"To some she taught the fabric of the sphere,The changeful moon, the circuit of the stars,The golden zones of heaven."—Akenside.
"To some she taught the fabric of the sphere,The changeful moon, the circuit of the stars,The golden zones of heaven."—Akenside.
Withthe elementary knowledge already acquired, you will now be able to enter with pleasure and profit on the various interesting phenomena dependent on the revolution of the earth on its axis and around the sun. The apparent diurnal revolution of the heavenly bodies, from east to west, is owing to the actual revolution of the earth on its own axis, from west to east. If we conceive of a radius of the earth's equator extended until it meets the concave sphere of the heavens, then, as the earth revolves, the extremity of this line would trace out a curve on the face of the sky; namely, the celestial equator. In curves parallel to this, called thecircles of diurnal revolution, the heavenly bodies actuallyappearto move, every star having its own peculiar circle. After you have first rendered familiar the real motion of the earth from west to east, you may then, without danger of misapprehension, adopt the common language, that all the heavenly bodies revolve around the earth once a day, from east to west, in circles parallel to the equator and to each other.
I must remind you, that the time occupied by a star, in passing from any point in the meridian until it comes round to the same point again, is called asidereal day, and measures the period of the earth's revolution on its axis. If we watch the returns of the same star from day to day, we shall find the intervals exactly equal to each other; that is,the sidereal days are all equal. Whatever star we select for the observation, the same result will be obtained. The stars, therefore, always keep the same relative position, and have a commonmovement round the earth,—a consequence that naturally flows from the hypothesis that theirapparentmotion is all produced by a singlerealmotion; namely, that of the earth. The sun, moon, and planets, as well as the fixed stars, revolve in like manner; but their returns to the meridian are not, like those of the fixed stars, at exactly equal intervals.
Theappearancesof the diurnal motions of the heavenly bodies are different in different parts of the earth,—since every place has its own horizon, and different horizons are variously inclined to each other. Nothing in astronomy is more apt to mislead us, than the obstinate habit of considering the horizon as a fixed and immutable plane, and of referring every thing to it. We should contemplate the earth as a huge globe, occupying a small portion of space, and encircled on all sides, at an immense distance, by the starry sphere. We should free our minds from their habitual proneness to consider one part of space as naturallyupand anotherdown, and view ourselves as subject to a force (gravity) which binds us to the earth as truly as though we were fastened to it by some invisible cords or wires, as the needle attaches itself to all sides of a spherical loadstone. We should dwell on this point, until it appears to us as truly up, in the direction B B, C C, D D, when one is at B, C, D, respectively, as in the direction A A, when he is at A, Fig. 14.
Let us now suppose the spectator viewing the diurnal revolutions from several different positions on the earth. On theequator, his horizon would pass through both poles; for the horizon cuts the celestial vault at ninety degrees in every direction from the zenith of the spectator; but the pole is likewise ninety degrees from his zenith, when he stands on the equator; and consequently, the pole must be in the horizon. Here, also, the celestial equator would coincide with the prime vertical, being a great circle passing through the east and west points. Since all the diurnal circles are parallel to the equator, consequently, they would all, like the equatorbe perpendicular to the horizon. Such a view of the heavenly bodies is called a right sphere, which may be thus defined:a right sphere is one in which all the daily revolutions of the stars are in circles perpendicular to the horizon.
Fig. 14.Fig. 14.
A right sphere is seen only at the equator. Any star situated in the celestial equator would appear to rise directly in the east, at midnight to be in the zenith of the spectator, and to set directly in the west. In proportion as stars are at a greater distance from the equator towards the pole, they describe smaller and smaller circles, until, near the pole, their motion is hardly perceptible.
If the spectator advances one degree from the equator towards the north pole, his horizon reaches one degree beyond the pole of the earth, and cuts the starry sphere one degree below the pole of the heavens, or below the north star, if that be taken as the place of the pole. As he moves onward towards the pole, his horizon continually reaches further and further beyond it, until, when he comes to the pole of the earth, and under the pole of the heavens, his horizon reaches on all sides to the equator, and coincides with it. Moreover, since all the circles of daily motion are parallel to the equator, they become, to the spectator at the pole, parallel to the horizon. Or,a parallel sphere is that in which all the circles of daily motion are parallel to the horizon.
To render this view of the heavens familiar, I would advise you to follow round in mind a number of separate stars, in their diurnal revolution, one near the horizon, one a few degrees above it, and a third near the zenith. To one who stood upon the north pole, the stars of the northern hemisphere would all be perpetually in view when not obscured by clouds, or lost in the sun's light, and none of those of the southern hemisphere would ever be seen. The sun would be constantly above the horizon for six months in the year, and the remaining six continually out of sight. That is, at the pole, the days and nights are each six months long. The appearances at the south pole are similar to those at the north.
A perfect parallel sphere can never be seen, except at one of the poles,—a point which has never been actually reached by man; yet the British discovery ships penetrated within a few degrees of the north pole, and of course enjoyed the view of a sphere nearly parallel.
As the circles of daily motion are parallel to the horizon of the pole, and perpendicular to that of the equator, so at all places between the two, the diurnal motions are oblique to the horizon. This aspect of the heavens constitutes an oblique sphere, which is thus defined:an oblique sphere is that in which the circles of daily motion are oblique to the horizon.
Suppose, for example, that the spectator is at the latitude of fifty degrees. His horizon reaches fifty degrees beyond the pole of the earth, and gives the same apparent elevation to the pole of the heavens. It cuts the equator and all the circles of daily motion, at an angle of forty degrees,—being always equal to what the altitude of the pole lacks of ninety degrees: that is, it is always equal to the co-altitude of the pole. Thus,let H O, Fig. 15, represent the horizon, E Q the equator, and P P the axis of the earth. Also,l l, m m, n n, parallels of latitude. Then the horizon of a spectator at Z, in latitude fifty degrees, reaches to fifty degrees beyond the pole; and the angle E C H, which the equator makes with the horizon, is forty degrees,—the complement of the latitude. As we advance still further north, the elevation of the diurnal circle above the horizon grows less and less, and consequently, the motions of the heavenly bodies more and more oblique to the horizon, until finally, at the pole, where the latitude is ninety degrees, the angle of elevation of the equator vanishes, and the horizon and the equator coincide with each other, as before stated.
Fig. 15.Fig. 15.
The circle of perpetual apparition is the boundary of that space around the elevated pole, where the stars never set.Its distance from the pole is equal to the latitude of the place. For, since the altitude of the pole is equal to the latitude, a star, whose polar distance is just equal to the latitude, will, when at its lowest point, only just reach the horizon; and all the stars nearer the pole than this will evidently not descend so far as the horizon. Thusm m, Fig. 15, is the circle of perpetual apparition, between which and the north pole, the stars never set, and its distance from the pole, O P, is evidently equal to the elevation of the pole, and of course to the latitude.
In the opposite hemisphere, a similar part of the sphere adjacent to the depressed pole never rises. Hence,the circle of perpetual occultation is the boundary of that space around the depressed pole, within which the stars never rise.
Thusm´ m´, Fig. 15, is the circle of perpetual occultation, between which and the south pole, the stars never rise.
In an oblique sphere, the horizon cuts the circles of daily motion unequally. Towards the elevated pole, more than half the circle is above the horizon, and a greater and greater portion, as the distance from the equator is increased, until finally, within the circle of perpetual apparition, the whole circle is above the horizon. Just the opposite takes place in the hemisphere next the depressed pole. Accordingly, when the sun is in the equator, as the equator and horizon, like all other great circles of the sphere, bisect each other, the days and nights are equal all over the globe. But when the sun is north of the equator, the days become longer than the nights, but shorter, when the sun is south of the equator. Moreover, the higher the latitude, the greater is the inequality in the lengths of the days and nights. By examining Fig. 15, you will easily see how each of these cases must hold good.
Most of the appearances of the diurnal revolution can be explained, either on the supposition that the celestial sphere actually turns around the earth once in twenty-four hours, or that this motion of the heavens is merely apparent, arising from the revolution of the earth on its axis, in the opposite direction,—a motion of which we are insensible, as we sometimes lose the consciousness of our own motion in a ship or steam-boat, and observe all external objects to be receding from us, with a common motion. Proofs, entirely conclusive and satisfactory, establish the fact, that it is the earth, and not the celestial sphere, that turns; but these proofs are drawn from various sources, and one is not prepared to appreciate their value, or even to understand some of them, until he has made considerable proficiency in the study of astronomy, and become familiar with a great variety of astronomical phenomena.To such a period we will therefore postpone the discussion of the earth's rotation on its axis.
While we retain the same place on the earth, the diurnal revolution occasions no change in our horizon, but our horizon goes round, as well as ourselves. Let us first take our station on the equator, at sunrise; our horizon now passes through both the poles and through the sun, which we are to conceive of as at a great distance from the earth, and therefore as cut, not by the terrestrial, but by the celestial, horizon. As the earth turns, the horizon dips more and more below the sun, at the rate of fifteen degrees for every hour; and, as in the case of the polar star, the sun appears to rise at the same rate. In six hours, therefore, it is depressed ninety degrees below the sun, bringing us directly under the sun, which, for our present purpose, we may consider as having all the while maintained the same fixed position in space. The earth continues to turn, and in six hours more, it completely reverses the position of our horizon, so that the western part of the horizon, which at sunrise was diametrically opposite to the sun, now cuts the sun, and soon afterwards it rises above the level of the sun, and the sun sets. During the next twelve hours, the sun continues on the invisible side of the sphere, until the horizon returns to the position from which it set out, and a new day begins.
Let us next contemplate the similar phenomena at thepoles. Here the horizon, coinciding, as it does, with the equator, would cut the sun through its centre and the sun would appear to revolve along the surface of the sea, one half above and the other half below the horizon. This supposes the sun in its annual revolution to be at one of the equinoxes. When the sun is north of the equator, it revolves continually round in a circle, which, during a single revolution, appears parallel to the equator, and it is constantly day; and when the sun is south of the equator, it is, for the same reason, continual night.
When we have gained a clear idea of the appearances of the diurnal revolutions, as exhibited to a spectator at the equator and at the pole, that is, in a right and in a parallel sphere, there will be little difficulty in imagining how they must be in the intermediate latitudes, which have an oblique sphere.
The appearances of the sun and stars, presented to the inhabitants of different countries, are such as correspond to the sphere in which they live. Thus, in the fervid climates of India, Africa, and South America, the sun mounts up to the highest regions of the heavens, and descends directly downwards, suddenly plunging beneath the horizon. His rays, darting almost vertically upon the heads of the inhabitants, strike with a force unknown to the people of the colder climates; while in places remote from the equator, as in the north of Europe, the sun, in Summer, rises very far in the north, takes a long circuit towards the south, and sets as far northward in the west as the point where it rose on the other side of the meridian. As we go still further north, to the northern parts of Norway and Sweden, for example, to the confines of the frigid zone, the Summer's sun just grazes the northern horizon, and at noon appears only twenty-three and one half degrees above the southern. On the other hand, in mid-winter, in the north of Europe, as at St. Petersburgh, the day dwindles almost to nothing,—lasting only while the sun describes a very short arc in the extreme south. In some parts of Siberia and Iceland, the only day consists of a little glimmering of the sun on the verge of the southern horizon, at noon.
"Go, wondrous creature! mount where science guides,Go measure earth, weigh air, and state the tides;Instruct the planets in what orbs to run,Correct old Time, and regulate the sun."—Pope.
"Go, wondrous creature! mount where science guides,Go measure earth, weigh air, and state the tides;Instruct the planets in what orbs to run,Correct old Time, and regulate the sun."—Pope.
I thinkyou must have felt some astonishment, that astronomers are able to calculate the exact distances and magnitudes of the sun, moon, and planets. We should, at the first thought, imagine that such knowledge as this must be beyond the reach of the human faculties, and we might be inclined to suspect that astronomers practise some deception in this matter, for the purpose of exciting the admiration of the unlearned. I will therefore, in the present Letter, endeavor to give you some clear and correct views respecting the manner in which astronomers acquire this knowledge.
In our childhood, we all probably adopt the notion that the sky is a real dome of definite surface, in which the heavenly bodies are fixed. When any objects are beyond a certain distance from the eye, we lose all power of distinguishing, by our sight alone, between different distances, and cannot tell whether a given object is one million or a thousand millions of miles off. Although the bodies seen in the sky are in fact at distances extremely various,—some, as the clouds, only a few miles off; others, as the moon, but a few thousand miles; and others, as the fixed stars, innumerable millions of miles from us,—yet, as our eye cannot distinguish these different distances, we acquire the habit of referring all objects beyond a moderate height to one and the same surface, namely, an imaginary spherical surface, denominated the celestial vault. Thus, the various objects represented in the diagram on next page, though differing very much in shape and diameter,would all beprojectedupon the sky alike, and compose a part, indeed, of the imaginary vault itself. The place which each object occupies is determined by lines drawn from the eye of the spectator through the extremities of the body, to meet the imaginary concave sphere. Thus, to a spectator at O, Fig 16, the several lines A B, C D, and E F, would all be projected into arches on the face of the sky, and be seen as parts of the sky itself, as represented by the lines A´ B´, C´ D´, and E´ F´. And were a body actually to move in the several directions indicated by these lines, they would appear to the spectator to describe portions of the celestial vault. Thus, even when moving through the crooked line, fromatob, a body would appear to be moving along the face of the sky, and of course in a regular curve line, fromctod.
Fig. 16.Fig. 16.
But, although all objects, beyond a certain moderate height, are projected on the imaginary surface of the sky, yet different spectators will project the same object ondifferent partsof the sky. Thus, a spectator at A, Fig. 17, would see a body, C, at M, while a spectator at B would see the same body at N. This change of place in a body, as seen from different points, is called parallax, which is thus defined:parallax is the apparent change of place which bodies undergo by being viewed from different points.
Fig. 17.Fig. 17.
The arc M N is called theparallactic arc, and the angle A C B, theparallactic angle.
It is plain, from the figure, that near objects are much more affected by parallax than distant ones. Thus, the body C, Fig. 17, makes a much greater parallax than the more distant body D,—the former being measured by the arc M N, and the latter by the arc O P. We may easily imagine bodies to be so distant, that they would appear projected at very nearly the same point of the heavens, when viewed from places very remote from each other. Indeed, the fixed stars, as we shall see more fully hereafter, are so distant, that spectators, a hundred millions of miles apart, see each star in one and the same place in the heavens.
Fig. 18.Fig. 18.
It is by means of parallax, that astronomers find the distances and magnitudes of the heavenly bodies. In order fully to understand this subject, one requires to know something of trigonometry, which science enables us to find certain unknown parts of a triangle from certain other parts which are known. Although you may not be acquainted with the principles of trigonometry, yet you will readily understand, from your knowledge of arithmetic, that from certain things given in a problem others may be found. Every triangle has of course three sides and three angles; and, if we knowtwo of the angles and one of the sides, we can find all the other parts, namely, the remaining angle and the two unknown sides. Thus, in the triangle A B C, Fig. 18, if we know the length of the side A B, and how many degrees each of the angles A B C and B C A contains, we can find the length of the side B C, or of the side A C, and the remaining angle at A. Now, let us apply these principles to the measurements of some of the heavenly bodies.
Fig. 19.Fig. 19.
In Fig. 19, let A represent the earth, C H the horizon, and H Z a quadrant of a great circle of the heavens, extending from the horizon to the zenith; and let E, F, G, O, be successive positions of the moon, at different elevations, from the horizon to the meridian. Now, a spectator on the surface of the earth, at A, wouldrefer the moon, when at E, toh, on the face of the sky, whereas, if seen from the centre of the earth, it would appear at H. So, when the moon was at F, a spectator at A would see it atp, while, if seen from the centre, it would have appeared at P. The parallactic arcs, Hh, Pp, Rr, grow continually smaller and smaller, as a body is situated higher above the horizon; and when the body is in the zenith, then the parallax vanishes altogether, for at O the moon would be seen at Z, whether viewed from A or C.
Since, then, a heavenly body is liable to be referred to different points on the celestial vault, when seen from different parts of the earth, and thus some confusion be occasioned in the determination of points on the celestial sphere, astronomers have agreed to consider the true place of a celestial object to be that where it would appear, if seen from the centre of the earth; and the doctrine of parallax teaches how to reduce observations made at any place on the surface of the earth, to such as they would be, if made from the centre.
When the moon, or any heavenly body, is seen in the horizon, as at E, the change of place is called the horizontal parallax. Thus, the angle A E C, measures the horizontal parallax of the moon. Were a spectator to view the earth from the centre of the moon, he would see the semidiameter of the earth under this same angle; hence,the horizontal parallax of any body is the angle subtended by the semidiameter of the earth, as seen from the body. Please to remember this fact.
It is evident from the figure, that the effect of parallax upon the place of a celestial body is todepressit. Thus, in consequence of parallax, E is depressed by the arc Hh; F, by the arc Pp; G, by the arc Rr; while O sustains no change. Hence, in all calculations respecting the altitude of the sun, moon, or planets, the amount of parallax is to be added: the stars, as we shall see hereafter, have no sensible parallax.
It is now very easy to see how, when the parallax of a body is known, we may find its distance from thecentre of the earth. Thus, in the triangle A C E, Fig. 19, the side A C is known, being the semidiameter of the earth; the angle C A E, being a right angle, is also known; and the parallactic angle, A E C, is found from observation; and it is a well-known principle of trigonometry, that when we have any two angles of a triangle, we may find the remaining angle by subtracting the sum of these two from one hundred and eighty degrees. Consequently, in the triangle A E C, we know all the angles and one side, namely, the side A C; hence, we have the means of finding the side C E, which is the distance from the centre of the earth to the centre of the moon.
Fig. 20.Fig. 20.
When the distance of a heavenly body is known, and we can measure, with instruments, its angular breadth, we can easily determine itsmagnitude. Thus, if we have the distance of the moon, E S, Fig. 20, and half the breadth of its disk S C, (which is measured by the angle S E C,) we can find the length of the line, S C, in miles. Twice this line is the diameter of the body; and when we know the diameter of a sphere, we can, by well-known rules, find the contents of the surface, and its solidity.
You will perhaps be curious to know,how the moon's horizontal parallax is found; for it must have been previously ascertained, before we could apply this method to finding the distance of the moon from the earth. Suppose that two astronomers take their stations on the same meridian, but one south of the equator, as at the Cape of Good Hope, and another north of the equator, as at Berlin, in Prussia, which two places lie nearly on the same meridian. The observers would severally refer the moon to different points on the face of the sky,—the southern observer carrying it further north, and the northern observer further south, than its true place, as seen from the centre of the earth. This will be plain from the diagram, Fig. 21. If A and B represent the positions of the spectators, M the moon, and C D an arc of the sky, then it is evident, that C D would be the parallactic arc.
Fig. 21.Fig. 21.
These observations furnish materials for calculating, by the aid of trigonometry, the moon's horizontal parallax, and we have before seen how, when we know the parallax of a heavenly body, we can find both its distance from the earth and its magnitude.
Beside the change of place which these heavenly bodies undergo, in consequence of parallax, there is another, of an opposite kind, arising from the effect of the atmosphere, calledrefraction. Refraction elevates the apparent place of a body, while parallax depresses it. It affects alike the most distant as well as nearer bodies.
In order to understand the nature of refraction, we must consider, that an object always appears in the direction in which thelastray of light comes to the eye. If the light which comes from a star were bent into fifty directions before it reached the eye, the star would nevertheless appear in the line described by the ray nearest the eye. The operation of this principle is seen when an oar, or any stick, is thrust into water. As the rays of light by which the oar is seen have their direction changed as they pass out of water into air, the apparent direction in which the body is seen is changed in the same degree, giving it a bent appearance,—the part below the water having apparently a different direction from the part above. Thus, in Fig. 22, page 96, if Sa xbe the oar, Sa bwill be the bent appearance, as affected by refraction. The transparent substancethrough which any ray of light passes is called amedium. It is a general fact in optics, that, when light passes out of a rarer into a denser medium, as out of air into water, or out of space into air, it is turnedtowardsa perpendicular to the surface of the medium; and when it passes out of a denser into a rarer medium, as out of water into air, it is turnedfromthe perpendicular. In the above case, the light, passing out of space into air, is turned towards the radius of the earth, this being perpendicular to the surface of the atmosphere; and it is turned more and more towards that radius the nearer it approaches to the earth, because the density of the air rapidly increases near the earth.
Fig. 22.Fig. 22.
Let us now conceive of the atmosphere as made up of a great number of parallel strata, as A A, B B, C C, and D D, increasing rapidly in density (as is known to be the fact) in approaching near to the surface of the earth. Let S be a star, from which a ray of light, Sa, enters the atmosphere ata, where, being much turned towards the radius of the convex surface, it would change its direction into the linea b, and again intob c, andcO, reaching the eye at O. Now, since an object always appears in the direction in which the light finally strikes the eye, the star would be seen in the direction Oc, and, consequently, the star wouldapparently change its place, by refraction, from S to S´, being elevated out of its true position. Moreover, since, on account of the continual increase of density in descending through the atmosphere, the light would be continually turned out of its course more and more, it would therefore move, not in the polygon represented in the figure, but in a corresponding curve line, whose curvature is rapidly increased near the surface of the earth.
When a body is in the zenith, since a ray of light from it enters the atmosphere at right angles to the refracting medium, it suffers no refraction. Consequently, the position of the heavenly bodies, when in the zenith, is not changed by refraction, while, near the horizon, where a ray of light strikes the medium very obliquely, and traverses the atmosphere through its densest part, the refraction is greatest. The whole amount of refraction, when a body is in the horizon, is thirty-four minutes; while, at only an elevation of one degree, the refraction is but twenty-four minutes; and at forty-five degrees, it is scarcely a single minute. Hence it is always important to make our observations on the heavenly bodies when they are at as great an elevation as possible above the horizon, being then less affected by refraction than at lower altitudes.
Since the whole amount of refraction near the horizon exceeds thirty-three minutes, and the diameters of the sun and moon are severally less than this, these luminaries are in view both before they have actually risen and after they have set.
The rapid increase of refraction near the horizon is strikingly evinced by theovalfigure which the sun assumes when near the horizon, and which is seen to the greatest advantage when light clouds enable us to view the solar disk. Were all parts of the sun equally raised by refraction, there would be no change of figure; but, since the lower side is more refracted than the upper, the effect is to shorten the vertical diameter, and thus to give the disk an oval form. This effect is particularly remarkable when the sun, at his rising or setting, is observed from the top of a mountain, or at an elevation near the seashore; for in such situations, the rays of light make a greater angle than ordinary with a perpendicular to the refracting medium, and the amount of refraction is proportionally greater. In some cases of this kind, the shortening of the vertical diameter of the sun has been observed to amount to six minutes, or about one fifth of the whole.
The apparent enlargement of the sun and moon, when near the horizon, arises from an optical illusion. These bodies, in fact, are not seen under so great an angle when in the horizon as when on the meridian, for they are nearer to us in the latter case than in the former. The distance of the sun, indeed, is so great, that it makes very little difference in his apparent diameter whether he is viewed in the horizon or on the meridian; but with the moon, the case is otherwise; its angular diameter, when measured with instruments, is perceptibly larger when at its culmination, or highest elevation above the horizon. Why, then, do the sun and moon appear so much larger when near the horizon? It is owing to a habit of the mind, by which we judge of the magnitudes of distant objects, not merely by the angle they subtend at the eye, but also by our impressions respecting their distance, allowing, under a given angle, a greater magnitude as we imagine the distance of a body to be greater. Now, on account of the numerous objects usually in sight between us and the sun, when he is near the horizon, he appears much further removed from us than when on the meridian; and we unconsciously assign to him a proportionally greater magnitude. If we view the sun, in the two positions, through a smoked glass, no such difference of size is observed; for here no objects are seen but the sun himself.
Twilightis another phenomenon depending on the agency of the earth's atmosphere. It is that illumination of the sky which takes place just before sunrise and which continues after sunset. It is owing partlyto refraction, and partly to reflection, but mostly to the latter. While the sun is within eighteen degrees of the horizon, before it rises or after it sets, some portion of its light is conveyed to us, by means of numerous reflections from the atmosphere. At the equator, where the circles of daily motion are perpendicular to the horizon, the sun descends through eighteen degrees in an hour and twelve minutes. The light of day, therefore, declines rapidly, and as rapidly advances after daybreak in the morning. At the pole, a constant twilight is enjoyed while the sun is within eighteen degrees of the horizon, occupying nearly two thirds of the half year when the direct light of the sun is withdrawn, so that the progress from continual day to constant night is exceedingly gradual. To an inhabitant of an oblique sphere, the twilight is longer in proportion as the place is nearer the elevated pole.
Were it not for the power the atmosphere has of dispersing the solar light, and scattering it in various directions, no objects would be visible to us out of direct sunshine; every shadow of a passing cloud would involve us in midnight darkness; the stars would be visible all day; and every apartment into which the sun had not direct admission would be involved in the obscurity of night. This scattering action of the atmosphere on the solar light is greatly increased by the irregularity of temperature caused by the sun, which throws the atmosphere into a constant state of undulation; and by thus bringing together masses of air of different temperatures, produces partial reflections and refractions at their common boundaries, by which means much light is turned aside from a direct course, and diverted to the purposes of general illumination.[6]In the upper regions of the atmosphere, as on the tops of very high mountains, where the air is too much rarefied to reflect much light, the sky assumes a black appearance, and stars become visible in the day time.
Although the atmosphere is usually so transparent,that it is invisible to us, yet we as truly move and live in a fluid as fishes that swim in the sea. Considered in comparison with the whole earth, the atmosphere is to be regarded as a thin layer investing the surface, like a film of water covering the surface of an orange. Its actual height, however, is over a hundred miles, though we cannot assign its precise boundaries. Being perfectly elastic, the lower portions, bearing as they do, the weight of all the mass above them, are greatly compressed, while the upper portions having little to oppose the natural tendency of air to expand, diffuse themselves widely. The consequence is, that the atmosphere undergoes a rapid diminution of density, as we ascend from the earth, and soon becomes exceedingly rare. At so moderate a height as seven miles, it is four times rarer than at the surface, and continues to grow rare in the same proportion, namely, being four times less for every seven miles of ascent. It is only, therefore, within a few miles of the earth, that the atmosphere is sufficiently dense to sustain clouds and vapors, which seldom rise so high as eight miles, and are usually much nearer to the earth than this. So rare does the air become on the top of Mount Chimborazo, in South America, that it is incompetent to support most of the birds that fly near the level of the sea. The condor, a bird which has remarkably long wings, and a light body, is the only bird seen towering above this lofty summit. The transparency of the atmosphere,—a quality so essential to fine views of the starry heavens,—is much increased by containing a large proportion of water, provided it is perfectly dissolved, or in a state of invisible vapor. A country at once hot and humid, like some portions of the torrid zone, presents a much brighter and more beautiful view of the moon and stars, than is seen in cold climates. Before a copious rain, especially in hot weather, when the atmosphere is unusually humid, we sometimes observe the sky to be remarkably resplendent, even in our own latitude. Accordingly, this unusual clearness of the sky, whenthe stars shine with unwonted brilliancy, is regarded as a sign of approaching rain; and when, after the rain is apparently over, the air is remarkably transparent, and distant objects on the earth are seen with uncommon distinctness, while the sky exhibits an unusually deep azure, we may conclude that the serenity is only temporary, and that the rain will probably soon return.
"Great source of day! best image here belowOf thy Creator, ever pouring wide,From world to world, the vital ocean round,On Nature write, with every beam, His praise."—Thomson.
"Great source of day! best image here belowOf thy Creator, ever pouring wide,From world to world, the vital ocean round,On Nature write, with every beam, His praise."—Thomson.
Thesubjects which have occupied the preceding Letters are by no means the most interesting parts of our science. They constitute, indeed, little more than an introduction to our main subject, but comprise such matters as are very necessary to be clearly understood, before one is prepared to enter with profit and delight upon the more sublime and interesting field which now opens before us.
We will begin our survey of the heavenly bodies with thesun, which first claims our homage, as the natural monarch of the skies. The moon will next occupy our attention; then the other bodies which compose the solar system, namely, the planets and comets; and, finally, we shall leave behind this little province in the great empire of Nature, and wing a bolder flight to the fixed stars.
Thedistanceof the sun from the earth is about ninety-five millions of miles. It may perhaps seem incredible to you, that astronomers should be able to determine this fact with any degree of certainty. Some, indeed, not so well informed as yourself, have looked upon the marvellous things that are told respecting thedistances, magnitudes, and velocities, of the heavenly bodies, as attempts of astronomers to impose on the credulity of the world at large; but the certainty and exactness with which the predictions of astronomers are fulfilled, as an eclipse, for example, ought to inspire full confidence in their statements. I can assure you, my dear friend, that the evidence on which these statements are founded is perfectly satisfactory to those whose attainments in the sciences qualify them to understand them; and, so far are astronomers from wishing to impose on the unlearned, by announcing such wonderful discoveries as they have made among the heavenly bodies, no class of men have ever shown a stricter regard and zeal than they for the exact truth, wherever it is attainable.
Ninety-five millions of miles is indeed a vast distance. No human mind is adequate to comprehend it fully; but the nearest approaches we can make towards it are gained by successive efforts of the mind to conceive of great distances, beginning with such as are clearly within our grasp. Let us, then, first take so small a distance as that of the breadth of the Atlantic ocean, and follow, in mind, a ship, as she leaves the port of New York, and, after twenty days' steady sail, reaches Liverpool. Having formed the best idea we are able of this distance, we may then reflect, that it would take a ship, moving constantly at the rate of ten miles per hour, more than a thousand years to reach the sun.
The diameter of the sun is towards a million of miles; or, more exactly, it is eight hundred and eighty-five thousand miles. One hundred and twelve bodies as large as the earth, lying side by side, would be required to reach across the solar disk; and our ship, sailing at the same rate as before, would be ten years in passing over the same space. Immense as is the sun, we can readily understand why it appears no larger than it does, when we reflect, that its distance is still more vast. Even large objects on the earth, when seen on a distant eminence, or over a wide expanse ofwater, dwindle almost to a point. Could we approach nearer and nearer to the sun, it would constantly expand its volume, until finally it would fill the whole vault of heaven. We could, however, approach but little nearer to the sun without being consumed by the intensity of his heat. Whenever we come nearer to any fire, the heat rapidly increases, being four times as great at half the distance, and one hundred times as great at one tenth the distance. This fact is expressed by saying, that the heat increases as the square of the distance decreases. Our globe is situated at such a distance from the sun, as exactly suits the animal and vegetable kingdoms. Were it either much nearer or much more remote, they could not exist, constituted as they are. The intensity of the solar light also follows the same law. Consequently, were we nearer to the sun than we are, its blaze would be insufferable; or, were we much further off, the light would be too dim to serve all the purposes of vision.
The sun is one million four hundred thousand times as large as the earth; but its matter is not more than about one fourth as dense as that of the earth, being only a little heavier than water, while the average density of the earth is more than five times that of water. Still, on account of the immense magnitude of the sun, its entire quantity of matter is three hundred and fifty thousand times as great as that of the earth. Now, the force of gravity in a body is greater, in proportion as its quantity of matter is greater. Consequently, we might suppose, that the weight of a body (weight being nothing else than the measure of the force of gravity) would be increased in the same proportion; or, that a body, which weighs only one pound at the surface of the earth, would weigh three hundred and fifty thousand pounds at the sun. But we must consider, that the attraction exerted by any body is the same as though all the matter were concentrated in the centre. Thus, the attraction exerted by the earth and by the sun is the same as though the entire matter of each body werein its centre. Hence, on account of the vast dimensions of the sun, its surface is one hundred and twelve times further from its centre than the surface of the earth is from its centre; and, since the force of gravity diminishes as the square of the distance increases, that of the sun, exerted on bodies at its surface, is (so far as this cause operates) the square of one hundred and twelve, or twelve thousand five hundred and forty-four times less than that of the earth. If, therefore, we increase the weight of a body three hundred and fifty-four thousand times, in consequence of the greater amount of matter in the sun, and diminish it twelve thousand five hundred and forty-four times, in consequence of the force acting at a greater distance from the body, we shall find that the body would weigh about twenty-eight times more on the sun than on the earth. Hence, a man weighing three hundred pounds would, if conveyed to the surface of the sun, weigh eight thousand four hundred pounds, or nearly three tons and three quarters. A limb of our bodies, weighing forty pounds, would require to lift it a force of one thousand one hundred and twenty pounds, which would be beyond the ordinary power of the muscles. At the surface of the earth, a body falls from rest by the force of gravity, in one second, sixteen and one twelfth feet; but at the surface of the sun, a body would, in the same time, fall through four hundred and forty-eight and seven tenths feet.
Fig. 23.Fig. 23.
The sun turns on his own axis once in a little more than twenty-five days. This fact is known by observing certain dark places seen by the telescope on the sun's disk, calledsolar spots. These are very variable in size and number. Sometimes, the sun's disk, when viewed with a telescope, is quite free from spots, while at other times we may see a dozen or more distinct clusters, each containing a great number of spots, some large and some very minute. Occasionally, a single spot is so large as to be visible to the naked eye, especially when the sun is near the horizon, and the glareof his light is taken off. One measured by Dr. Herschel was no less than fifty thousand miles in diameter. A solar spot usually consists of two parts, thenucleusand theumbra. The nucleus is black, of a very irregular shape, and is subject to great and sudden changes, both in form and size. Spots have sometimes seemed to burst asunder, and to project fragments in different directions. The umbra is a wide margin, of lighter shade, and is often of greater extent than the nucleus. The spots are usually confined to a zone extending across the central regions of the sun, not exceeding sixty degrees in breadth. Fig. 23 exhibits the appearance of the solar spots. As these spots have all a common motion from day to day, across the sun's disk; as they go off at one limb, and, after a certain interval, sometimes come on again on the opposite limb, it is inferred that this apparent motion is imparted to them by an actual revolution of the sun on his own axis. We know that the spots must be in contact, or very nearly so, at least, with the body of the sun, and cannot be bodies revolving around it, which are projected on the solar disk when they are between us and the sun; for, in that case, they would not be so long in view as out of view, as will be evident from inspecting the following diagram. Let S, Fig. 24, page 106, represent the sun, andba body revolving round it in the orbita b c; and let E represent the earth, where, of course, the spectator is situated. The body would be seen projected on the sun only while passing frombtoc, while, throughout the remainder of its orbit, it would be out of view, whereas no such inequality exists in respect to the two periods.