VII.
Whewell sagt in seiner Geschichte der induktiven Wissenschaft Bd. I. p. 86: „Archimedes[12]legte nicht allein den Grundstein zur Statik der soliden Körper, sondern er löste auch das Fundamental-Problem derHydrostatikglücklich auf. Diese Auflösung ist um so merkwürdiger, da das von ihm für die Hydrostatik aufgestellte Prinzipnicht nur bis zum Ende des Mittelalters unbenutzt blieb, sondern da es auch selbst dann, als es wieder aufgenommen wurde, so wenig klar eingesehen worden ist, daß man es nur dasHydrostatische Paradoxonnannte.“ Archimedes hatte den Satz des hydrostatischen Druckes, daß sich ein auf eine Flüssigkeit ausgeübter Druck in der Flüssigkeit nach allen Richtungen fortpflanzt, aufgestellt, allein nach den Annahmen der Geschichte bisher waren es Stevinus und Galilei zuerst, welche dies Gesetz wieder in seiner Klarheit begriffen und dasselbe zur Geltung brachten. In der That enthalten alle Schriften des Mittelalters bis dahin, verführt von der aristotelischen Dogmatik, nur ganz verworrene Auffassungen über das, was dies Gesetz mit absoluter Wahrheit vorstellt. Man lese nur des Cardanus Ideen hierüber, um sich von dem gänzlichen Abhandenkommen des Archimedischen Gesetzes zu überzeugen.
Von 1547 an wandte sich die Aufmerksamkeit der Hydrostatik und Hydrodynamik wieder zu, und Fr. Commandinus machte sich verdient durch Edition der Schriften des Hero und des Archimedes über diesen Gegenstand. Auch Baptist Porta edirte 1601 ein Werk Pneumaticorum libri tres, in welchem er auf Hero’s Werk näher einging. Von da ab folgen Gasparis, Schottius, Bardius, Mersenne und Boyle’s Hydrostatical paradoxes made out by new Experiments. Zuvor hatte Pascal 1653 seine Schrift vom Gleichgewicht der Flüssigkeit herausgegeben u. s. w.; Galilei’s Schrift über die schwimmenden Körper 1612 fand bekanntlich heftige Gegner und sein Schüler Castelli hatte alle Hände voll zu thun, die Angriffe Colombe’s, Vincenzio des Gracia u. a. abzuwehren. Alle diese Schriften sind also einer späteren Zeit, als in der Leonardo lebte, angehörig. Von Leonardo da Vinci haben wir bereits oben angeführt, welches Verdienst er sich als Wasserbau-Ingenieur um seine Zeit und sein Vaterland erworben hat, ein Verdienst, das heute noch in vollem Umfange besteht, und so fortwirken konnte, weil seine Bauten mit ungemeiner Schärfe projektirt waren und sorgsam durchdacht ausgeführt wurden. Der Adda-Kanal und vor allem der Kanal von Martesana im Veltlin mit seiner wunderbaren Bewässerungsmethode sind Meisterwerke für alle Zeiten. Aus der Trefflichkeit dieser Arbeiten läßt sich schon schließen, daß Leonardo nicht sowohl Herr über rationelle Benutzung des Wassers war, sondern daß er auch alle Eigenschaften dieses wichtigen Elements vom Grunde studirt hat. Bei seiner scharfen Auffassungsgabe konnte es nicht fehlen, daß er die Richtigkeit der Archimedischen Gesetze begriff und auf ihnen seine Projekte und Ausführungen basirte. Wir können uns für die Begründung, daß dies in vollstem Maße geschehen und daß Leonardo dem Stevinus und Galilei weit zuvorgekommen ist, bescheiden, diese Nachweise haben bereits andere übernommen und geführt. Elia Lombardini hat dies gezeigt in seinen Osservazioni storico-critiche sopra dell’ origine del progresso della scienza hydraulica nel Milanese ed in altre parte d’Italia und nennt den Leonardo da Vinci il fondatore della scienza hydraulica ebenso wie Cialdi ihn als il fondatore della dottrina sul moto ondoso del Mare bezeichnet. Ferner haben viele Autoren der Hydraulikund Hydrostatik auf die Arbeiten des Leonardo Rücksicht genommen und seinen Namen ehrenvoll genannt.
Allein darauf ist bisher nicht der gehörige Nachdruck gelegt, daß Leonardo ein ebenbürtiger Vorgänger des Stevinus und Galilei in Sachen der Hydrostatik gewesen ist — dies kann erst jetzt genauer nachgewiesen werden, wo aus Leonardo da Vinci’s nachgelassenen Schriften Beweise dafür geschöpft werden, daß er auch hierin, wie in den vielen andern Gebieten der mechanischen Wissenschaften seiner Zeit voran war und fast auf der Höhe der Anschauungen dieser genannten Männer schon fast 100 Jahre vorher stand. Kein Zweifel ist, daß Leonardo[13]die Schriften des Archimedes gelesen hatte und daß er dessen Gesetze der Hydrostatik richtig erfaßt hatte.
Seine Anschauungen über die molekulare Beschaffenheit des Wassers sind klar und deutlich. Er schildert diesen Zustand des Wassers mit absoluter Gewißheit bei verschiedenen Gelegenheiten, zumal bei der Entwicklung seines Gesetzes der Wellenbewegung. Er vergleicht die sich von Atom zu Atom übertragende Bewegung durch irgend einen Stoß auf die Wasserfläche mit einem Zittern und fürchtendem Zurückweichen. Ebenso genau faßte Leonardo da Vinci die Verdrängung eines Quantums Wassers durch einen daraufgelegten schweren Körper auf. Ueber die Gravitation des molekularen Wassers drückt sich Leonardo so aus: la loro gravita è dupla, cioé che il suo tutto ha gravità attesta al centro delli elementi; la seconda gravità attende al centro d’essa sfericità d’aqua.... ma di questa non veggo nell’ humano ingegno modo di darne scienza, ma dire comé si dice della Calamita (Magnet) che tira il ferro, cioé che tal virtu é occulta proprietà, dellà quali n’ è infinite in natura!
Wir haben hier den Satz mit Leonardo’s eigenen Worten wiedergegeben, welcher die klare Anschauung der Molekularattraktion und der Gravitation enthält, dabei von natürlicher Beobachtung ausgeht und so schön die Unbegrenztheit dieser Naturkräfte ausspricht.
Fig. 16.
Fig. 16.
Ueber die Verdampfung des Wassers und die Sättigung der Luft mit Feuchtigkeit lehrt Leonardo mit denselben Grundsätzen. Er weiß, daß Regen nicht statthaben kann ohne einen hohen Grad der Beladung der Luft mit Feuchtigkeit. Zur Ermittelung des Feuchtigkeitsgrades der Luft hat er eine ArtPluviometerkonstruirt, den wir hier inFigurbeibringen. Die eine der Kugeln ist mit Wachs die andere mit Baumwolle umhüllt, jene als Wasser abstoßend, diese als Wasser anziehend betrachtet.
Eine seiner bedeutendsten Beobachtungen ist aber das Gesetz derkommunizirenden Röhren, welches er so ausspricht: Le superfici di tutti i liquidi immobili liquali in fra loro fieno congiunti, sempre fieno d’eguale altezza! Zugleich zeigt er durch zahlreiche Skizzen im Codex Atlanticus auf Blatt 314 u. a., daß dies Gesetz durch keinerlei Formvariation der Gefäße beeinträchtigt werde. (S.F. 17.) Ebenso zeigt er die Heber in den verschiedensten Gestaltungen und in ihrer Gesetzmäßigkeit. Wir können nicht umhin, hier einzuschalten, daß Leonardo in der Figur bereits dasselbe that, wie Pascal 1653 vorführte. Leonardo zeigt weiter, daß, wenn man zwei sich nicht mischende Flüssigkeiten in ein und dasselbe Gefäß gießt, z. B. Wasser und Quecksilber (ariento vivo), dieselben sich nach ihrem Gewicht anordnen, und zwar so, daß das Quecksilber unten bleibt, das Wasser darüber steht und daß (bei kommunizirenden Röhren) sich diese beiden Flüssigkeiten ins Gleichgewicht einstellen. Ferner erklärt Leonardo, daß die verschiedene Höhenanordnung eine Folge der verschiedenen Flüssigkeiten sei, und daß die Flüssigkeit den Höhen umgekehrt proportional sei. Hierher gehört auch der Ausspruch des Leonardo, daß das im Dampf vermittelst der WärmeaufgelockerteWasser über die Oberfläche des kalten Wassers steige.
Fig. 17.
Fig. 17.
Ueber den Ausfluß der Flüssigkeiten aus Gefäßen finden wir sehr viele Skizzen und Stellen bei Leonardo. Wenn Montucla den Castelli als „den Schöpfer eines neuen Zweiges der Hydraulik“ nannte, weil derselbe in seinem Werk della missura dell’ Acqua Corrente (1638) Vieles über den Ausfluß des Wassers beobachtet hat und festzustellen sucht, so muß dieser Annahme insofern widersprochen werden, als Castelli zunächstunrichtigannimmt, daßdie Geschwindigkeit des Ausflusses sich wie die Tiefe der Oeffnung unter dem Wasserspiegel verhält, sodann aber Leonardo bereits mehr als hundert Jahre vor ihm der richtigen Lösung dieses Gesetzes nahe war. Auch für den Heber gibt Leonardo genau an, daß sich die Ausflußgeschwindigkeit aus dem Heber richte nach der Differenz zwischen der freien Ausflußöffnung des unteren Schenkels und der Oberfläche der Flüssigkeit, in welche der andere Arm eintaucht. Er beobachtete, wie in einem Faß, wenn man im Boden ein kleines Loch bohre, die Wassersäule über demselben in Bewegung gerathe, nicht aber an den Seiten, und daß bei einem in Rotation versetzten, mit Wasser gefüllten Gefäß das Wasser an den Wänden hinaufsteige, — eine Folge der Zentrifugalkraft. —
Er kommt auf das erstere Beispiel mehrere Male zurück (z. B. in F. 12), und zeigt: „daß je kleiner das Loch am Boden des Gefäßes sei, eine um so größere Kraft der Strudel gewinne. Die Höhle des Strudels ist grader gegen den Boden gerichtet als gegen die Oberfläche des Wassers, weil das Wasser mehr Druck ausübt nach dem Grunde hin als nach der Oberfläche.“ — „Wenn sich das Wasser nichtüberder Luft halten kann, — wie bildet es dann einen Strudel, so daß das Wasser selbst einen Wall um eine Höhlung bildet, welche nur Luft enthält? — Wir haben gezeigt, daß jeder schwereKörper sich ausbreitet zufolge der Schwere in dem Sinne, gegen welchen er sich bewegt. Daher sind die Strudel hohl wie die Pumpenrohre. Das Wasser, welches die Wandungen der Höhlung bildet, hält sich dort so lange, als die Rotation dauert, welche sie gebildet hat. Während dieser Zeit wiegt das Wasser in Richtung seiner Bewegung. Die Partien, welche dem Zentrum der Bewegung näher sind, drehen sich mit mehr Schnelligkeit als die entfernteren. Dies Phänomen ist höchst eigentümlich; denn die Partien eines Rades, welches sich um seine Achse dreht, bewegen sich um so langsamer als sie dem Zentrum näher sind. Die Erscheinung beim Strudel ist also gerade umgekehrt. Wenn das nicht sein würde, müßte sich die Höhle mit Wasser ausfüllen. In dem Wasser, welches die Wandungen der Höhlung bildet, wirken zwei Gravitationen. Die eine bewirkt die Kreisbewegung des Wassers, die andere aber bildet die Wandungen der Höhlung, welche ihrerseits auf die Luft in der Höhlung drücken und den Strudel enden, indem sie in die Höhlung einstürzen.“
Venturi, der diese Sätze kannte, legte sie seinen späteren Versuchen zu Grunde, die er 1797 veröffentlichte. Venturi ist entzückt über die klare Vorstellung des Leonardo und sagt: „Enfin non-seulement Vinci avoit remarquétout ce queCastelli a dit un siècle après lui sur le mouvement des eaux; le premier me paroît même dans cette partiesupérieur de beaucoupà l’autre, que l’Italie cependant a regardé comme le fondateur de l’Hydraulique.“ Was Venturi hier vor 86 Jahren ausspricht, ist heute durchaus anerkannt.
Die italienischen Autoren[14]haben Vinci die Palme in hydraulischen Dingen vor dem Castelli zuerkannt. Sie gebührt ihm indessen nicht allein der bisher berührten Gesetze wegen, sondern auch ganz besonders seiner trefflichenTheorie der Wellenbewegung des Meereswegen, auf die wir nunmehr hier eingehen wollen. Wir folgen dabei der erschöpfenden Arbeit von Cialdi, betitelt:Leonardo da Vinci, fondatore della dottrina sul moto ondoso del Mare, welche mit Lust und Liebe den Nachweis führt, daß Leonardo der erste gewesen, welcher eine Wellentheorie aufstellte, und nicht Newton, de l’Emy, Montferrier und Laplace. Hat man sich in das Wesen der Arbeit und Betrachtungsweise des Leonardo eingearbeitet, so scheint es so naheliegend, daß sich dieser erste Hydrauliker von Bedeutung auch mit der Frage der Entstehung der Wellen des Meeres beschäftigt habe. Angefochten kann nach Cialdi’s und Boccarde’s Untersuchungen nicht mehr werden, daß Leonardo so viel früher das erste Fundament der hydraulischen Wissenschaft legte, als die Arbeiten von Newton, la Hire, Laplace, Lagrange, Biot, Poisson, Cauchy erschienen. — Leonardo sagt:
„L’onda ha moto riflesso ed incidente; il moto riflesso è quello che si fa nella generazione dell’ onda, dopo la percussione dell’ obietto, risaltando ed elevandosi l’acqua verso l’aria, nel qual moto l’onda acquista la sua altezza etc. — Il moto incidente dell’ onda é quello che fa l’onda dal colmo della sua altezza all’ infimo della sua bassezza, quale non é causata da alcuna percussione, ma solo dalla gravita acquistata dall’ acqua fuori del suo elemento etc.
Quanto più alte sono l’onde del mare dell ordinaria altezza, della superficie della sua acqua, tanto più bassi sono li fondi delle valli interposte infra esse onde. E questo è perché le gran cadute delle grandi onde fanno grandi concavità di valle. — La valle interposta infra le onde è più bassa che la comune superficie dell’ acqua. Questa è manifesta per la passata, e l’esperienza ce lo dimostra, come si vede nell’ acqua che ricade a riempire li luoghi percossi dalle cadute dell’ acqua etc.“
Ganz ähnlich erklärt Newton;[15]ganz ähnlich Giorgio Juan, Montferrier, l’Emy, Bertin. Letzterer erklärt: „Die absoluten Dimensionen der Wellen, seien es mittlere oder maximale, nach Breite oder Höhe, können nicht anders als durch die Erfahrung bestimmt werden, nicht allein weil die Hauptursache, von der diese Dimensionen abhängen, z. B. die Macht des Windes und die Dauer seiner Wirkung, selbst durch Erfahrung bestimmt werden müssen, sondern auch, weil man kein Mittel besitzt, den Effekt eines bestimmten Windes theoretisch zu bestimmen, für eine gegebene Zeitdauer seines Wehens über das Meer hin.“[16]
Leonardo erklärt die Welle so: „Die Welle ist der Eindruck (die Folge) des Stoßes (percussione) reflektirt vom Wasser; sein Angriff (impeto) ist viel schneller als das Wasser. Daher flieht oftmals die Welle den Ort ihrer Entstehung, und das Wasser selbst bewegt sich nicht vom Platze. Die Aehnlichkeit der Wellen ist groß mit den Wellen, die der Wind in einem Kornfeld hervorbringt, welche man auch sieht über das Feld hineilen, ohne daß das Getreide (biade) sich vom Platze bewegt.“
Eine Definition der Wellen kann nicht erschöpfender und klarer sein als diese, und folgedessen ist auch die Aehnlichkeit der Erklärungen aller jüngeren Gelehrten (l’Emy, Sganzin, Reibell) mit derselben sehr groß. Fevre hat hier noch sogar das Beispiel des über ein Getreidefeld hinfahrenden Windes wiedergebraucht.
Drei Jahrhunderte nach Leonardo erklärte Goimpy die Welle als eine horizontale Bewegung in den Wassermoleculen, welche dieselbe bilden. Er sucht dies durch Experimente und Spekulationen zu beweisen; allein umsonst. Tessan stellte sodann gegen alle bisher angenommene Theorie die Existenz einer horizontalen Bewegung in den Moleculen des Wassers auchohne Einwirkungdes Windes auf. Auch Leonardo hatte diese Ideen: „Oftmals geht die Welle schneller als der Wind, und oftmals ist der Wind schneller als die Welle. Das erfahren die Schiffe auf dem Meere in Wellen, die schneller sind als der Wind. Es kann dies herrühren davon, daß die Welle entstand von einemgroßen Wind, und nachdem der Wind leichter geworden, hat die Welle noch eine große Gewalt zurückbehalten. Das Wasser kann nicht so plötzlich seine Wellen in sich aufnehmen, weil beim Herabfallen des Wassers vom Gipfel zum Thal sich die Geschwindigkeit, die Kraft und Bewegung erneuet.“
Die Phänomene der Erscheinung von Wellen ohne oder mit direktem Antrieb durch Winde sind Gegenstand vieler Betrachtungen geworden von Reid, Redfield, Piddington, Blay, Dampier, Dumont d’Urville, Poterat, Keller, Zurcher, Gevry u. a., zumal jene Wellen, welche entstehen, ohne daß ein Windstrom bemerkbar.
Fig. 18.
Fig. 18.
Leonardo geht nun auf die Wellenbildung in Richtung gegen den natürlichen Strom des Wassers in Flüssen ein und spricht das aus, was Spätere wiederholten (Sganzin und Reibell), daß die Welle nicht den natürlichen Lauf der Flüsse alterire, obgleich sie sich gegen diese Flußrichtung bilden und bewegen könne. Er geht sodann ein auf die Entstehung der Wellen, wenn man einen Stein etc. in das Wasser werfe. Schon zuvor bemerkt er, daß zwei Wellen durcheinander hindurchgehen könnten. Der Fall der Wellenerregung durch das Einwerfen der Steine bietet dem Leonardo Gelegenheit zu einer äußerst klaren und durchaus richtigen Deduktion. Er zeigt dies auchgraphischfür den Fall, daß zu gleicher Zeit in einer geeigneten Entfernung von einander zwei Steinchen von gleicher Größe in ein stillstehendes Wasser geworfen würden. Es entstehen dann zwei „separate quantità di circoli.“ Wenn diese Menge der Kreise wächst, so begegnen sich die einzelnen Kreise beider Systeme, und nun sagt Leonardo: „Domando, ich frage, ob, wenn ein Kreis im Anwachsen sich begegnet, mit dem entsprechenden andern Kreis, er eintritt in dessen Wellen sie durchschneidend, oder ob die betreffenden Berührungsschläge unter gleichen Winkeln reflektiren? Questo è bellissimo quesito, e sottile!“ Darauf antwortet Leonardo selbst mit einer subtilen Auseinandersetzung, die beweist, daß sich die begegnenden Wellen durchschneiden. Hierbei gibt er eine wunderschöne Darstellung über die Entstehung der Wasserbewegung durch den einfallenden Stein, wie das Wasser anfangs durch den schweren Körper verdrängt wird, wie die Flüssigkeit die Oeffnung wieder ausfüllt und dabei in Bewegung geräth, „che si puo piuttosto dimandare tremore che movimento. Man kann dies dadurch am besten zeigen, daß man einen Strohhalm (festuche) auf die Kreise wirft und beobachtet, wie derselbe fortwährend von der Wellenbildung bewegt wird, ohne den Ort zu ändern. So ist es auch mit dem Wasser der Wellen.“ Nun fährt er fort zu erklären, daß, indem alle benachbarten Theile der Flüssigkeit von dem Tremolando ergriffen werden, sich immer weitere Kreise ziehen, aberwie immer mehr die Kraft erlischt, bis sie aufhört zu wirken. Und nun knüpft Leonardo daran,dieses Beispiel auf die Luft und den Schall zu gebrauchen! und die große Konformität der Erscheinungen im Wasser mit denen in der Luft zu bezeichnen.
„Die Schallwellen in der Luft entfernen sich mit kreisförmiger Bewegung von dem Orte ihrer Entstehung, und ein Kreis begegnet und passirt den anderen, immer aber das Zentrum der Entstehung beibehaltend!“ Diese Darstellungen (vide die bezüglichen §§ 162 und 170 in Eisenlohr’s Lehrbuch der Physik (7. Aufl.) und Fig. 200[17]) stehen so vollkommen auf der Höhe unserer Zeit, daß die Interferenzlehre in der That durch Leonardo bereits präzisirt erscheint; wir bedienen uns noch desselben Beispiels. —
Leonardo stellt weiter den Satz auf: „daß die brandende (titubante) Welle eine solche ist, welche vom gegenseitigen Ufer reflektirt ist und welche in dieser Reflexion um so viel vermindert ist, sich mit sich selbst zusammengießt und die Kraft (impeto) verliert, welche sie bewegte.“ (Man sehe die späteren Gelehrten Emy, Sganzin, Reibell, Minard, Bazin.) Ferner: „Die reflektirte Bewegung der Welle auf dem Wasser verändert um so viel die reflektirte Bahn, als die Körper, welche die inzidente Bewegung empfangen, geneigte Flächen haben (varii obietti in obliquità).“ Es ist das derselbe Lehrsatz, den wir auszusprechen pflegen: „Eine Welle wird unter demselben Winkel von einer ebenen Wand zurückgeworfen, unter welchem sie auffällt.“ Hierzu gehört: „Eine Welle ist nie allein, sondern gemischt aus so vielen Wellen, als aus der Unegalität des Körpers folgten, von welchem solche Welle kommt.“
Mr. l’Emy schließt sich besonders eng an Leonardo an, ohne seinen Namen zu nennen, und kaum ist es glaublich, daß eine solche Gleichheit der Ansichten von selbst entstehe. Emy hat sowohl den vorstehenden Satz zum Gegenstande besonderer Abhandlung gemacht, als auch folgenden, — den auch Frissard anführt. Leonardo zeigt darin, daß die Wellen von der Oberfläche des Wassers in verschiedener Weise in demselben Wasser, zur selben Zeit und mit verschiedener Gestalt entstehen können. Ferner: „Die Welle des Meeres bricht gegen das Wasser, welches vom Ufer zurückgeworfen ist, und nicht gegen den Wind, welcher es tanzen macht. Der Eindruck von Bewegung im Wasser durch Wasser ist permanenter, als der Eindruck des Wassers von der Luft.“
Wir führen nun die Stellen an, von denen Calvi sagt: daß, wenn Leonardo jene Lampe gesehen haben würde, die den Galilei auf die Pendelgesetze hinwies, er gewiß die Aehnlichkeit der Schwingungen mit der Wellenbewegung gesehen haben würde. Er sagt: „Der Beginn der Welle bei der inzidenten Bewegung ist schneller und das Ende der reflektirten Bewegung langsam. Die inzidente Bewegung ist kräftiger als die reflektirte. Die Bewegung des Thals der Welle ist schneller, aber ihr Berg langsam. Daraus folgt, daß das Thal die inzidente und der Berg die reflektirte Bewegung ist. Die Welle wird sich um so mehr bewegen, als sie sich bewegt, um so mehr sich ausbreiten, als sie geschwinder ist. Denn die Welle entsteht durch die Reflexion, und die reflektirte Bewegung endigt in der Linie der Inzidenz. Die Welle hat Zeit sich zu vertiefen und auszubreiten, wenn sie übergeht von der Reflexion zur Inzidenz, und empfängt um so viel mehr Geschwindigkeit, als die Bewegung der Inzidenz kräftiger ist als die reflektirte.“ Hieran schließen sich noch eine Reihe Betrachtungen über die Bewegung zweier gleicher oder ungleicher Wellen u. s. w., Gesetze, welche später von Mr. l’Emy u. A. weiter ausgeführt sind, ohne mehr zu sagen, als Leonardo gibt. Vinci zeigt schließlich noch das Spiel der Wellen am Ufer, wie keine Welle die letzte sei, sondern immer die vorletzte auf sie heranrücke u. s. w., wie ferner die Wellen die mitgeführten Körper sortiren und in Reihen anhäufen. Die inzidente Wellenbewegung bewegt die größeren Steine, und die reflektirte ist nicht im Stande, dieselben zurückzuziehen, wohl aber folgen die kleineren Dinge den letzteren und der Sand ist der Spielball der beiden Bewegungen. Wir wollen Leonardo’s eigene Worte über die Arbeit der Wellen folgen lassen: „Il moto che il mobile riceve è quando veloce, quando tardo, e quando si volta a destra e quando a sinistra ora in su, ora in giù rivoltandosi, e girando in se medesimo ora per un verso, ora per un altro obbendendo a tutti i suoi motori e nelle battaglie fatte da tali motori sempre ne va per preda del vincitore!“ — —
Fig. 19.
Fig. 19.
Wir führen endlich zum Schluß dieses Abschnitts noch an, daß Leonardo die Idee der artesischen Brunnen ausführte und dazu einenErdbohrerkonstruirte, Trivella per forar pozzi alla Modenese, welcher in den Manuskripten erhalten ist und den wir hier zufügen. Ferner hat Leonardo sehr viel hydraulische Maschinen, Pumpen, Wasserräder, Wasserpressen, Schnecken etc. etc. konstruirt und nebst seinen trefflichen Kanal- und Schleusenskizzen uns nachgelassen.
Davon im späteren Abschnitt „Maschinen“ soweit es die effektiven Konstruktionen betrifft.
Leonardo war bei seinen praktischen Ingenieurarbeiten für die Hydraulik gezwungen, die Wassermassen für Ab- und Zufluß zu berechnen; er that dies in einer Weise, die auch heute noch genügen könnte. Er stellte 14 Bedingungen auf, nach welchen sich die Ausflußmenge eines Kanals richtet. Er berücksichtigt dabei sowohl die Form und Oberfläche der Kanäle, Rohre etc., als die Richtung, den Querschnitt der Mündung u. s. w., endlich auch die Rolle der Luft dabei. Drastisch bemerkt er: „Sowie ein Strumpf (calze), welcher das Bein bekleidet, nicht mehr dessen Aussehen verräth, so zeigt auch die Oberfläche des Wassers nichts von der Beschaffenheit des Bodens im Kanal.“
[12]Archimedes, περι των εχουμενων. ed. David Rivaltus[13]Er zitirte Archimedes öfter.[14]Es ist ein großer Mangel, daß z. B. Ewbank in seinem „Descr. and histor. account of Hydraulic and other machines for raising water“ nichts von Leonardo da Vinci kennt, während er Venturi’s Arbeiten zitirt.[15]Newton, Mathemat. Prinzipien. Von Prof. Dr. Wolfers, Berlin, Oppenheim 1872. pag. 360.[16]Wir bemerken, daß viele Sätze in den späteren Schriften besonders der französ. Gelehrten fast genau wiedergegeben zu sein scheinen.[17]So auch Poncelet, Sganzin, Reibell u. A.
[12]Archimedes, περι των εχουμενων. ed. David Rivaltus
[12]Archimedes, περι των εχουμενων. ed. David Rivaltus
[13]Er zitirte Archimedes öfter.
[13]Er zitirte Archimedes öfter.
[14]Es ist ein großer Mangel, daß z. B. Ewbank in seinem „Descr. and histor. account of Hydraulic and other machines for raising water“ nichts von Leonardo da Vinci kennt, während er Venturi’s Arbeiten zitirt.
[14]Es ist ein großer Mangel, daß z. B. Ewbank in seinem „Descr. and histor. account of Hydraulic and other machines for raising water“ nichts von Leonardo da Vinci kennt, während er Venturi’s Arbeiten zitirt.
[15]Newton, Mathemat. Prinzipien. Von Prof. Dr. Wolfers, Berlin, Oppenheim 1872. pag. 360.
[15]Newton, Mathemat. Prinzipien. Von Prof. Dr. Wolfers, Berlin, Oppenheim 1872. pag. 360.
[16]Wir bemerken, daß viele Sätze in den späteren Schriften besonders der französ. Gelehrten fast genau wiedergegeben zu sein scheinen.
[16]Wir bemerken, daß viele Sätze in den späteren Schriften besonders der französ. Gelehrten fast genau wiedergegeben zu sein scheinen.
[17]So auch Poncelet, Sganzin, Reibell u. A.
[17]So auch Poncelet, Sganzin, Reibell u. A.