Chapter X.

A far better phrase to express this equivalence of force has been suggested and used by several writers in what is called the "Transmutation of Force." For there is no correlation, or reciprocal relation, between heat as originally produced by the consumption of fuel and the force as engendered in steam before it is transmuted into work. Nor is there any real equivalence as between the two forces after its transmutation. A very large per centage of heat is lost in its transmutation from a latent form in fuel to an active or available form in steam, and a still greater loss in its transmission into work by machinery. Theoretically, there may be such an equivalence as that named, but practically it is impossible to realize it. And a theory that is impossible of realization is of no practical utility in itself, and of little value as the basis of further theory. If, then, the theory of force equivalence is a failure in practical application, it furnishes a very poor basis on which to predicate force-correlation, or the doctrine of reciprocal forces. It is estimated, for instance, that a pound weight falling seven hundred and seventy-two feet, will, in striking the earth, impart to it a degree of heat equivalent to raising one pound of water 1° F. But the heat thus imparted can never be so utilized as to raise a pound weight seven hundred and seventy-two feet into the air.

This shows that there is no actual reciprocity of relationship between the force as originally engendered and finally expended in work. Nor can it be shown that the original force is transmuted or changed into another and different kind of force by the operation. The force generated and the force expended are essentially one and the same, as much so as that transmitted from the power to the weight by means of a rope and pulley. And the quality of the force is not changed, whether the weight be lifted by machinery or the human hand. Force, in its mechanical sense, is that power which produces motion, or an alteration in the direction of motion, and is incapable of being specialized, except in a highly figurative sense, into a thousand and one correlates of motion. But these miscellaneous and figurative forces are not what we are considering. The doctrine of force-correlation takes no such wide and comprehensive sweep. It embraces neither the force of wit, nor the force of folly; but mechanical force and its equivalents. The force exercised by the human hand in lifting a weight either with or without rope and pulley is, in every definitional sense of the word, mechanical force. For the arm and hand are only the implements, or mechanical contrivances of nature, by which the will-power transmutes itself into work, or, more properly speaking, transmits itself from the point of force-generation to that of force-expenditure. And this is precisely the office performed by all mechanical contrivances for the transmission--not transmutation--of force. And the most perfect machine is that which transmits the engendered force, with the least possible waste or abandonment, to its point of ultimate expenditure in work.

All these hypothetical correlates of force, therefore, predicated upon the doctrine of force-transmutation, have no foundation in fact, since the force transmitted from the point of generation to the point of expenditure undergoes no change but that of direction, in its passage along rope, wire, belt, pulley, shafting, etc. A man whose limbs have been paralyzed, may still will to remove mountains. The will-power is the same, but the mechanical contrivances for its transmission are wanting. Of the actual point or centre of this force-generation, in the case of the will-power, we know nothing; but the moment the power is started on its way towards the point of force-expenditure, whether it traverses the nerves and tissues of the brain, or the right arm or the left, or a crowbar or pickaxe, it is in no sense distinguishable from the force that traverses a rope and pulley. Nor is there any evidence that it undergoes molecular changes, or becomes modified or conditioned by any nearly or remotely related force, as it darts along the nerves, runs through the contracted tissues, electrifies the crowbar, or flashes into work from the point of a pickaxe. Whatever produces, or tends to produce, motion, or an alteration in its direction, is mechanical force, no matter from what force-centre it may start. When we can definitely determine the centre of vital force, as exercised in building up vital structure,not in wielding pickaxes, it is to be hoped we shall be able to distinguish, by the proper correlates, vital force from that which is mechanical. But the task is manifestly a hopeless one with the materialists.

Professor Beale positively denies that there are any such physical force-relations as those claimed by the materialists, and asserts that vital force bears no relation, or correlation, to either chemical or physical force; that the one is a distinct and separate factor from the other, and cannot be interpreted in the same force-formulæ. He says: "The idea of motion, or heat, or light, or electricityformingorbuildingup, orconstructingany texture capable of fulfilling a definite purpose, seems absurd, and opposed to all that is known, and yet is the notion continually forced upon us, that vitality, which does construct, is but a correlate of ordinary energy or motion."

But after devoting so much time to "force-correlation," and "force-differentiation," the advocates of "molecular-machinery" may feel themselves neglected if we dismiss their favorite hobby without further notice. The precise parentage of this term is disputed, but it has any number ofputativefathers. We have spoken of the size of the molecules themselves, and the numbers of them that might be huddled together on the point of a cambric needle without jostling. Let us now consider the size of a molecular machine. For each molecule runs its own machine, and is provident enough to see that they do not jostle. In fact, it is a very nice question in physics, whether the machines do not run the molecules, instead of the prevailing opposite opinion that the molecules run the machines. Unfortunately, the question is one that can never be determined. The requisite scientific data will forever be wanting.

But Professor James C. Maxwell, now, or quite recently, filling the chair of experimental physics in the University of Cambridge, England, has furnished us withapproximatecalculations. On the strength of his approximations we will proceed to consider the dimensions of these wonderful little machines. And first, it may be axiomatically laid down that these molecular machines, which either run the molecules or are run by them, can never exceed the size of their respective molecules. Conceding, then, that each one of these machines exactly fits into its own molecule, so as to present identically the same dimensions--as well as their largest possible dimensions--it would require two millions of them, placed in a row, to make one millimetre, or the one three hundred and ninety-four thousandths of an inch in length, or seven hundred and eighty-eight billions of them to make one inch! Who will ever be staggered atSirius-distances, after this? And who will deny that an infinite world lies below the point of our microscopic vision, if not an Infinite kingdom and throne beyond our telescopic glance?

But, following the same high authority in experimental physics, let us consider the aggregate weight of these molecular machines. We will not marshal their aggregate numbers in a row, for an array of forty billions of them would make too insignificant a figure for inspection; but simply give their actual weight as computed under the French or metric system. Take, then, a million million million million of these machines, throwing in molecules and all, and they will weigh, if there is no indiscreet kicking of the beam, just a fraction between four and five grammes, or--to differentiate the weights--a small fraction over one-tenth of an ounce!

But why not get down to the atoms, of which the molecules are only the theoretical congeries, and marshal the "atomic forces" into line? These embryonic atoms are much the braver warriors, and, when summoned to do battle, spring, lithe and light-armed, against the elemental foe. They are no cowardly molecules, these atoms, but make war against Titans, as well as Titanic thrones and powers. The elements recognize them as their body guardsmen, their corps of invincible lancers, their bravest and best soldiers in fight. And they are wholly indifferent as to the legions of molecules arrayed against them, and would as soon hurl a mountain of them into the sea as to sport with a zephyr or caper with the east wind. Why not summon these countless myriads of bright and invincible spearmen, to batter down the walls of this Cretan labyrinth of Life? An army of these would be worth all the molecules that Professor Maxwell could array in line, in a thousand years. No life-problem need remain unsolved with their bright spears to drive the tenebrious mists before them. Even Professor Tyndall's "fog-banks of primordial haze" would be ignominiously scattered in flight before these atomic legions. Let our materialistic friends summon them, then, to their aid. The field of controversy will never be won by their molecular "Hessians." The ineffably bright lancers that stand guard over the elemental hosts are the light brigade with which to rout the vitalistic enemy. Advance them then to the front, and, beneath the shadowy wing of pestilence or some other appalling ensign of destruction, the abashed vital squadrons will flee in dismay.

But let us pass from scientific speculations to alleged scientific facts. In a paper read by Dr. Hughes Bennett before the Royal Society of Edinburgh, in 1861, its author says: "The first step, in the process of organic formation, is the production of an organic fluid; the second, the precipitation of organic molecules, from which, according to the molecular law of growth, all other textures are derived either directly or indirectly." Here again the molecules, and not the elementary atoms, are advanced to the front, and not a little anxiety is shown, in a definitional way, to identify vital processes of growth with crystalline processes of formation. But Dr. Bennett entirely mistakes, as well as misstates, the process of vital development, if he does not overlook the law governing the formation of crystals. There can be no symmetrically arranged solids in an inorganic fluid without the presence of some law, or principle, definitely determining, not the "precipitation," but the "formation," of crystals. The inorganic particles are not precipitated or thrown downward, any more than they are sublevated or thrown upward. The process is one of formation, not precipitation. Every crystallographer, not hampered by materialistic views and anti-vital theories, admits the presence of a fixed and determinate law governing each crystalline system, whatever may be the homologous parts or the unequal axes it represents.

And so of the equally undeviating law of vital growth. Life comes from no mere "precipitation of organic molecules," as Dr. Bennett would have us believe. If so, what is it that precipitates the molecules? They can hardly be said to precipitate themselves. To precipitate, in a chemical sense, is to be thrown down, or caused to be thrown down, as a substance from its solution. What, then, causes the molecules to be thus precipitously thrown down from a fluid to a solid, or a semi-solid, state? It cannot be from any blind or inconsiderate haste on the part of the molecules themselves. There must be some independent principle, or law of nature--one presupposing an intelligent law-giver--to effect the "precipitating process," if any such really exists.

But it does not exist. The first step is one of development and growth--the manifestation of functional activity--the building up of organic or cellular tissue. The exact process, in the case of seed-bearing plants and trees, is well known. All those familiar with the characteristic differences of seeds, their chemical constituents, their tegumentary coverings, rudimentary parts, etc., thoroughly understand the process in its outward manifestation. There is no precipitation of molecules as in an organic fluid, unless the albumen lying between the embryo and testa of the seeds, and constituting the nutriment on which the plant feeds during its primary stages of growth, can be called a fluid. It throws none of its characteristic ingredients downward any more than upward. Indeed the greater tendency of its molecules is upward rather than downward, in the "molecular processes" (vital ones) by which the embryonic cell is started upon its career of plant-life. The celebrated Dr. Liebig says of this albuminous environment: "It is the foundation, the starting-point, of the whole series of peculiar tissues which constitute those organs which are the seat of all vital actions." In the case of animal life, this albumen abounds in the serum of the blood, enters largely into the chyle and lymph, goes to build up the tissues and muscles, and is the chief ingredient of the nerves, glands, and even the brain itself. And in all these developmental stages, its tendency is to coagulate rather than precipitate. In its coagulated condition, it dries to a hard, partially translucent and friable state, and is more or less insoluble in water, and entirely so at a temperature from 140° to 160° F.

When the seed is planted or placed in water, it first commences to swell from the absorption of the water or moisture of the ground by the pores of its external covering, the favorable temperature being from 60° to 80° F. It gradually expands until its outer membranes burst, and its initial rootlets clasp their hold upon the earth. From this point its several stages of development are well known to the ordinary observer. Here the first step is absorption and expansion, not precipitation. There is also a change in chemical conditions, the water at least being decomposed. For it would seem to be a law of vegetal growth that reproduction should begin in decomposition and decay. The Apostle's description of the "death of the grain," as symbolizing the death of man, in his first Epistle to the Corinthians, points conclusively in this direction. It is in the decomposition and decay of the grain that the implanted germ is quickened into life--ascends into the bright light, the warm sunshine, the refreshing presence of showers and dews. In this way it fulfils its providential purpose of yielding to the sower the more munificent life which he is forever seeking to attain.

Its germination is the springing up of the inner living principle of the grain, not its outer envelope or dead husk. This disappears in decay, except the small nutrient portion within which the germinal principle of life would seem to reside, and which undergoes a thorough chemical change in the process of passing from death unto life, or being assimilated and taken up into the new living structure. The Apostle's comparison distinctly marks these several changes as the one process of passing from death unto life. He saw in this wonderful provision of nature, the still more wonderful prevision of God. To his mind it was over the debris of the dead past that the living present is constantly marching towards a higher and more perfect life--the ultimate fruition and joy of an eternal home in the skies! And he saw that the two grand instrumentalities and co-accessory agencies to this end, were Life and Death, both equally constant and active, like all the other instrumentalities and governing agencies of the universe. Life is forever unlocking the portals of the present to youth and vigor; Death is forever closing them to age and decrepitude. This divine prevision thus becomes the wisest and most beneficent provision. Without life there would be no such thing as death, and without death no such thing as this grand succession and march of life--this passing from out the Shadow into the Day.

Granting that the assumption of Darwinism rests, as claimed, on the fixed and inflexible adaptation of means to ends, in the diversified yet measurably specialized processes of nature, there is no logical deduction to be drawn therefrom but that which traces the representatives of all the great types of the animal kingdom to one single source, and that not the Sovereign Intelligence of the Universe, but a mere "ovule in protoplasm," or what may be defined, in its unaggregated form, as an inconceivably small whirligig, having motion on a central axis, but whether an independent motion of its own, or one derived from an Infinite Intelligence, the Darwinian systematizers are not bold enough to aver. They have too manya prioriscruples either to assert the one proposition or to deny the other. What set this little whirligig in motion is a mystery that lies beyond the purview of science, so called, and into the depths of this infinitessimal and most mysterious little chamber they refuse to go.

They search not for the evidence of an Infinite Intelligence in the outermost circle of the heavens where the highest is to be found, and where a bound is set that we may not pass, but shutting their eyes to all the grander evidences of such an Intelligence, they dive down into the infinitessimal realm of nature and assume to dig out the sublimer secrets of the universe there. And this is their grand discovery: That this infinitessimal whirligig of theirs has not only whirled man into existence, but the entire circle of the heavens, with the innumerable host of stars that march therein, and all the boundless systems of worlds that roll in space. With this subordination of the Infinite to the infinitessimal, of intelligence to insensate matter, of divine energy, so to speak, to blind molecular force, they are satisfied; and, like the mole in the fable, conceive their little molecule to be the only possible creator of a stupendous universe.

Scrutinize my propositions closely, and see if I am guilty of misstating theirs. Their new theory is only a slight modification of an old one, or the old adage,omne vivum ex ovo--all life is from an egg. For they assert that every living thing primordially proceeds from an ovule in protoplasm, the essential part of the protoplasmic egg, so to speak, being this littleovumor cellule, from which have issued all possible organisms in both the vegetable and animal kingdoms. Nor is this theory essentially confined to organic matter. A scientific coördination of its several known parts, or alleged functions, extends the operations of this infinitessimal whirligig to the plastic or uniformly diffused state of all matter, from which has been evolved, in an infinite duration of past time, not only life in its highest manifestations, but a universe so stupendously grand that no amount of human intelligence can grasp the first conception of it.

Mr. Emerson--our Ralph Waldo--virtually accepts this theory of development, substituting, however, a stomach for an ovule, and the reverse of the Darwinian proposition, in what he is pleased to call "the incessant opposition of nature to everything hurtful." It is not the "selection of the fittest" but the "rejection of the unfit," by which "a beneficent necessity (I use his language) is always bringing things right." "It is in the stomach of plants," he says, "that development begins, and ends in the circles of the universe." "'Tis a long way," he admits, "from the gorilla to the gentleman--from the gorilla to Plato, Newton, Shakespeare--to the sanctities of religion, the refinements of legislation, the summits of science, art, poetry."

Few persons, I take it, will dispute this proposition. The road is a long one and beset with all sorts of thorns and briars, such as Mr. Emerson's philosophy will hardly eradicate from the wayside. Even the most refined empiricism will find it difficult to stomach his stomachic theory of the universe, which lands all atomic or corpuscular philosophy in a digestive sac, such as Jack Falstaff bore about him with its measureless capacity for potations and Eastcheap fare. It is a road too in which Mr. Emerson's philosophy will get many sharp raps from an external world of phenomena, in the futility of both his and the Darwinian hypothesis to explain away the independent origination of certain species of plants and animals--new varieties still springing into existence, under favorable conditions, in obedience to the divine fiat, "Let the earth bring forth."

In laying the foundations of this new science, if science it shall be called, we must insist that the course of nature is uniform, and that, however extended our generalizations in any one of her lines of uniformity, all intermediate, as well as ultimate propositions, must not only be stated with the utmost scientific accuracy, but the logical deductions therefrom must also be uniform, or lie in the path of uniformity. The earliest and latest inductions must either coincide or approximate the same end. No links must be broken, no chasms bridged, in the scientific series. There must be a distinct and separate link connecting each preceding and each succeeding one in the chain. The lowest known mammal must be found in immediate relationship with his higher congener or brother, not in any remote cousinship. There must be no saltatory progress--no leaping over intermediate steps or degrees. The heights of science are not to be scaledper saltum, except as degrees may sometimes be conferred by our universities.[35]

There are some fish-like animals, say our Darwinian systematizers, like the Lepidosirens and their congeners, with the characteristics of amphibians; and hence they infer that by successive deviations and improvements the lower order has risen into the higher. But out of what page in the volume of nature, in the countless leaves we have turned back, has the immediate congener dropped, that we are obliged to look for the relationship in thirty-fourth cousins? We might as well say that some of theInfusoriapossess the same or similar characteristics, and predicate relationship between them and the amphibians; for giants sometimes spring from dwarfs and dwarfs from giants. At all events, our diagnoses must be freed from these intermediate breaks or failures in the chain of continuity, or the doctrine of descent must tumble with the imaginary foundations on which it is built. And bear in mind that the most enthusiastic Darwinist is forced to admit that there are still rigid partitions between the lower and higher organisms that have not been pierced by the light of scientific truth, but they assume that future discoveries and investigations will solve the difficulty. But science, inflexible as she is, or ought to be, in her demands, admits of no assumptions, much less sanctions such exceptions and deviations as we constantly find in the Darwinian path of continuity. The eye of imagination can supply nothing to her vision. She is eagle-eyed, and soars into the bright empyrean--does not dive into quagmires and the slime of creation after truth.

But let us see how Mr. Darwin bridges one of the very first chasms he meets with in constructing his chain of generation. He goes back to the first link, or to what he calls primordial generation. Here the leap is from inorganic matter to the lowest form of organic life--from inanimate to animate dust. The chasm is immense, as all will agree. But he bridges it by falling back on his infinitessimal whirligig--hisprimum mobile--or on the motions of elements as yet inaccessible, except to the eye of imagination. For even Plato's monad, or ultimate atom, was not matter itself, being indivisible, but rather a formal unit or primary constituent of matter, which, like Mr. Darwin's whirligig in its unaggregated form, admits of neither a maximum nor a minimum of comprehension; but rests entirely on imaginary hypothesis. And we may here add that a system which begins in imaginary hypotheses and ends in them--as that of bridging the chasmal difference between a gorilla and a Plato--can be dignified into a science only by a still greater stretch of the imagination--that of bridging the difference between the Darwinian zero and his ninety degrees of development in a Darwin himself!

Bear in mind, as we proceed, that the function of an argument in philosophy, as in logic, is to prove that a certain relation exists between two concepts or objects of thought, when that relation is not self-evident. In the Darwinian chain we have, as the first link, organic life springing from inorganic matter, without the slightest relation existing between the two, except what may be universally predicated of matter itself, whether animate or inanimate, organic or inorganic; and there is no other affirmative premise, expressing their agreement as extremes, that can possibly admit of an affirmative conclusion. The parts are so separated in thought that no metaphysical or ideal distinction exists to coordinate them in classification. We are simply forced back, in our attempt at classification, upon the intuitions of consciousness, where reason manifestly ceases to enforce its inductions.

And here the human mind intuitively springs an objection which is at once aimed at the very citadel of Darwinism. On what rests the validity of these intuitions except it be that "breath of life," which, as we have before said, was breathed into man when he became a living soul? If we follow the divine record, instead of these blind systematizers leading the blind, we shall have no difficulty in establishing the validity of these intuitions--the highest potential factors this side of Deity to be found anywhere in the universe. For if our intuitions are not to be relied upon--if their objects and perceptions are to be discarded as unreliable--then there can be no agreement or disagreement between any two ideas presented, objectively or subjectively, to the human mind. No processes of mental analysis or ratiocination, like those pursued in the elementary methods of Euclid, can present the basis of an intellectual judgment, or lay the foundation of the slightest faith or belief in the world. To deny the primary perception of truth by intuition is as fatal to "Evolution" as to the sublimer teachings of the Bible Genesis.

But from the very nature of our being, as well as the primarydatumof consciousness itself, we must rest the validity of these intuitions on something, and that, something more than a finite intelligence; and since science, with all her knowledge methodically digested and arranged, furnishes no clue to the mystery, we are left to the higher sources of inspiration to reach it. And this inspiration, however it may be derived, necessarily becomes a part of our intuitions, since it addresses itself to the strongest possible cravings of the human soul, and is accepted as its inseparable companion and guest.

Shall we build our faith then on the Divine Word,--on the Word that was in the beginning with God, and, when incarnate,wasGod,--or on Mr. Darwin's little whirligig that originally set everything in motion, and has only to go onad infinitumto whirl us out a God, as it has already whirled us out a Darwinian universe without one. For if this ovulistic whirligig has bridged the chasmal difference between protoplasm and man, since the transition from inorganic matter to organic life, the process has only to be indefinitely extended to bridge the chasm between man and Deity, or between finite and infinite intelligence. This gives us nature evolving a God, instead of the doctrine of the old Theogonies, of a God presiding from all eternity over nature; one "who laid the foundations of the earth that it should not be removed forever; who stretchest out the heavens like a curtain; who layeth the beams of his chambers in the waters; who maketh his angels spirits; his ministers a flaming fire."

These evolutionists manifestly get the cart before the horse in their category of cosmological events. It is not inert matter organizing itself into life, nor any mode of physical or chemical action, nor any mere manifestation of motion or of heat, nor any other conceivable correlation of natural forces. None of these has enabled us to penetrate the mysteriousinner-chamberof life itself. For reasons obviously connected with our own welfare, He, from whom alone are "the issues of life," seems to have ordained that we should fathom the depths of both physical and chemical force, and beneficently wield and direct them to our own uses. But this vital force; this something that stands apart from and is essentially different from all other kinds of force, is of a nature that baffles all our efforts to approach. The power to grasp it, or even to penetrate in the slightest degree its mysteries, is delegated to none. All attempts to lay bare this principle of vitality, or level the barriers that separate it from physical or chemical action, have utterly failed. We know no more of its essence now than was known a thousand years ago, and know no less than will be known a thousand years hence. To become masters of the mystery, we must enter the impenetrable veil within which the Infinite Intelligence of the universe presides,--who, we are told, "sendeth forth his spirit, and we are created, who taketh away our breath, we die and return to our dust." [36] We are just as much bewildered in respect to this vital principle in our classifications of the myriads of little creatures careering over the field of the microscope, as when we turn to the most marked formations of genera and species in geological distribution. The great trouble with Mr. Darwin'svinculumis, that its weakest links are precisely where the strongest should be found, andvice versa. With a candor rarely displayed by a writer who is spinning a theory, he admits this. The geological record is not what he would have it to be. Whole chapters are gone where they are most needed, and nature's lithography seems constantly at fault. Independent species are now and then springing up where derivatives should be looked for, while derivatives are everywhere disappearing in non-derivatives. Many of the middle Tertiarymolusca, and a large proportion of the later Tertiary period, are specifically identical with the living species, of to-day. What has "natural selection" been doing for this family in the last million years or more? Manifestly nothing, and less than nothing, for some of the species have dropped out altogether.

These facts, and hundreds of others like them, are constantly obtruding themselves upon our attention to show, in harmony with the Bible Genesis, the immutability of species--the absolute fixity of types--rather than their variability, as claimed. If nature abhors anything more than avacuum, it is manifestly any marked transition from fixed types, and she thunders her edicts against it in the non-fertility of all hybrids. The doctrine of variation lacks the all-essential element of continuity, and is oftener at war with the theory of the "selection of the fittest," than it is with the selection of the "unfit." The leap from Lepidosirens to Amphibians is no greater than the interval between any two species of animals or plants yet discovered, either fossil or living. The intervals are as numerous as the species themselves, and everywhere constitute great and sudden leaps, or such transitional changes as "natural selection" could not have effected independently of intervening forms--those that nowhere exist in nature, and never have existed, if we are to credit geologic and paleontologic records. There is everywhere similarity of structure, but not identity; and the nearer we approach to identity of structure the wider the divergence in similarity of characteristics. A bird may be taught to talk and sing snatches of music. But no monkey has ever been able to articulate human sounds, much less give them rhythmical utterance.

Take the case of the wild pigeon, a subject that especially delights Mr. Darwin. Most of the deviations are confined to the domesticated breeds, and none of these rank in strength, hardiness, capability of flight, or symmetry of structure, with the wild or typical bird. There are well-defined deviations, but no sensible improvements, except to the eye of the bird-fancier. The deviations are simply entailed weaknesses, or the very reverse of what should appear from the "selection of the fittest." The fact undeniably is, that these variations are almost wholly abnormal--mere exaggerated characteristics, induced in the first instance, perhaps, by high cultivation and close in-and-in breeding.

Turn these abnormal varieties loose, let them go back to the aboriginal stock, and these characteristics will rapidly disappear; that is, they will ultimately lose themselves or melt away in the original type. Mr. Darwin admits that the tendency will be to reversion, but he insists, manifestly without any positive proof therefor, that the greater tendency is to new centres of attraction, and not necessarily the primitive one. But this is mere assumption--sheer begging the question on his part,--since all the oscillations are incontestibly about the original or type centre.

The same may be said of the typical races of men, like the negro and wild Indian of our prairies. You may lift them out of their primitive condition--temporarily suspend, if you please so to put it, their primordial attraction,--but, left again to themselves, they will go back to the original type; that is, their offspring will again infest the jungles and roam their native hunting-grounds. The process here is the very reverse of the Darwinian theory. Reversion, as a rule, follows the degeneracy of types, instead of there being any favorable homogeneous result, springing from a new centre of attraction. The Indian makes a splendid savage, but a very poor white man. Think of Red Jacket taking the part of Mercutio in the play or enacting the more valiantroleof Falstaff in King Henry the Fourth. An infusion of white blood does not help the matter, but rather makes it worse. Generally, the meanest Indian on the continent is your half-breed, and among the negroes there is no term so expressive of the contempt of that race, as that applied by them to a mulatto. The present condition of Mexico affords a striking exemplification of this law of reversion. The inheritable characteristics or variations, produced from an infusion of Spanish blood, are rapidly disappearing--the native blood whipping out the European. The potency is in the inferior blood, simply because it is the predominating one. The result has been no homogeneous new race, but a reversion, now manifestly in progress, to the type centre or aboriginal stock. And the curse pronounced by Ezekiel upon mongrel tribes--"woe unto the mingled peoples" may have a significance in this connection worth considering; but it manifestly falls outside the scope of our present inquiry.

In considering the embryological structure of man, and the homologies he therein presents to the lower animals, Mr. Darwin thus conclusively (in his judgment) remarks: "We thus learn that man is descended from a hairy quadruped, furnished with a tail and pointed ears, probably arboreal in his habits, and an inhabitant of the Old World."

But Mr. Darwin's pronominal "we," in this connection, admits of qualification. He can hardly speak for all the scientific world at once. The philosophical maxim of Sir Isaac Newton--hypotheses non fingo--I build no hypotheses, make no suppositions, but adhere to facts--has a few followers still left. But what are Mr. Darwin's facts? Has he yet discovered the caudal man, except as the ever-fertile Mr. Stanley heard of one in Africa? And where is his monkey that first lost the prehensile power to climb trees? For bear in mind that it was the loss of this prehensile power that resulted in the caudal atrophy of our monkey progenitors,who became men simply because they were tailless monkeys!They had lost their power to climb trees, and accordingly had no longer any use for tails to let themselves down from the limbs. A "beneficent necessity" therefore, according to Mr. Emerson, dropped the tail as something decidedly "unfit." For the simplest tyro in Darwinian philosophy will see that the loss of the Catarrhine monkey's tail, if it ever occurred, could not have resulted from the "selection of the fittest." The deeper Emersonian philosophy of the "rejection of the unfit," affords the only solution of the difficulty, and then only on the assumption that the tail is an unfit appendage for the monkey.

With the loss of his tail, in the light of this new genesis, the monkey necessarily ceased to be arboreal in his habits. He could no longer subsist on the fruits and nuts of trees, or take refuge therein from his enemies. He had to go to work and make weapons to defend himself--to construct tools--make and set traps, live on his wits, and not on his prehensile power to climb trees. He soon discovered, of course, that the longest pole knocked the persimmon. This was his first intellectual stride towards the future Edison. From the simplest sort of Grahamitic philosopher he passed into the robust, beef-eating Englishman. But this was not all. As an arboreal gymnast, he was manifestly on his way to more masterly feats of agility than ever,--those dependent, not on muscular function, but on the nervous action of the brain and spinal marrow. Necessity became with him the "mother of invention," and how admirably he improved under this maternal instructor we are left to infer from the paramount conclusion of Mr. Darwin,that the demoralized monkey became the incipient man!

But this conclusively accounts for only one of the many anatomical differences between man and his caudal progenitor. For why should the loss of his tail have resulted in the changed chemistry of the monkey's brain? or in the increased involutions of his brain even? The specific differences between the present and ancestral types are very numerous and demand separate classification. Their variability runs through every bone, muscle, tissue, fibre, nerve. Their blood corpuscles are not the same. The chemistry of their bones essentially differs. The nerves are differently bundled and differently strung. In intonations of voice--symmetry of arms, legs, chest--hairlessness of body, and aquatic and land habits, the frog is a much nearer approach to man than the monkey, as all caricaturists, delineating aldermanic proportions, will agree. And Mr. Darwin might have immortalized himself by deriving the builders of the ancient pile-habitations and other primitive water-rats and croakers of the Swiss lakes, from this tailless batrachian. For everybody knows, or thinks he knows, how the frog lost his tail. If he didn't wag it off, he certainly absorbed its waggishness as a distinguishing characteristic of the "coming man"--the future Artemas Wards and Mark Twains of the race. This ancestral origin will also account for the otherwise unaccountable proclivity of all human juveniles to play at the game of leap-frog! Besides, it would have relieved Mr. Darwin from one of the greatest perplexities he has had to encounter. As he derives man from a hairy quadruped, the absence of hair on the human body, is a phenomenal fact that gives him great trouble. He agrees that it does not result from "natural selection," as he says "the loss of hair is an inconvenience and probably an injury to man." Nor does he suppose it to result from what he calls "correlated development." He is more puzzled over this problem of divestiture than any other, and finds the solution of it only in "sexual selection." That is, he assumes that among our semi-human progenitors, far back in the Tertiary or some other period, some female monkeys were less hirsute than others, and that they naturally preferred males possessing similar characteristics. These divergencies were thus commenced, and, by continuous "sexual selection," the infirmity (for such he regards the loss of hair) was propagated until the race was almost entirely denuded or bereft of this covering. In the same way he accounts for nearly all the differentiations of the race, among the various tribes now or formerly inhabiting the earth. All have sprung from the same semi-human progenitors--apes that lost their capacity to subsist as apes, and hence found it necessary to subsist as men!

The law of degeneracy has, therefore, had quite as much to do with human origins as that of progressive development. In fact, it is the paramount law from a Darwinian stand-point. For the loss of hair and of the prehensile power to climb trees are both conceded by Mr. Darwin to be serious defects and drawbacks in the ape family.

But the law of sexual selection, as treated by the evolutionists, is not scientifically accurate, nor is it true in fact. The loving tendency of nature is to opposites, not likes. The positive and negative poles are those that play into each other with most marvellous effect. Each repels its like and rushes to the embrace of its opposite. Extremes lovingly meet everywhere. A brunette selects a blonde and a blonde a brunette, as a general rule in matrimony. A tall man or woman, with rare exceptions, chooses a short companion for life. Dark eyes delight in those that are light, andvice-versa. Everywhere nature seeks diversity, not similitude. The gayest and brightest feathered songster craves companionship in modest and unobtrusive colors. Diversity is the law of life, as equality, or versimilitude, is that of death. Neither natural selection, nor sexual selection, runs counter to this law. If Mr. Darwin's theory were true, that likes selected likes, then the two marked extremes which should have characterized the race, soon after its emergence from the semi-human state, should have been giants and pigmies, Gargantuas and Lilliputs. Otherwise "sexual selection," as treated by its author, plays no intelligible part in the economy of nature, except to counterbalance variability, not to propagate it.

But the Darwinian assumption that the primeval man, or his immediate ape-like progenitor, came through "natural selection," that is, through the "survival of the fittest," is subject to one or two other objections which we shall briefly notice. And the first objection is not altogether a technical one. The term "fittest," as applied to a monkey, has at once a definite and comprehensive significance to us. It implies the presence of whatever is most perfect of its kind in the monkeyasa monkey, and not in the monkeyassomething else than a monkey. They are all admirably adapted for climbing trees; and it is this adaptation that secures them safety, or complete immunity, in shelter from their enemies. To say that nature selects the fittest for them--for any species of monkey--by converting their forefeet into rudimentary hands, with a loss of prehension and no corresponding advantages in locomotion, is to use language without any appreciable significance to us. We can only say that what is fittest for the monkey is ill-fitted for man, and the reverse. This is all we can definitely predicate of them, from what we know of their anatomical structure, and the diversified uses to which it may be put.

The fact is, as the Bible genesis shows, that every living thing is perfect of its kind, and whatever is perfect admits of no Darwinian variations or improvements for the better. And the simple statement of this undeniable proposition is, we submit, a complete refutation of Darwinism. When the waters and the earth were commanded to bring forth abundantly of every living creature and every living thing, "it was so, and God saw that it was good," that is, everything perfect of its kind, and in its kind. With this single limitation as to kind, a rattlesnake is no less perfect than a Plato or a John Howard.

When we consider man's upright position; the firmness and steadiness with which he plants his foot upon the earth; when we examine the mechanism of his hand, and the wonderful and almost unlimited range it possesses for diversified use; when we see how ill-fitted he is for climbing trees, yet how express and admirable for climbing among the stars, even to the outermost milky-way, the idea that what is fittest for him is fit for the chattering monkey, is too absurd to give us pause. And yet how does Mr. Darwin know that the monkey has been climbing up, all these hundred thousand or million years, into man, as one of the congenital freaks of nature, and not man shambling down into the monkey as a reverse congenital freak. Children have sometimes been born with a singular resemblance to the ape family, but no ape has ever, to Mr. Darwin's knowledge, produced issue more manlike than itself. The divergencies run the wrong way to meet the conditions of the development theory. We have had nearly five thousand years in which to mark these transitional changes, and yet the monkey of to-day is identical with that painted on the walls of ancient Meroe. In all this time he has made no advance in the genetic relation; and if we turn back the lithographic pages of nature for a hundred times five thousand years, we shall find no essential departure from aboriginal types.

But the Darwinian hypothesis admits of a more conclusive answer than we have yet given. Past time, it will be conceded, is theoretically if not actually infinite; and in all past time, nature has been tugging away at Mr. Darwin's problem of the "survival of the fittest." It is no two hundred and fifty thousand years, nor two hundred and fifty millions, but an infinite duration of past time that covers the period in which she has been wrestling with this problem. How successfully has she solved it? In the Darwinian sense of the term "fittest," she has not so much as stated her first equation or extracted the root of her first power. She is manifestly as much puzzled over the problem as Mr. Darwin himself. He fails to see that the "survival of the fittest," necessarily implies, or carries with it, the correlative proposition,--the "non-survival of the unfit." And when such a law has been operative for an infinite duration of past time, the "unfit," however infinitely distributed at first, should have disappeared altogether, many thousands, if not millions, of years ago. If the evolutionists are dealing with vast problems, and assigning to nature, unlimited factors to express the totality of her unerring operations, they must be careful to limit the time in which any one of her given labors is to be accomplished. If she makes any progress at all, an infinite duration of past time should enable her to complete her work just as effectually as an infinite duration of time to come.

But by what law of "natural selection," appertaining to a single pair of old world monkeys, have their offspring advanced to this regal state of manhood, while all other pairs have remained stationary, or precisely where they were two hundred and fifty thousand years ago or more? Why this exceptional divergence in the case of a single pair of monkeys? Why this anomalous, aberrant, and thoroughly eccentric movement on the part of nature? We had supposed that her operations were uniform--conformable to fixed laws of movement. The doctrine of the "survival of the fittest" implies this. Why then, should nature, in her unerring operations, have selected the fittest in respect to a single pair of Catarrhine monkeys, and at the same time rejected the fittest in the case of a million other pairs? If she had selected only the fittest in respect to this old world stock of monkeys, the entire Catarrhine family should have disappeared in the next higher or fitter group--a group nowhere to be found in geological distribution. The break between man and this Catarrhine monkey covers quite a series of links in the genetic vinculum;[37] and yet between the two we find no high form of a low type fitting into a low form of a high type, as we manifestly should, to account for all the diversified changes that must have taken place in the interim. And what is true of the types is measurably true of the classes within the types, as well as of the orders within the classes. Wide deviations in forms, as in characteristics, would seem to be the invariable rule; the blending of type into type, except perhaps in remote relationships, is nowhere visible.

But if "variation" and "natural selection" have played important parts in the economy of nature, why may not "specific creation" have playeditspart also? Positive science can hardly flatter itself with the belief that it is rolling back the mystery of the universe to a point beyond which "specific creation" might not have commenced, or the divine fiat been put forth. To believe in the possibility of a rational synthesis, limited to sensible experience, or phenomenal facts within our reach, that shall climb from law to law, or from concrete fact to abstract conception, until it shall reach theUltima Thuleof all law, is to carry the faith of the scientist beyond the most transcendental belief of the theologian, and make him a greater dupe to his illusions than was ever cloistered in a monastery or affected austerity therein as a balm to the flesh. We may substitute new dogmatisms for old ones, but we can never postulate a principle that shall make the general laws of nature any less mysterious than the partial or exceptional, or that shall in the long run, render "natural selection" any more comprehensible, or acceptable to the rational intuition, than "specific creation." For while one class of scientists is climbing the ladder of synthesis, by assigning a reason for a higher law that may be predicated of a lower, we shall find the broader and more analytical mind accepting the higher mystery for the lower, and, by divesting its faith of all metaphysical incumbrance, landing in the belief of an all-encompassing law, which shall comprehend the entire assemblage of known laws and facts in the universe. And the natural drift of the human mind is ever towards this abstract conception--this one all-encompassing law of the universe. It steadily speculates in this direction, and some of the highest triumphs of our age, in physical as well as metaphysical science, are measurably due to this tendency. The scientific mind is not confined wholly to experimental research. It is stimulated to higher contemplations, and is constantly disposed to make larger and more comprehensive groupings of analogous facts. It is fast coming to regard light, heat, electricity, magnetism, gravitation, chemical affinity, molecular force, and even Mr. Darwin's little whirligig, as only so many manifestations or expressions of one and the same force in the universe--that ultimate, all-encompassing, divine force (not to speak unscientifically) that upholds the order of the heavens, "binds the sweet influences of the Pleiades, brings forth Mazzaroth in his season, and guides Arcturus with his suns."

It is the boast of the Darwinian systematizers that their development theory not only harmonizes with, but admirably supplements and out-rounds the grander speculation of Laplace, termed the "Nebular Hypothesis," which regards the universe as having originally consisted of uniformly diffused matter, filling all space, which subsequently became aggregated by gravitation, much after the manner of Mr. Darwin's little whirligig, into an infinite number of sun-systems, occupying inconceivably vast areas in space. Of the correctness of this hypothesis it is unnecessary to speak. It is to the Darwinian speculation what the infinite is to the infinitessimal, and we only refer to it to bring out the vastness of the conception as compared to the latter theory, and to predicate thereon the more conclusive induction that an Infinite Intelligence directs and superintends all.

In an area in the Milky-way not exceeding one-tenth of the moon's disc, Mr. Herschel computes the number of stars at not less than twenty thousand, with clusters of nebulae lying still beyond. As we know that no bodies shining by reflected light could be visible at such enormous distances, we are left to conclude that each of these twinkling points is a sun, dispensing light and heat to probably as many planets as hold their courses about the central orb in our own system. From the superior magnitude of many of the stars, as compared with the sun, we may reasonably infer that many of these vast sun-systems occupy a much larger field in space than our own. This would give an area in space of not less than six thousand millions of miles as the field occupied by each of these sun-systems. And as the distance between each of these systems and its nearest neighbor is probably not less than that of our sun from the nearest star, we have the enormous and inconceivable distance of not less than nineteen billions of miles separating each one of these twenty thousand stars or sun-systems, occupying a space in the heavens apparently no bigger than a man's hand. And yet Infinity, as we apprehend the term, lies beyond this vast cluster of constellated worlds! Where is Mr. Darwin's little whirligig in the comparison, or Mr. Emerson's vegetal stomach, or Mr. Herbert Spencer's "potential factors," to express the sum-total of all this totality,--this gigantic assemblage of stars clustered about a single point in the Milky-way? The human mind absolutely reels--staggers bewildered and amazed--under the load of conceptions imposed by these few twinkling stars, and is ready to exclaim,--

"Oh, star-eyed Science, hast thou wandered there,To waft us back a message of despair?"

"Oh, star-eyed Science, hast thou wandered there,To waft us back a message of despair?"

But when we reflect that all this vast aggregation of sun systems, visible in the telescopic field, is not stationary, but is revolving with inconceivable rapidity about some unknown and infinitely remote centre of the universe, how immeasurably vast does the conception become, and how unutterably puerile and fatuous the thought ofMr. Darwin's little whirligig as the author of it all!No wonder the inspired Psalmist exclaims; "The heavens declare the glory of God, and the firmament showeth his handiwork." But listen to the Darwinian exclamation: "The heavens declare the glory of my little whirligig, and the firmament showeth the immensity of my little ovules." With the veil of faith and inspiration lifted, the words of the Psalmist swell into the highest cherubic anthem, while those of Mr. Darwin hardly rise above the squeak of a mole burrowing beneath the glebe!

And what presumptuous mortal shall say that this infinitely remote centre of the universe, around which revolves this infinite number of sun-systems, is not the seat and throne of the Infinite One himself--the Sovereign Intelligence and Power of the universe, directing and upholding all? We know that some of the stars are travelling about this central point of the heavens at a pace exceeding 194,000 miles an hour, or with nearly three times the rapidity of our earth in its orbit. That there must be infinite power, not physical, at this unknown centre of the universe, to hold these myriads of sun-systems in their courses, is a logical induction as irrefragable as that the sun holds his planets in their orbits. And if infinite power is predicable upon this central point, why not infinite intelligence also? Intelligence, we know, controls and utilizes all power in this world; why not all power in the universe? It can utilize every drop of water that thunders down Niagara to-day, as it has already seized upon the lightnings of heaven to make them our post-boy. This is what finite intelligence--that insignificant factor that science would eliminate from the universe--can do; then what may not Infinite Intelligence accomplish?

But the Darwinian systematizers object that science must limit itself to a coordination of the known relations of things in the universe, or deal only with phenomenal facts, not dogmatisms; forgetting that they dogmatize quite as extensively, in constructing their chain of generation, as the theologians do in adhering to the Bible genesis. No theologian objects to a rational synthesis of phenomena, limited to sensible experience; but, in climbing from law to law, he reasonably enough insists, that, when concrete facts rise into abstract conceptions, the highest round in the ladder shall not be knocked out for the accommodation of Robert G. Ingersoll or any other boasted descendant of a gorilla. And he also insists that whena priorispeculation is lost in abstract conceptions, the highest must necessarily press alone upon the intuitions of consciousness, where all generalizations cease, and all synthesis is undeniably at an end. Here, in this mysterious chamber of the soul, we stand silent and alone, with only dim and shadowy phantoms about us, as if in the august presence of Deity itself.

But how does scientific speculation propose to stifle these intuitions of consciousness--reduce them to the least of all potential factors in the universe? We will take the very latest of these speculations. In supplementing both the Darwinian theory and the grander speculation of Laplace, the scientists, so called, tell us that the process of aggregation, or the turning out of new worlds in the universe, is still going on; but that the time is coming when all the primeval potency or energy, originally inhering in diffused matter, will have exhausted itself in actual energy, and that then all light, life and motion in the universe, will cease and be at an end. This dissipation of potential energy is to result, they say, in a played-out universe, as it has already resulted, they claim, in a played-out moon, if not countless other heavenly bodies.[38] All the exterior planets, or a majority of them at least, are to be placed in this category of dismantled worlds, or those in which all life has hopelessly ceased and become extinct. All has utterly disappeared, or, to paraphrase one of Pope's couplets,

"Beast, bird, fish, insect--what no eye can scan,Nor glass can reach--from zoophyte to man."

"Beast, bird, fish, insect--what no eye can scan,Nor glass can reach--from zoophyte to man."

All these dismantled planets, and satellites to planets, are only so many immense cinders--mere refuse slag--of no conceivable interest to science, except to predicate the ultimate conclusion--"a played-out universe, resulting from a played-out potency within the universe." The magnificent clockwork of the heavens will then have run down, with no Darwinian whirligig to wind it up again, and the terrible reality of Byron's dream, which it would seem was not all a dream, be realized in the bright sun extinguished, the stars darkling the eternal space, rayless and pathless, and the icy earth swung blind and blackening in the moonless air.

Oh, if this be star-eyed science, give us anything in place of it! Blear-eyed bigotry in his cloistered den, mumbling unintelligible prayers, and believing that man is to be saved, not by what he does, but by acredoonly, is far preferable to it. But oh, how unspeakably preferable the simple faith of the star-led Magi, who

"Deeming the light that in the east was seen An earnest and a prophecy of rest To weary wanderers, such as they had been,"

came on that bleak December night, 1880 years ago, to pay their homage to the Christ-child--the long expected Messiah--the Redeemer of the world!

1. : It may be proper, however, to state that the tenth and concluding chapter was originally written as a lecture, and delivered about a year ago in New Haven, Boston, and at other points. A request for its publication has induced the author to place it in this volume, with the portion referring to the Bible genesis omitted. It will be found germane to the general subject.

2. : "Without this latent presence of the 'I am,' all modes of existence in the external world flit before us as colored shadows, with no greater depth, root, or fixure, than the image of a rock hath in the gliding stream, or the rainbow on the fast-sailing rain storm."--Coleridge's"Comments on Essays."

3. : And science that is not purely inductive--i.e. primarily based on the inviolability of our intuitions--is no science at all, but the sheerest possible speculation.

4. : This presence of an active living principle in nature, one originally assigned as the "divina particula auræ" of every living thing, is frequently referred to in the higher inspirational moods of our poets. Wordsworth exquisitely refers to it in the following lines of his "Excursion:"--

"To every form of being is assignedAnactiveprinciple: howe'er removedFrom sense and observation, it subsistsIn all things, in all nature, in the starsOf azure heaven, the unenduring clouds;In flower and tree, in every pebbly stoneThat paves the brooks."

"To every form of being is assignedAnactiveprinciple: howe'er removedFrom sense and observation, it subsistsIn all things, in all nature, in the starsOf azure heaven, the unenduring clouds;In flower and tree, in every pebbly stoneThat paves the brooks."

5. : The existence of vital units is conceded by some of the staunchest materialists, such as Herbert Spencer, Professor Bastian and others. Professor Bastian says: "The countless myriads of living units which have been evolved in different ages of the world's history, must, in each period, have given rise to innumerable multitudes of what have been called 'trees of life.'" He insists, however, that they have been "evolved" from something, or by some unknown process. But we shall show further on that a "unit" can neither beevolvednorinvolved, and that this is as true of vital units as of the mathematical or chemical unit. Neither evolution nor involution will ever effect the value of a unit.

6. : According to Aristotle, the great world-ordaineris the constant world-sustainer.

7. : The definition which Professor Robinson, in his Lexicon of the New Testament, gives of the word σπερμα, as connected with the "divine life," entirely harmonizes with this view of the subject. He says: Trop. I John 3, 9, πἃς ό γεγενημένος ἐκ του ϑεου σπέρμα ἀυτον (ϑεὄν) εν ᾶντῶ πενεὶi.e.the germ or principle of divine life through which he is begotten of god, το πνεὒμα.

8. : Professor Schmidt, of the University of Strasburg, who insists that species are only relatively stable, admits that they remain persistent as long as they exist under the same external conditions. Time is, therefore, not a factor in the mutation of species. Nor are environing conditions factors, except as a failure of conditions results in the disappearance of species, as the presence of conditions results in their appearance.

9. : Says M. Ch. Bonnet, in his "La Palingéuésie Philosophique;" "Il est de la plus parfaite évidence que la matiere est susceptible d'une infinité de mouvemens divers, et de modifications diverses," and this is the universal claim of the materialists.

10. : Professor Burdach (as trad, par Jourdan), in speaking of the productive power of nature, says, "Limitée quant á l' étendue de ses manifestations, elle continue toujottrs d' agir pour la conservation de ce qui a été créé, et, quoiqu' elle ne maintenue les formes organiques supérieures que par la seule propagation, il ne répugne point au bon sens de penser qu' aujourd' hui encore elle a la puissance de produire les formes inférieures avec des eléments hétérogénes, comme elle a créé originairement tout ce qui posséde l' organisation." This shows that its author believed in the possibility of the "superior organic forms," like the mastodon, megatherium, etc. from the "heterogenetic elements"--those undergoing every conceivable change--as well as the "inferior forms." At all events, it is a legitimate induction from materialistic premises.

11. : This point is conclusively made by Professor Burdach, who says (we quote from Jourdan); "La tendance interieure á la configuration existe avant sa manifestation." And by histendance interieurehe must mean some vital or other law, equivalent to anentiain matter, which resultsin, notfrommanifestation.

12. : Goethe borrowed his idea of an archetypal world from Plato and the Eleatic school. They held that the world was originated, and not eternal; that it was framed by the Creator after a perfect archetype, one eternally existing in the divine mind, if not an actual soul-world of which our own is but the reflex.

13. : In a note to Prof. Bastian's "Beginnings of Life" (vol II. p. 537) an important fact is mentioned as obtained from the writings of Dr. Schneider, to wit, thatNematoids(microscopical forms) may be "obtained at will," almost as readily as mushrooms, by a process entirely independent of spores. For instance, small pieces of beef were carefully examined to see if they contained any of the ova of Nematoids, and, finding none, they were buried in a small quantity of earth (also carefully examined for the presence of Nematoids or their ova) in a gallipot. "After three weeks," says Prof. B. "this earth was found to be absolutely swarming with two kinds of Nematoids--quite different from any forms which I had previously, seen, although I had been seeking them for more than two years previously in all sorts of situations." The reason why he had not found them previously, was because the "necessary conditions" for their appearance had not been obtained by him, or he had not sought for them in their proper environment. They were not produced "at will," but were the natural outgrowth of conditions, as much so as the spores of fungi, which make their appearance whenever and wherever the necessary environing conditions exist. According to Dr. Gros, it takes about three weeks for these Nematoid forms to develop into a reproductive state.

14. : The necessity of turning plants and animals into "tramps" is just as great in the case of "Evolution" as in that of "specific creation in pairs." In both cases, we must insist upon geneological consanguinity. For the chances of any two highly specialized forms, originally starting on different lines of divergence, and ultimately reaching individual identity, both in form and characteristics, is an impossible problem in the determination of chances. Consequently, Mr. Darwin finds the necessity of accounting for the presence of northern forms in the southern hemisphere, and the reverse, just as great as in the Linnæan theory, which was fully accepted by Cuvier.

15. : Burdach, in his "Traité Physiologie" (Trad. par Jourdan. 1837) says: "Effectivement nous rencontrons des traces de vie dans toute existence quelconque." This is as broad a panspermic statement as can be made, and is only true of inorganic matter so far as vegetable life is concerned, including such infusorial, mycologic, and cryptogamic forms as may lie so near to the "force vegetative" of Needham as to be indistinguishable from it.

16. : In the case of volcanic islands, the upheavals were undoubtedly accompanied by deposits of mud, sand (ocean detritus), marine vegetation, and more or less animal matter, and these organic substances were washed down by the rains into the broken valleys and plains below, when land vegetation almost immediately made its appearance; not because seeds may have drifted thither by any of the different agencies that have been mentioned, but because organic matter can no more help bringing forth life in some form, when conditions favor, than salt water, when exposed to evaporation, can help crystallizing into its symmetrically-arranged salts. And the same would be true of all the coral islands, bringing up the organic matter of the sea to the influence of the light, the rains, and the dews. The islands thus formed in the Pacific Ocean begin to exhibit vegetable life almost as soon as they make their appearance above the reefs, and a line of sea-beach is formed about them.

17. : These, while presenting the most varied and diverse forms of infusorial life, are nevertheless the most constant and abundant type. They abound more or less in all organic infusions. Ehrenberg, however, holds that they are no more animal than vegetal forms. They vary in length from 1/15000 to 1/2000 of an inch, and are consequently too minute to be satisfactorily classified in respect to all their diversified characteristics.

18. : The extent of the southern ice-cap may at least be approximately reached from explorations already made. Capt. Weddell, in 1823, extended his explorations southward to within about 15° of the south pole, where he found an open sea. Capt. Ross, in 1842, approached to within about 13° of the same pole, without serious obstruction. It is true that, in the following year, he encountered ice barriers near the line of the antarctic circle, but they were floating barriers coming down from Weddell's open sea. Capt. Wilkes, in 1840, explored a considerable portion of the Antarctic Continent, lying almost entirely within the antarctic circle. Other explorations have been made, showing that the southern ice-cap does not probably extend, continuously at least, much farther north than 78° or 80°, or to within some ten or twelve degrees of the south pole, independently of the packs of drifting ice in the otherwise open seas.

19. : The truth or falsity of "Evolution" depends entirely on the successful solution of this problem, for the chances are quintillions to ones that no two identical forms could have originated from different centres, or from the same centre on divergent lines, and ever reached identically the same results. And how any two forms should happen to be sexually paired, on the same or different lines of divergence, is one of those inexplicable mysteries which must puzzle Herbert Spencer in all his labyrinthian searches into "Force-correlation," "Differentiation," "the Dynamic Force of Molecules," etc., etc. However successful he may be in other directions, he will inevitably fail in this. We must fall back on the grand Old Bible genesis for the solution of this difficulty, where every living thing was commanded to produce seed, or multiply and replenish the waters and the earth with offspring.

20. : These transcendental or ideal forms may be said to correspond to the "spiritual essences" of Plato. They are the eternal, immutable principles which are discernible to the eye of the soul, as the sensible objects they represent are discernible to the eye of the body. Modern metaphysics may deem them mere abstractions, but a higher realistic philosophy will treat them as substantive forms, of which the objective reality is but the shadow.


Back to IndexNext