ally, Alfonso of Calabria, had just been defeated by the Venetians in a bloody battle at Campo Morto.

Leonardo reread the letter he had written setting forth his own accomplishments and decided that now was the time to present himself as a military engineer. He would minimize the bronze monument, his music, and his painting, and instead, he would stress his skills in the inventions of war.

When Leonardo appeared before Ludovico, he was ahandsome young man of thirty-one. Tall and strong, he was dressed not according to fashion, but simply—almost severely. His hair hung in curls on his shoulders and his auburn mustache and neatly trimmed beard accented his ruddy complexion and deep-set blue eyes. Indeed, he presented a striking contrast to the nobleman seated before him. Il Moro, with his dark skin and straight black hair, his richly embroidered doublet with its broad sleeves and the heavy gold chains across his thick chest, was the exact opposite of Leonardo.

Ludovico set aside Leonardo’s letter, rose from his chair, and walked to the heavy table on which Leonardo had spread out his drawings.

Plans for all manner of war machines were there—those that Leonardo had designed for Lorenzo de’ Medici without success, together with many new additions. For example, there were plans for a self-propelled bomb with flames to be shot out in all directions—a bomb that was later to be called a “rotatory rocket” when it was actually invented in 1846. Leonardo also explained to Ludovico his idea for “poison gas” bombs containing sulfur: the fumes of these bombs would “produce stupor,” and they could be used both on land and sea, together with masks to protect those who were using them. Shrapnel shells, hand grenades, and javelins that burst into flame when they struck their objectives—these and many more were among his ideas.

But perhaps the most unusual to Ludovico’s eyes was the design for an armored vehicle. It was shaped like a giant turtle, with overlapping sheets of reinforced wood so that enemy shells would bounce off its surface. The armor was pierced by loopholes for the breech-loading cannon and there was an opening at the top for ventilation. Power for the vehicle was supplied by eight men inside turning cranks which in turn were cogged to other wheels, setting in motion the four drive wheels. This of course was the forerunner of the tank and thearmored car used in modern warfare.

Forerunner of the tank or armored car, as conceived by Leonardo. Motion was supposed to be supplied by four cogged wheels turned by manpower. Sheets of reinforced wood were supposed to serve as “armor” against enemy projectiles.

Forerunner of the tank or armored car, as conceived by Leonardo. Motion was supposed to be supplied by four cogged wheels turned by manpower. Sheets of reinforced wood were supposed to serve as “armor” against enemy projectiles.

In addition, Leonardo laid before Ludovico all manner of cannons and designs for tunneling under the enemy’s defenses. Actually, with respect to warfare itself, Leonardo called it a most brutal “madness”; however, he recognized the necessity of being prepared. In his notebook, he wrote, “When besieged by ambitious tyrants I find a means of offense and defense in order to preserve the chief gift of nature, which is liberty.”

Ludovico was very much interested in the things Leonardo had showed him. Although he was a man of limited imagination and was not able to grasp the scope of Leonardo’s proposals, he was nevertheless involved in a war. Since Ludovico’s aging military engineer was to be replaced, Leonardo left the forbidding castle of the Sforzas with high hopes of getting the position.

In the meantime, he was commissioned to paint the portrait of a young girl from a noble family in Milan. At the same time, he began the bronze equestrian statue of Ludovico’s father, Francesco Sforza. For this work, he began an intensive study of horses. Since hunting was the popular sport at the court of the Sforzas, Ludovico owned a stable of the finest Arabian horses, and here Leonardo commenced his drawings. Again, his research for a work of art led him beyond just making preparatory sketches. His studies developed into notes, and his notes into a planned book on the anatomy of the horse.

During these months of waiting for the appointment as military engineer, Leonardo furthered his experiments with cannon. In the course of these experiments, he came across a power that would later revolutionize all industry—steam. He devised—although he attributed the original idea to Archimedes—a water vessel connected to a copper tube which was heated by a fire. The water when flowing into the red-hot tube changed into steam and the pressure of the steam blew out a ball at the mouth of the tube with great force. Leonardo experimented with steam in other ways. He built an apparatus for measuring the transformation of water into vapor. It consisted of a metal box in which was a thin animal bladder partly filled with water. Resting on the top of the bladder was a flat lid attached by a cord hung from two pulleys to a counterweight on the outside. As the water was heated, the steam in the bladder pushed up the lid. As the lid rose both the volume and the pressure could be measured. There were distillation experiments with various condensers, one in particular that anticipated the modern condenser of Leibig, introducing double walls that formed a complete jacket for cooling withwater in continual circulation.

Not content with having an idle moment, Leonardo again turned to searching out books that he had not read and trying to fill the gaps in his education. He became especially interested in the German philosopher, Cardinal Cusanus. Cusanus, like himself, had been influenced by Toscanelli and was a man devoted to the natural sciences. Leonardo also studied the philosophy of Aristotle and the writings of St. Augustine. Throughout his life Leonardo believed in an active mind for, as “iron rusts from disuse, stagnant water loses its purity and in cold weather becomes frozen, even so does inaction sap the vigor of the mind.”

Unfortunately, the post of military engineer went to a man named Ambrogio Ferrari. The extent and variety of Leonardo’s proposals were too great for Ludovico to trust. He did not believe that one man could possibly bring all those ideas into being. Ferrari, on the other hand, was a military engineer only, and a man who was content with the customary methods of warfare. Furthermore, Ludovico had at last decided that peaceful negotiations would gain him more than fighting. Thus Leonardo’s chance of recognition was again postponed.

Meanwhile, the money that Leonardo had brought with him from Florence was almost gone. He had been forced to move from his apartment to a single room and now he was barely able to live from day to day. Although the court of Ludovico Sforza was one of the richest in the world, artists were frequently treated as servants; often they were the last to be paid for their services. Also, Leonardo was a foreigner in the city,which meant he was regarded with suspicion.

Because of these reasons, Leonardo finally decided to do what the Milanese artists did—they banded together in groups sharing work and costs. Leonardo had met a young artist of twenty-eight, Giovanni Ambrogio de Predis, at the court of Ludovico. Ambrogio was court painter to the Sforza family and had achieved some success. Ambrogio recognized in the handsome stranger from Florence, however, the touch of genius, and he realized that his own talents would be furthered by learning from Leonardo. The two young men decided to pool their abilities. Ambrogio offered both lodging and a studio; and, in association with his two half-brothers, one a woodcarver, another a miniaturist, and his elder brother, a minter of coins, they would not lack for commissions.

Commissions weren’t long in coming. On April 25, 1483, a contract was signed between Bartolommeo degli Scarlione, a prior of the Fraternity of the Immaculate Conception, and Ambrogio and Leonardo for an altarpiece. The fee was two hundred ducats, with a promise of more if it were delivered on time and was satisfactory to the Fraternity. Delivery date was to be December 8, 1484. Ambrogio was to paint the altar wings and Leonardo the center piece—a picture of the Blessed Virgin and Child.

But when the painting was finished, it was not accordingto the instructions set forth in the contract. Leonardo had too independent a mind to be bound by conformity. Nor was it completed on time. Indeed, for twenty years the quarrel between the Fraternity and the painters went on. After ten years, Ludovico was asked to intervene for the money owed; after he failed, another ten years went by and the King of France himself was finally asked to settle the dispute. Leonardo wanted his one hundred ducats and the Fraternity offered twenty-five. Eventually, a secret agreement was arrived at and the painting was restored to Leonardo and Ambrogio. Leonardo’s painting, the masterpiece entitled the “Virgin of the Rocks,” now hangs in the museum of the Louvre in Paris.

The day this contract was signed, Leonardo walked back through the city to Ambrogio’s studio near the Ticino gate. He was low in spirits from reading the petty instructions of the contract, and, in this mood, he became aware of the city streets and crowds about him. The noise, the confusion, the smells—yes, the smells were the worst. Garbage, filth, and dust were in heaps where the last rainwater had left them and they buzzed with flies.

Moreover the houses were jammed together and shopkeepers crowded their wares to the edges of the streets, leaving just enough room for the occasional horseman to get through. Latrines were only for the better houses; here, the streets, alleys and even open doorways were toilets. People flung their scraps out of the window and at night in the poorly lit streets could be heard the scurrying of rats. Leonardo stopped, thinking half aloud:

“Two levels. Streets running one above the other—onefor pedestrians and one for carts and horses. Yes, and cutting through the whole city a system of canals to carry the city’s waste to a river or to the sea. Why not even ten cities of, say, five thousand houses in each—say, no more than thirty thousand people to a city?”

Intent now on his thoughts he hurried to his home, his mind busy with his visions of new cities.

During the years 1484 and 1485 the bubonic plague swept Italy—the same dreaded Black Death so prevalent in medieval times. Milan was one of the cities most severely stricken. Every courtyard became a hospital and the streets were deserted except for the rumbling carts picking up the dead. On the roads from the city were lines of refugees fleeing to the country. Surrounding cities that had not been infected manned their fortress walls as in wartime to keep the fleeing populations out.

Ludovico at first tried to protect Milan from the spread of the disease; then, frightened, he and his court fled. Even the ruler’s official documents had to be “disinfected” by perfume and then held for a period of time before he would allow them near him.

Leonardo, sensing opportunity, drew out his plans for his new cities. Canals running through them were to be used for barges and the underground conduits greatly resembled those of modern sewage systems. Paths were to have gutters for the adequate drainage of the streets. Public toilets were to be installed. Leonardo even had plans for the control of smoke collecting over the city—by sending it up tall chimneys where it was picked up by fans and driven away over the roofs. The widths of the streets were to be in proportion to the heights of the houses—light and air would circulate freely. Two levels would be connected by graceful ramps—the lower level for the commercial traffic and the upper level for the pedestrians. Where stairs were used they were designed so one could ascend or descend without one person seeing the other. Stables were devised so that animals were fed through openings in their mangers and under these were tunnels of flowing water for the removal of waste.

The results of the bubonic plague in Italy, 1484-85. Streets were deserted except for the carts picking up the dead.

The results of the bubonic plague in Italy, 1484-85. Streets were deserted except for the carts picking up the dead.

These sweeping plans Leonardo laid before Ludovico when the epidemic had subsided. But Ludovico, once his fear was overcome, brushed them aside as impossible dreams.

So Leonardo returned to the commission for the Fraternity and the designs for the bronze monument of Francesco Sforza. These jobs kept Leonardo from brooding about his rejections.

Often, too, Leonardo worked with Bernardino de Predis, the elder brother of Ambrogio. Bernardino was a minter of coins. As Leonardo watched him at the laborious task of first cutting disks from ingots and then hammering the design into the hot metal, he suggested to Bernardino an easier method, then used in Germany. This was to prepare smooth ribbons of metal of the desired thickness and with a punch, impress the design into the ribbon at the necessary intervals and then, punch out the coin. Leonardo went on to improve this system by designing precise punches for both faces of the coin. A single machine then cut out and stamped the coins, using a falling weight raised by little winches. This machine was later destined for the Vatican mint in Rome.

On March 26, 1485 an event occurred in Milan thatwas viewed with mingled fear, superstition, curiosity and excitement. There was a total eclipse of the sun. To some, coming as it did so soon after the plague, it was a judgment of God; to others, it was regarded as an omen—a sign for astrologers to use for predicting the future.

But to Leonardo the eclipse was a moment of great scientific importance. At this time in history, the Ptolemaic, or geocentric theory of the universe was the popular belief. This theory taught that the earth is fixed and the sun and moon revolve around it. Leonardo himself had believed this theory for a long time. As he grew older, however, he read and heard discussions of the heliocentric theory. This theory proposed that the sun is fixed and the earth and stars move around it. Now, as he watched the eclipse, his doubts of the Ptolemaic concept were renewed and he resolved to make experiments of his own. The new theory was so daring for his times, however, that it would be many years before he became convinced of its truth.

Later that night, deep in thought over the experience of the day, he noted down his observations of the eclipse and his doubts of the medieval concept of the heavens. The Church believed the earth was the fixed center of the universe. Scholars and scientists supported the belief of Aristotle in the four elements, earth, water, air, and fire—but something was wrong. What were the planets—what was the moon? He picked up his pen and on a clean sheet of paper he wrote, “Make glasses in order to see the moon large.”

During this time, Leonardo had been struggling with the design for the bronze equestrian statue. Drawing after drawing lay scattered on his studio floor. Lately, however, a daring plan for this statue had come to him. It was to be a huge bronze warrior, Francesco Sforza, mounted on a rearing horse. Weighing perhaps a hundred thousand pounds, it was to be cast in sections in five furnaces—a fitting monument to the power of the Sforza family. But there still remained a big problem to be solved: how could he balance the plunging horse andman on just the two rear legs of the horse?

Meanwhile, Leonardo had another problem to work on—a wooden model of the Milan cathedral. He had entered his name with the cathedral authorities as a competitor in the design and construction of the cathedral’s dome. Many architects had been brought in and had failed, partly because of the antagonism of the Milanese workmen to foreign craftsmen, and partly because the committee found it difficult to decide what designs it liked. Leonardo had sent them a letter outlining his own recommendations and had drawn many pages of possible plans. He put forward his knowledge of various building materials, his understanding of classical architecture, and his wish to keep his own ideas in harmony with the Gothic tradition of the cathedral itself. Often he would make a point of walking about the city, observing the different constructions under way and drawing up plans to shorten the labor by mechanical means.

In July of 1487 Leonardo received a payment from the cathedral authorities for the wooden model he had submitted. Still, however, no final decision had been reached. Now, as Leonardo looked at the model in his studio, he felt the urge to improve it further—to make it more perfect. Yet he held his impatience in check and decided he would wait a little longer. Instead, he decided to work on some of his ideas for construction devices. He had already made many drawings, but they could be improved, he thought, and he began to make calculations.

Among these notes and drawings was an improvementon a device for the raising of columns. It was a mobile windlass with a transmission gear for transporting and erecting columns and obelisks. Another device was an earth drill resembling a modern corkscrew with double handle bars. The upper bar, when turned, drilled the screw into the earth while the lower bar—when turned the opposite way—carried the dirt up and out. Also there was a double crane mounted on a circular trolley which carried the dirt of excavation up and then the crane was moved around on its trolley so the dirt could be unloaded in different directions.

Other labor-saving devices that Leonardo designed were an automatic pile driver, the weight of which was raised by a winch and tripped automatically at its height to fall on the piling; a lift for raising iron bells to bell towers; and a machine for boring tree trunks to make pipes for carrying water.

In the fall of 1488, Leonardo was interrupted by a summons from Ludovico, who wanted him to design and build the decorations for the forthcoming marriage of his nephew, young Duke Gian Galeazzo Sforza, to Isabella of Aragon, granddaughter of the King of Naples. He worked on this steadily until the wedding ceremony in February of the following year. When the day arrived, the street from the cathedral to the grim castle was trimmed with flags and banners of the two royal houses. The inner courtyards of the castle were transformed into delicate arbors of laurel boughs. Yet it was the evening’s reception and entertainment which were to be the climax and to them Leonardo had brought all his mechanical skill. However, the announcement of the death of the bride’s mother cut short the celebration and, after the bride and groom had left for Pavia, the wedding party soon dispersed. Disappointed that his decorations had not been fully appreciated, Leonardoreturned to his studio and the problem of the monument.

He was still struggling with the problem of balancing the rearing horse. And, indeed, a solution was soon found. By placing a fallen soldier with his arm upraised in protection under the forefeet of the horse, Leonardo could balance the enormous weight and provide for the proper casting of the molten bronze.

Finally, Leonardo made a small wax model of the proposed statue and showed it to Ludovico. The nobleman was impressed by its originality. Most of the ideas contributed by other sculptors were mere variations of what had already been done many times. Also, the other plans called for bronze of not more than two thousand pounds, while Leonardo envisioned a statue fifty times that size! Ludovico awarded the commission to Leonardo.

Leonardo was to work on this commission for ten years and it was destined never to be immortalized in bronze, for reasons that will be explained later. His energies, as usual, were poured into many schemes. Growing out of his work on the monument he planned one book on the subject of casting in bronze and another on the anatomy of the horse. But the one subject, which he began to study in this period and which would occupy the remainder of his life, was the study of human anatomy. So Leonardo, in the midst of all his other activities, wrote in his notes, “On the second day of April 1489 the book entitledOf the Human Figure.”

The sources of anatomical study up to Leonardo’sday had been the Greeks—Hippocrates and Galen—and the Arab—Avicenna. Books on this subject were few, and the anatomical diagrams were crude and inaccurate. Galen, for example, had based his studies on the dissection of monkeys. Renaissance anatomists had explained his errors by pointing out that man had probably changed since Galen’s time. The Church had stepped in during the fourteenth century with an edict that was interpreted as a prohibition against dissection of the human body. In Italy, however, there were some dissections. They could only use, for this purpose, the bodies of criminals, slaves, and people of foreign birth. In Florence, anatomy was studied by the artists, and Leonardo had undoubtedly watched Pollaiuolo at work on a corpse that that artist had dissected.

In 1489 Leonardo, from the results of his own investigation, produced drawings of the skull and backbone whose careful attention to detail are—even today—classics in art and anatomy. With infinite patience and with a saw of his own invention he had halved a skull and drew for the first time with accuracy the curves of the frontal and sphenoid bones. He drew the lachrymal (tear) canal, and he was the first to show the cavity in the superior maxillary bone—not discovered again until 1651, by Highmore—now named “the antrum of Highmore.” He was the first to demonstrate the double curvature of the spine and its accompanying vertebrae, the inclination of the sacrum, the shape of the rib cage, and the true position of the pelvis. He planned a whole series of books that would include from head to foot and from inside to outside every section of the human apparatus.

Meanwhile he had been working on the monument,redesigning it to conform to the practical needs of casting. Now it had reached an even grander scale—a colossus that would require two hundred thousand pounds of bronze! He recorded in his notes the very day that this work was started, “On the twenty-third day of April 1490 I commenced this book and recommenced the horse.” The “horse,” of course, was the monument and “this book” referred to still another subject which had grown out of his studies of anatomy and perspective.

The title of the proposed book was to beLight and Shade. It would include the subject of optics or the mechanism of the eye, the problems of reflection and refraction and it would lead him eventually to a re-examination of his studies of the sun and moon.

In Leonardo’s day, and even for a long while afterwards, the popular belief of vision was one that had originally been put forth by the Platonic school and expanded by Euclid and Ptolemy. This belief was that the eye sent forth rays that brought back the image to the soul. Leonardo, in his younger days, had believed in the same theory. Not content with what had been written on the subject, however, he began to experiment for himself.

These experiments led him to an examination of theeye itself. He noted the various parts of the eye—the optic foramen or opening, the pigment layer, and the iris. These were already known by the Arabs. Leonardo discovered, however, the crystalline area of the eye. He explained binocular vision, or three-dimensional images, by correctly noting the positions of the two eyes in the head. He described the variations in the diameter of the pupil according to the surrounding light. Further experiments with light brought him to the conclusion that light and images are received by the eye. He took a piece of paper, for example, and pierced it with a small hole. With this he looked at the source of light. He noted the cone shape of the rays funneling into the tiny hole and then when the paper was held next to a white wall he noted that the rays spread out again. He established that light travels in straight lines. He constructed the first “camera obscura”—a box with a small hole in it. Inside the box an object was placed near the hole and behind that a lighted candle. When the box was closed the image of the object was cast on the wall. Leonardo was already acquainted with lenses, and he placed a magnifying lens over the hole to create an enlarged image.

Leonardo’s “camera obscura” which he used for projecting an image of an object on a wall or screen.

Leonardo’s “camera obscura” which he used for projecting an image of an object on a wall or screen.

He also demonstrated various laws relative to opticalillusion, such as irradiation—when a metal rod is made red-hot at one end, that end seems thicker than the other. A brightly lit object seems larger than one exactly like it that is dimly lit; a dark object placed against a light background seems smaller than it is; a light object seems larger than its real size when placed against a dark background; and the illusion of a light swung in a circle appears as a complete circle of light.

Many years before Newton, Leonardo described the experiment of breaking up a ray of white light into the solar spectrum. Also he compared two sources of light and measured their intensity by the depth of their shadows accompanied by a drawing that was the forerunner of Rumford’s photometer three centuries later! He stated the law of reflection—that is, that the angle of reflection is always equal to the angle of incidence.

About this time Leonardo left the studio of Ambrogio de Predis and moved into the Sforza Castle. Ludovico had put at his disposal a studio in the Corte Vecchia and the use of a room in one of the towers—which Leonardo always kept locked. To his growing list of work, Leonardo now had to add the preparations for the delayed wedding reception of Ludovico’s nephew, Gian Galeazzo Sforza.

On a cold winter evening of January 1490 the guests assembled again. Silks, satins and gold brocade, diamonds, rubies and pearls glittered in the brilliant lights. Princes of the Church mingled with ambassadors of foreign lands. Music and perfume filled the air and as the party quieted down the entertainment began. There were dances in gay costumes. Poetry was recited that flattered the bride and groom. There were allegorical processions. The jokes and antics of the court jester made the audience laugh.

Then, at midnight, the curtain that hung from wallto wall at the end of the ballroom was raised. Applause and cries of delight greeted the spectacle. The rising curtain revealed a room in which there was a hemisphere surrounded by the signs of the zodiac and the planets. While the planets in their niches flickered with concealed lights and the signs of the zodiac glowed, lines were spoken in honor of the house of Sforza to the accompaniment of a choir. The ancient gods swept down from the heavens, and the Virtues and Graces moved across the scene with nymphs waving lanterns. The music drowned out the sound of the mechanism. This was the kind of mechanics that Ludovico could understand and appreciate.

The success of this entertainment so pleased Ludovico that Leonardo was encouraged to present another amusing idea. This one was an “alarm clock” and it utilized what we call today the mechanical relay principle. When a small power is suddenly switched over, the power is reinforced. The “alarm” clock worked by placing a shallow basin of water at one end of a tubed lever. At the other end was another empty basin. Water was led drop by drop into the second basin and as this slowly filled the increasing weight lowered the lever. The shallow basin of water at the first end was suddenly emptied and the immediate switch in weight flipped the lever up and this in turn pushed up the sleeper’s feet.

Leonardo decided to withdraw from the competition for the cathedral dome. Although the cathedral authorities were pleased with his design, they could not decide to whom the commission should be awarded. In the summer of 1490 Ludovico was called upon to settle the issue and he decided in favor of Antonio Amadeo from Milan. But the work that Leonardo had done so impressed Ludovico that he sent him to Pavia in company with an architect from Siena, Francesco di Giorgio Martini, to inspect the work on the cathedral of that city. Leonardo, who had his own workshop and apprentices now, took along one of them, Marco d’Oggionno, a young boy of twenty.

In Pavia one of the greatest libraries in all of Italy was in the ducal palace. Here Leonardo wandered among shelves of books and illuminated manuscripts bound in rich velvets and gold-embossed leather all bound to their places with silver chains. One book that he records in his notes was written in the thirteenth century by Witelo, a Polish scholar, who wrote extensively on perspective. Leonardo, by the necessity of his art, had solved many problems in perspective. He had invented a pair of proportional compasses, the forerunners of those used today for the transfer of a drawing from one scale to duplicate the same drawing in a larger scale. Leonardo had also designed in very careful detail a parabolic compass for drawing a parabola in one continuous movement. He now determined to write his own book on perspective and, as the subject was so close to his studies of the eye, he would entitle itIntroduction to Perspective, or the Function of the Eye.

Leonardo submitted a number of plans for the completion of the cathedral to the authorities in Pavia and then returned to Milan. He worked through the rest of the summer on the equestrian statue and at the same time he continued to expand his notes on anatomy, light and shade, and perspective.

Late on a cold December night in 1490, Leonardo lit his lamp. This was a very special lamp that he had invented. It had already created a great deal of comment. It was so unusual, he had received an order from the court for another which he made with a richly carved pedestal. Candles, torches, and oil lamps, the only methods of artificial illumination in those days, were poor substitutes for light. They flickered, smoked, went out, and frequently caused damage with their hot drippings. As a side result of his experiments in light, Leonardo had put a glass cylinder in the middle of a larger glass globe. A wick in olive oil was placed in the cylinder and the outside globe was then filled with water. The result was a bright, steady light magnified by the water in the globe.

He sat down by the small fire and arranged his papers in front of him. Then, with a glance at his lamp, he picked up his goose-quill pen and wrote, “No substance can be comprehended without light and shade; light and shade are caused by light.”

It was January of 1491, and a light snow had fallen in Milan, edging with white all the roofs, the massive spires of the cathedral and the red battlements of the Sforza castle. Soon Ludovico was to be married to Beatrice d’Este of the ducal house of Ferrara.

Once more the streets of Milan echoed to the carpenters’ hammers. Messengers rode to and from the castle and endless carts full of provisions pushed through the crowded city. Guests began to arrive from all the allied courts of Italy with their bodyguards and servants. The rooms of the castle, the palaces of the nobles, and even the inns were filling with the royal processions.

Leonardo was again summoned by the court to prepare the decorations, the costumes for the masquerades, and the arena for the jousting tournaments. An invitation had been sent to all the friendly courts to attend these contests-at-arms. So, accompanying each new party’s arrival was a band of armored knights, their breast-plates, helmets, and shields glistening in the winter sun.

Leonardo enjoyed designing mechanical toys and entertaining the guests with them. One of these was a mechanical drum. Ordinarily most of the entertainment began with normal drum rolls, but Leonardo’s rolls were made on a kind of wheelbarrow. On it was mounted an enormous drum. When the “wheelbarrow” was pushed, it put into motion a cogged wheel geared to the axle. This wheel in turn was geared to two rotary cylinders with pegs mounted around the top. The pegs moved against five drumsticks on either side of the drum and thumped out a rhythm according to the position of the pegs.

Ludovico’s marriage to Beatrice d’Este, a girl of little more than fifteen years, further isolated Leonardo from the court. Being almost a child, Beatrice loved parties and festivities, and she surrounded herself with people who catered to her frivolous whims. As a result so serious a man as Leonardo was forced into the background of the court life. He was called upon more and more to act as stage-designer while his more important work went unnoticed. Because these entertainments were easy for Leonardo to design, they did give him more time to work on his giant equestrian monument of Francesco Sforza. Working one day on the scaffolding surrounding the clay figure of his statue, Leonardo heard a knockat his studio door.

“Come in,” he shouted as he climbed down. “The door’s open.”

Three peasants cautiously entered the room and quickly took off their caps. One of them was holding a carefully wrapped bundle.

“Master Leonardo, we have brought you some shells we found on a ridge of Monferrato. Remember, you asked us to bring anything we found that was unusual?”

“Yes, Pietro. Thank you. Put them here on the table.”

Leonardo opened the bundle. He smiled when he saw the shells. He remembered how, as a young boy, he had found seashells like these high in the mountains. Leonardo questioned Pietro and his companions as to where they had been found and under what circumstances. He gave them some coins and, when they had gone, he looked among his growing collection of notes and drawings on the shelves. It took some time for him to find what he wanted, for the pages were in such confusion. Finally, he sat down at the table with several of the sheets and, putting the seashells in front of him, he began to make notes.

The shells were fossil shells but, thought Leonardo,their presence on the high mountains of Lombardy could hardly be attributed to the great flood as described in the Bible. In his notes, Leonardo cited the case of the cockle which, out of water, is like the snail. It makes a furrow in the sand and can travel in this furrow about three to four yards a day. By such means, he calculated, it could not possibly have reached Monferrato from the Adriatic in forty days (which was supposed to have been the duration of the flood)—a distance of 250 miles. Nor were these simply dead shells deposited by the waves—for the living creatures are recognized by being in pairs, and these in front of him had certainly been traveling in pairs. Consequently, they could have been left there only when they were alive and the mountains were covered by the primeval oceans. Moreover, Leonardo also described how living matter in prehistoric times fell into the mud and died, and how this mud, as the waters receded and years had passed, was changed into rock forming a mold about the fossil—literally making a cast of its original living appearance.

By such deductive reasoning and the testing of the evidence before him against the common beliefs, Leonardo struggled to free the minds of men from medieval superstitions and beliefs. Indeed, these medieval superstitions existed everywhere. Astrologers, or men who told fortunes by the position of the stars at a given moment; and necromancers, those who by tricks of magic claimed to be able to talk to departed spirits—these men profited from the ignorant. The Church, with its preaching of devils and hells, provided the background against which these fakers flourished.

Ludovico Sforza was himself a believer in such things.His own physician and astrologer was a man by the name of Ambrogio da Rosate, who had such influence over the court that he was given a post in the University of Pavia, and his fame was so great that he was called upon to predict the future of Pope Innocent VIII! Leonardo’s dislike of these men was intense. He scorned the supernatural and asked men to look about them at the real world and the real heavens. Observation and experiment—these were Leonardo’s key words. But he was a lonely figure in his thinking—like a man awake while the rest of the world slept.

At last the full-size model of the Sforza monument was nearing completion. Ludovico had ordered it ready for exhibition in the courtyard of the castle for yet another marriage festival that was soon to take place. This time it was the marriage of his niece Bianca Maria to Maximilian I of Germany. Leonardo and his assistants were busy with the finishing touches on the monument, and with building a wagon on which to carry it from the studio to the courtyard.

During these last months Leonardo had had to struggle with all kinds of heavy loads. Already he had improved on pulleys by inventing a new kind of tackle, and he also had utilized many kinds of levers. One of his simpler discoveries for raising heavy weights was a jack which, in appearance and principle, was the forerunner of our own automobile jack.

In 1493 when the clay model of the Sforza monument was completed, it was put on the cart and wheeled to its place of exhibition where a curtain was thrown around it. Again Milan was the host to a gathering of noble courts, and this time Ludovico outdid himself in the display of luxury. Tapestries hung from the buildings and rich carpets were laid down the steps of the cathedral. Everything that Milan had to show was on exhibition—even a crocodile.

But the most impressive sight of all was the unveilingof Leonardo’s colossal statue. It rose in majesty against the red walls of the castle. The name of Leonardo da Vinci was suddenly on everyone’s lips. As the word of his artistic achievement spread from city to city, messages of praise came pouring in. And, for a while the years of frustration and failure to gain recognition melted away. Leonardo at forty-one had at last achieved some success.

Now there was a breathing spell, and Leonardo returned to some of his own projects. For a long time he had continued his observations of his two favorite elements—air and water. To him they were related in their movements. The birds flying in the currents of air and the fish swimming in the flow of water seemed very similar to him. He had already designed various instruments to tell him about the direction of wind and its velocity, and he had also commenced to analyze the wing structure of birds and bats. To soar through the air like a bird was an ancient dream of man, yet for Leonardo it had become a passion. Ceaselessly, he sketched the flights of birds, the flutterings of butterflies and analyzed their flying patterns.

But to Leonardo, understanding thedynamics, or motion, of air was the most important thing. He built ananemoscope, an instrument like a weather-vane for telling the direction of the wind; and, he also constructed several types ofanemometersfor measuring the velocity or force of the wind. One of these latter consisted of a thin rectangle of metal hanging straight down in front of an upward-curving wooden arc. This arc was marked off in units of measurement. When the wind blew, it pushed the thin rectangle up the arc; thus, by noting at which gradation it stopped, Leonardo could tell the velocity.

In addition, Leonardo at this time constructed a devicewhich has been compared to the modern instrument used for testing the weight-carrying capacity of airplane wings. He fashioned a wing resembling a bird’s wing and attached it to a lever so that it would be possible to lower the wing by pushing rapidly down on the lever. This wing in turn was mounted on a plank that was in weight equal to that of a human being. He then calculated that two wings of this kind would have to be about twelve meters wide and twelve meters long to raise a man and his machine together. Another device resembling those found in airplanes today that Leonardo constructed was an inclination gauge. He made this by suspending a heavy ball on a cord within a glass bell. This ball was then supposed to guide the flyer by telling him whether he was flying level, diagonally, up, or down.


Back to IndexNext