LECTURE II.LIGHTNING CONDUCTORS.

LECTURE II.LIGHTNING CONDUCTORS.

The effects of lightning, on the bodies that it strikes, are analogous to those which may be produced by the discharge of our electric machines and Leyden jar batteries. When the discharge of a battery traverses a metal conductor of sufficient dimensions to allow it an easy passage, it makes its way along silently and harmlessly. But if the conductor be so thin as to offer considerable resistance, then the conductor itself is raised to intense heat, and may be melted, or even converted into vapor, by the discharge.

On opposite page is shown a board on which a number of very thin wires have been stretched, over white paper, between brass balls. The wires are so thin that the full charge of the battery before you, which consists of nine large Leyden jars, is quite sufficient to convert them in an instant into vapor. I have already, on former occasions, sent the charge through two of these wires, and nothing remains of them nowbut the traces of their vapor, which mark the path of the electric discharge from ball to ball. At the present moment the battery stands ready charged, and I am going to discharge it through a third wire, by means of this insulated rod which I hold in my hand. The discharge has passed; you saw a flash, and a little smoke; and now, if you look at the paper, you will find that the wire is gone, but that it has left behind the track of its incandescent vapor, marking the path of the discharge.

DISCHARGE OF LEYDEN JAR BATTERY THROUGH THIN WIRES.

DISCHARGE OF LEYDEN JAR BATTERY THROUGH THIN WIRES.

Destruction of Buildings by Lightning.—We learn from this experiment that the electricity stored up in our battery passes, without visible effect, through the stout wire of a discharging rod, but that it instantly converts into vapor the thin wire stretched across the spark board. And so it is with a flash of lightning. It passes harmlessly, as every one knows, through a stout metal rod, but when it comes across bell wires or telegraph wires, it melts them, or converts them into vapor. On the sixteenth of July, 1759, a flash of lightning struck a house in Southwark, on the south side of London, and followed the line of the bell wire. After the lightning had passed, the wire was no longer to be found; but the path of the lightning was clearly marked by patches of vapor which were left, here and there, adhering to the surface of the wall. In the year 1754, the lightning fell on a bell tower at Newbury, in the United States of America, and having dashed the roof to pieces, and scattered the fragments about, it reached the bell. From this point it followed an iron wire, about as thick as a knitting needle, melting it as it passed along, leaving behind a black streak of vapor on the surface of the walls.

Again, the electric discharge, passing through a bad conductor, produces mechanical disturbance, and, if the substance be combustible, often sets it on fire. So, too, as you know, the lightning flash, falling on a church spire, dashes it to pieces, knocking the stones about in all directions, while it sets fire to ships and wooden buildings; and more than once it has caused great devastation by exploding powder magazines.

Let me give you one or two examples: In January, 1762, the lightning fell on a church tower in Cornwall, and a stone—three hundred-weight—was torn from its place and hurled to a distance of 180 feet, while a smaller stone was projected as far as 1,200 feet from the building. Again, in 1809, the lightning struck a house not far from Manchester, and literally moved a massive wall twelve feet high and three thick to a distance of several feet. You may form some conception of the enormous force here brought into action, when I tell you that the total weight of mason-work moved on this occasion was not less than twenty-three tons.

The church ofSt.George, at Leicester, was severely damaged by lightning on the 1st of August, 1846. About 8 o’clock in the evening the rector of the parish saw a vivid streak of light darting with incredible velocity against the upper part of the spire. “For the distance of forty feet on the eastern side, and nearly seventy on the west, the massive stonework of the spire was instantly rent asunder and laid in ruins. Large blocks of stone were hurled in all directions, broken into small fragments, and in some cases, there is reason to believe, reduced to powder. One fragment of considerable size was hurled against the window of a house three hundred feet distant, shattering to pieces the woodwork, and strewing the room within with fine dust and fragments of glass. It has been computed that a hundred tons of stone were, on this occasion, blown to a distance of thirty feet in three seconds. In addition to the shivering of the spire, the pinnacles at the angles of the tower were all more or less damaged, the flying buttresses cracked through and violently shaken, many of the open battlements at the base of the spire knocked away, the roof of the church completely riddled, the roofs of the side entrances destroyed, and the stone staircases of the gallery shattered.”[17]

Lightning has been at all times the cause of great damage to property by its power of setting fire to whatever is combustible. Fuller says, in his Church History, that “scarcely a great abbey exists in England which once, at least, has not been burned by lightning from heaven.” He mentions, as examples, the Abbey of Croyland twice burned, the Monastery of Canterbury twice, the Abbey of Peterborough twice; also the Abbey ofSt.Mary’s, in Yorkshire, the Abbey of Norwich, and several others. Sir William Snow Harris, writing about twenty years ago, tells us that “the number of churches and church spires wholly or partially destroyed by lightning is beyond all belief, and would be too tedious a detail to enter upon. Within a comparatively few years, in 1822 for instance, we find the magnificent Cathedral of Rouen burned, and, so lately as 1850, the beautiful Cathedral of Saragossa, in Spain, struck by lightning during divine service and set on fire. In March of last year a dispatch from our Minister at Brussels,Lord Howard de Walden, dated the 24th of February, was forwarded by Lord Russell to the Royal Society, stating that, on the preceding Sunday, a violent thunderstorm had spread over Belgium; that twelve churches had been struck by lightning; and that three of these fine old buildings had been totally destroyed.”[18]

Even in our own day the destruction caused by fires produced through the agency of lightning is very great—far greater than is commonly supposed. No general record of such fires is kept, and consequently our information on the subject is very incomplete and inexact. I may tell you, however, one small fact which, so far as it goes, is precise enough and very significant. In the little province of Schleswig-Holstein, which occupies an area less than one-fourth of the area of Ireland, the Provincial Fire Assurance Association has paid in sixteen years, for damage caused by lightning, somewhat over £100,000, or at the rate of more than £6,000 a year. The total loss of property every year in this province, due to fires caused by lightning, is estimated at not less than £12,500.[19]

Destruction of Ships at Sea.—The destructive effects of lightning on ships at sea, before the general adoption of lightning conductors, seems almost incredible at the present day. From official records it appears that the damage done to the Royal Navy of England alone involved an expenditure of from £6,000 to £10,000 a year. We are told by Sir William Snow Harris, who devoted himself for many years to this subject with extraordinary zeal and complete success, that between the year 1810 and the year 1815—that is, within a period of five years—“no less than forty sail of the line, twenty frigates, and twelve sloops and corvettes were placedhors de combatby lightning. In the merchant navy, within a comparatively small number of years, no less than thirty-four ships, most of them large vessels with rich cargoes, have been totally destroyed—been either burned or sunk—to say nothing of a host of vessels partially destroyed or severely damaged.”[20]

And these statements, be it observed, take no account of ships that were simply reported as missing, some of which, we can hardly doubt, were struck by lightning in the open sea, and went down with all hands on board. A famous ship of forty-four guns, theResistance, was struck by lightning in the Straits of Malacca, and the powder magazine exploding, she went to the bottom. Of her whole crew only three were saved, who happened to be picked up by a passing boat. It has been well observed that, were it not for these three chance survivors, nothing would have been known concerning the fate of the vessel, and she would have been simply recorded as missing in the Admiralty lists.

Nothing is more fearful to contemplate than the scene on board a ship when she is struck by lightning in the open sea, with the winds howling around, the waves rolling mountains high, the rain coming down in torrents, and the vivid flashes lighting up the gloom at intervals, and carrying death and destruction in their track. I will read you one or two brief accounts of such a scene, given in the pithy but expressive language of the sailor. In January, 1786, theThisbe, of thirty-six guns, was struck by lightning off the coast of Scilly, and reduced to the condition of a wreck. Here is an extract from the ship’s log: “FourA. M., strong gales; handed mainsail and main top-sail; hove to with storm staysails; blowing very heavy, S. E. 4.15, a flash of lightning, with tremendous thunder, disabled some of our people. A second flash set the mainsail, main-top, and mizen staysails on fire. Obliged to cut away the mainmast; this carried away mizen top-mast and fore top-sail yard. Found foremast also shivered by the lightning. Fore top-mast went over the side about 9A. M.Set the foresail.”[21]

A few years later, in March, 1796, theLowestoffewas struck in the Mediterranean, and we read as follows in the log of the ship: “North end of Minorca; heavy squalls; hail, rain, thunder, and lightning. 12.15, ship struck by lightning, which knocked three men from the masthead, one killed. 12.30, ship again struck; main top-mast shivered in pieces; many men struck senseless on the decks. Ship again struck, and set on fire in the masts and rigging; mainmast shivered in pieces; fore top-mast shivered; men benumbed on the decks, and knocked out of the top; one man killed on the spot. 1.30, cut away the mainmast; employed clearing wreck. 4, moderate; set the foresail.”[22]

Again, in 1810, theRepulse, a ship of seventy-four guns, was struck, off the coast of Spain. “The wind had been variable in the morning—and at 12.35 there was a heavy squall, with rain, thunder, and lightning. The ship was struck by two vivid flashes of lightning, which shivered the maintop-gallant mast, and severely damaged the mainmast. Seven men were killed on the spot; three others only survived a few days; and ten others were maimed for life. After the second discharge the rain fell in torrents. The ship was more completely crippled than if she had been in action, and the squadron, then engaged on a critical service, lost for a time one of its fastest and best ships.”[23]

Destruction of Powder Magazines.—Not less appalling is the devastation caused by lightning when it falls on a powder magazine. Here is a striking example: On the eighteenth of August, 1769, the tower ofSt.Nazaire, at Brescia, was struck by lightning. Underneath the tower about 200,000 pounds of gunpowder, belongingto the Republic of Venice, were stored in vaults. The powder exploded, leveling to the ground a great part of the beautiful city of Brescia, and burying thousands of its inhabitants in the ruins. It is said that the tower itself was blown up bodily to a great height in the air, and came down in a shower of stones. This is, perhaps, the most fearful disaster of the kind on record. But we are not without examples in our own times. In the year 1856 the lightning fell on the Church ofSt.John, in the Island of Rhodes. A large quantity of gunpowder had been deposited in the vaults of the church. This was ignited by the flash; the building was reduced to a mass of ruins, a large portion of the town was destroyed, and a considerable number of the inhabitants were killed. Again, in the following year, the magazine of Joudpore, in the Bombay Presidency, was struck by lightning. Many thousand pounds of gunpowder were blown up, five hundred houses were destroyed, and nearly a thousand people are said to have been killed.[24]

Experimental Illustrations.—And now, before proceeding further, I will make one or two experiments, with a view of showing that the electricity of our machines is capable of producing effects similar to those produced by lightning, though immeasurably inferior in point of magnitude. Here is a common tumbler, about three-quarters full of water. Into it I introduce two bent rods of brass, which are carefully insulated below the surface of the water by a covering of india-rubber. The points, however, are exposed, and come to within an inch of one another, near the bottom of the tumbler. Outside the tumbler, the brass rods are mounted on a stand, by means of which I can send the full charge of this Leyden jar battery through the water, from point to point. Since water is a bad conductor of electricity, as compared with metals, the charge encounters great resistance in passing through it, and in overcoming this resistance produces considerable mechanical commotion, which is usually sufficient to shiver the glass to pieces.

To charge the battery will take about twenty turns of this large Holtz machine. Observe how the pith ball of the electroscope rises as the machine is worked, showing that the charge is going in. And now it remains stationary; which is a sign that the battery is fully charged, and can receive no more. You will notice that the outside coating of the battery has been already connected with one of the brass rods dipping into the tumbler of water. By means of this discharger I will now bring the inside coating into connection with the other rod. And see, before contact is actually made, the spark has leaped across, and our tumbler is violently burst asunder from top to bottom.

GLASS VESSEL BROKEN BY DISCHARGE OF LEYDEN JAR BATTERY.

GLASS VESSEL BROKEN BY DISCHARGE OF LEYDEN JAR BATTERY.

This will probably appear to you a very small affair, when compared with the tearing asunder of solid masonry, and the hurling about of stones by the ton weight. No doubt it is; and that is just one of the lessons we have to learn from the experiment we have made. For, not only does it show us that effects of this kind may be caused by electricity artificially produced, but it brings home forcibly to the mind how incomparably more powerful is the lightning of the clouds than the electricity of our machines.

The property which electricity has of setting fire to combustible substances may be easily illustrated. This india-rubber tube is connected with the gas pipe under the floor, and to the end of the tube is fitted a brass stop-cock which I hold in my hand. I open the cock, and allow the jet of gas to flow toward the conductor of Carré’s machine, while my assistant turns the handle; a spark passes, and the gas is lit. Again, my assistant stands on this insulating stool, placing his hand on the large conductor of the machine, while I turn the handle. His body becomes electrified, and when he presents his knuckle to this vessel of spirits of wine, which is electrically connected with the earth, a spark leaps across, and the spirits of wine are at once in a blaze. Once more; I tie a little gun-cotton around one knob of the discharging rod, and then use it to discharge a small Leyden jar; at the moment of the discharge the gun-cotton is set on fire.

It would be easy to explode gunpowder with the electric spark, but the smoke of the explosion would make the lecture-hall very unpleasant for the remainder of the lecture. I propose, therefore, tosubstitute for gunpowder an explosive mixture of oxygen and hydrogen, with which I have filled this little metal flask, commonly known as Volta’s pistol. By a very simple contrivance, the electric spark is discharged through the mixture, when I hold the flask toward the conductor of the machine. A cork is fitted tightly into the neck of the flask, and at the moment the spark passes you hear a loud explosion, and you see the cork driven violently up to the ceiling.

GUN-COTTON SET ON FIRE BY ELECTRIC SPARK.

GUN-COTTON SET ON FIRE BY ELECTRIC SPARK.

Destruction of Life.—The last effect of lightning to which I shall refer, and which, perhaps, more than any other, strikes us with terror, is the sudden and utter extinction of life, when the lightning flash descends on man or on beast. So swift is this effect, in most cases, that death is, in all probability, absolutely painless, and the victim is dead before he can feel that he is struck. I cannot give you, with any degree of exactness, the number of people killed every year by lightning, because the record of such deaths has been hitherto very imperfectly kept, in almost all countries, and is, beyond doubt, very incomplete. But perhaps you will be surprised to learn that the number of deaths by lightning actually recorded is, on an average, in England about 22 every year, in France 80, in Prussia 110, in Austria 212, in European Russia 440.[25]

So far as can be gathered from the existing sources of information, it would seem that the number of persons killed by lightning is, on the whole, about one in three of those who are struck. The rest are sometimes only stunned, sometimes more or less burned, sometimes made deaf for a time, sometimes partially paralyzed. On particular occasions, however, especially when the lightning falls on a large assembly of people, the number of persons struck down and slightly injured, in proportion to the number killed, is very much increased.

An interesting case of this kind is reported byMr.Tomlinson. “On the twenty-ninth of August, 1847, at the parish church of Welton,Lincolnshire, while the congregation were engaged in singing the hymn before the sermon, and theRev.Mr.Williamson had just ascended the pulpit, the lightning was seen to enter the church from the belfry, and instantly an explosion occurred in the centre of the edifice. All that could move made for the door, andMr.Williamson descended from the pulpit, endeavoring to allay the fears of the people. But attention was now called to the fact that several of the congregation were lying in different parts of the church, apparently dead, some of whom had their clothing on fire. Five women were found injured, and having their faces blackened and burned, and a boy had his clothes almost entirely consumed. A respected old parishioner,Mr.Brownlow, aged sixty-eight, was discovered lying at the bottom of his pew, immediately beneath one of the chandeliers, quite dead. There were no marks on the body, but the buttons of his waistcoat were melted, the right leg of his trousers torn down, and his coat literally burnt off. His wife in the same pew received no injury.”[26]

VOLTA’S PISTOL; EXPLOSION CAUSED BY ELECTRIC SPARK.

VOLTA’S PISTOL; EXPLOSION CAUSED BY ELECTRIC SPARK.

Not less striking is the story told byDr.Plummer, surgeon of the Illinois Volunteers, in theMedical and Surgical Reporterof June 19, 1865: “Our regiment was yesterday the scene of one of the most terrible calamities which it has been my lot to witness. About two o’clock a violent thunderstorm visited us. While the old guard was being turned out to receive the new, a blinding flash of lightning was seen, accompanied instantly by a terrific peal of thunder. The whole of the old guard, together with part of the new, were thrown violently to the earth. The shock was so severe and sudden that, in most cases, the rear rank men were thrown across the front rank men. Oneman was instantly killed, and thirty-two men were more or less severely burned by the electric fluid. In some instances the men’s boots and shoes were rent from their feet and torn to pieces, and, strange as it may appear, the men were injured but little in the feet. In all cases the burns appear as if they had been caused by scalding-hot water, in many instances the skin being shriveled and torn off. The men all seem to be doing well, and a part of them will be able to resume their duties in a few days.”

The Return Shock.—It sometimes happens that people are struck down and even killed at the moment a discharge of lightning takes place between a cloud and the earth, though they are very far from the point where the flash is actually seen to pass; while others, who are situated between them and the lightning, suffer very little, or perhaps not at all. This curious phenomenon was first carefully investigated by Lord Mahon in the year 1779, and was called by him the “return shock.” His theory, which is now commonly accepted, may be easily understood with the aid of the sketch before you.

THE RETURN SHOCK ILLUSTRATED.

THE RETURN SHOCK ILLUSTRATED.

Let us supposeABCto represent the outline of a thundercloud which dips down toward the earth atAand atC. The electricity of the cloud develops by inductive action a charge of the opposite kind in the earth beneath it. But the inductive action is most powerful atEandF, where the cloud comes nearest to the earth. Hence, bodies situated near these points may be very highly electrified as compared with bodies at a point between them, such asD. Now, when a flash of lightning passes atE, the under part of the cloud is at once relieved of its electricity, its inductive action ceases, and, therefore, a person situated atFsuddenly ceases to be electrified. This sudden change from a highly electrified to a neutral state involves a shock to his system which may be severe enough to stun or even to kill him.Meanwhile, people atD, having been also electrified to some extent by the influence of the thundercloud, must in like manner undergo a change in their electrical condition when the flash of lightning passes, but this change will be less violent because they were less highly electrified.

Many experiments have been devised to illustrate this theory of Lord Mahon. But the best illustration I know is furnished by this electric machine of Carré’s. If you stand near one end of the large conductor when the machine is in action and sparks are taken from the other end, you will feel a distinct electric shock every time a spark passes. The large conductor here takes the place of the cloud, the spark that passes at one end represents the flash of lightning, and the observer at the other end gets the return shock, though he is at a considerable distance from the point where the flash is seen.

An experiment of this kind, of course, cannot be made sensible to a large audience like the present. But I can give you a good idea of the effect by means of this tuft of colored papers. While the machine is in action I hold the tuft of papers near that end of the conductor which is farthest from the point where the discharge takes place. You see the paper ribbons are electrified by induction, and, in virtue of mutual repulsion, stand out from one another “like quills upon the fretful porcupine.” But, when a spark passes, the inductive action ceases, the paper ribbons cease to be electrified, and the whole tuft suddenly collapses into its normal state.

While fully accepting Lord Mahon’s theory of the return shock as perfectly good so far as it goes, I would venture to point out another influence which must often contribute largely to produce the effect in question, and which is not dependent on the form of the cloud. It may easily happen, from the nature of the surface in the district affected by a thundercloud, that the point of most intense electrification—sayEin the figure—is in good electrical communication with a distant point, such asF, while it is very imperfectly connected with a much nearer point,D. In such a case it is evident that bodies atFwill share largely in the highly-electrified condition ofE, and also share largely in the sudden change of that condition the moment the flash of lightning passes; whereas bodies atDwill be less highly electrified before the discharge, and less violently disturbed when the discharge takes place.

This principle may be illustrated by a very simple experiment. Here is a brass chain about twenty feet long. One end of it I hand to any one among the audience who will kindly take hold of it; the other end I hold in my hand. I now stand near the conductor of the machine; and will ask some one to stand about ten feet away from me, near the middle of the chain, but without touching it. Now observe what happens when the machine is worked and I take a sparkfrom the conductor: My friend at the far end of the chain, twenty feet away, gets a shock nearly as severe as the one I get myself, because he is in good electrical communication with the point where the discharge takes place. But my more fortunate friend, who is ten feet nearer to the flash, is hardly sensible of any effect, because he is connected with me only through the floor of the hall, which is, comparatively speaking, a bad conductor of electricity.

Summary.—Let me now briefly sum up the chief destructive effects of lightning. First, with regard to good conductors: though it passes harmlessly through them if they be large enough to afford it an easy passage, it melts and converts them into vapor if they be of such small dimensions as to offer considerable resistance. Secondly, lightning acts with great mechanical force on bad conductors; it is capable of tearing asunder large masses of masonry, and of projecting the fragments to a considerable distance. Thirdly, it sets fire to combustible materials. And lastly, it causes the instantaneous death of men and animals.

Franklin’s Lightning Rods.—The object of lightning conductors is to protect life and property from these destructive effects. Their use was first suggested by Franklin, in 1749, even before his famous experiment with the kite; and immediately after that experiment, in 1752, he set up, on his own house, in Philadelphia, the first lightning conductor ever made. He even devised an ingenious contrivance, by means of which he received notice when a thundercloud was approaching. The contrivance consisted of a peal of bells, which he hung on his lightning conductor, and which were set ringing whenever the lightning conductor became charged with electricity.

Franklin’s lightning rods were soon adopted in America; and he himself contributed very much to their popularity by the simple and lucid instructions he issued every year, for the benefit of his countrymen, in the annual publication known as “Poor Richard’s Almanac.” It is very interesting at this distance of time to read the homely practical rules laid down by this great philosopher and statesman; and, though some modifications have been suggested by the experience of a hundred and thirty years, especially as regards the dimensions of the lightning conductor, it is surprising to find how accurately the general principles of its construction, and of its action, are here set forth.

“It has pleased God,” he says, “in His goodness to mankind, at length to discover to them the means of securing their habitations and other buildings from mischief by thunder and lightning. The method is this: Provide a small iron rod, which may be made of the rod-iron used by nailors, but of such a length that one end being three or four feet in the moist ground, the other may be six or eight feet above the highest part of the building. To the upper end of therod fasten about a foot of brass wire, the size of a common knitting needle, sharpened to a fine point; the rod may be secured on the house by a few small staples. If the house or barn be long, there may be a rod and point at each end, and a middling wire along the ridge from one to the other. A house thus furnished will not be damaged by lightning, it being attracted by the points and passing through the metal into the ground, without hurting anything. Vessels also having a sharp-pointed rod fixed on the top of their masts, with a wire from the foot of the rod reaching down round one of the shrouds to the water, will not be hurt by lightning.”

Introduction of Lightning Rods into England.—The progress of lightning conductors was more slow in England and on the Continent of Europe, owing to a fear, not unnatural, that they might, in some cases, draw down the lightning where it would not otherwise have fallen. People preferred to take their chance of escaping as they had escaped before, rather than invite, as it were, the lightning to descend on their houses, in the hope that an iron rod would convey it harmless to the earth. But the immense amount of damage done every year by lightning, soon led practical men to entertain a proposal which offered complete immunity from all danger on such easy terms; and when it was found that buildings protected by lightning conductors were, over and over again, struck by lightning without suffering any harm, a general conviction of their utility was gradually established in the public mind.

The first public building protected by a lightning rod in England wasSt.Paul’s Cathedral, in London. On the eighteenth of June, 1764, the beautiful steeple of Saint Bride’s Church, in the city, was struck by lightning and reduced to ruin. This incident awakened the attention of the dean and chapter ofSt.Paul’s to the danger of a similar calamity, which seemed, as it were, impending over their own church. After long deliberation, they referred the matter to the Royal Society, asking for advice and instruction. A committee of scientific men was appointed by the Royal Society to consider the question. Benjamin Franklin himself, who happened to be in London at the time, as the representative of the American States in their dispute with England, was nominated a member of the committee. And the result of its deliberation was that, in the year 1769, a number of lightning conductors were erected onSt.Paul’s Cathedral.

It was on this occasion that arose the celebrated controversy about the respective merits of points and balls. Franklin had recommended a pointed conductor; but some members of the committee were of opinion that the conductor should end in a ball and not in a point. The decision of the committee was in favor of Franklin’s opinion, and pointed conductors were accordingly adopted forSt.Paul’s Cathedral. But the controversy did not end here. The time was one of greatpolitical excitement, and party spirit infused itself even into the peaceful discussions of science. The weight of scientific opinion was on the side of Franklin; but it was hinted, on the other side, that the pointed conductors were tainted with republicanism, and pregnant with danger to the empire. As a rule, the whigs were strongly in favor of points; while the Tories were enthusiastic in their support of balls.

For a time the Tories seemed to prevail. The king was on their side. Experiments on a grand scale were conducted in his presence, at the Pantheon, a large building in Oxford street; he was assured that these experiments proved the great superiority of balls over points; and to give practical effect to his convictions, his majesty directed that a large cannon ball should be fixed on the end of the lightning conductor attached to the royal palace at Kew. But the committee of the Royal Society remained unconvinced. In course of time the heat of party spirit abated; experience as well as reason was found to be in favor of Franklin’s views; and the battle of the balls and points has long since passed into the domain of history.[27]

Functions of a Lightning Conductor.—A lightning conductor fulfills two functions. First, it favors a silent and gradual discharge of electricity between the cloud and the earth, and thus tends to prevent that accumulation which must of necessity take place before a flash of lightning will pass. Secondly, if a flash of lightning come, the lightning conductor offers it a safe channel through which it may pass harmless to the earth.

These two functions of a lightning conductor may be easily illustrated by experiment. When our machine is in action, if I present my closed hand to the large brass conductor, a spark passes between them, and I feel, at the same moment, a slight electric shock. Here the conductor of the machine, as usual, holds the place of the electrified cloud; my closed hand represents, as it were, a lofty building that stands out prominently on the surface of the earth; the spark is the flash of lightning, and the electric shock just suggests the destructive power of the sudden disruptive discharge.

Now let me protect this building by a lightning conductor. For this purpose, I take in my hand a brass rod, which I connect with the earth by a brass chain. In the first instance, I will have a metal ball on the end of my lightning conductor. You see the effect; sparks pass rapidly, but I feel no shock. I can increase the strength of the discharge by hanging this condensing jar on the conductor of the machine. Sparks pass now, much more brilliant and powerful than before, but still I get no shock. It is evident, therefore, that my lightning rod does not prevent the flash from passing, but it conveys it harmless to the ground.

I next take a rod which is sharply pointed, and connecting it as before with the earth by a brass chain, I present the sharp point to the conductor of the machine. Observe how different is the result; there is no disruptive discharge; no spark passes; no shock is felt. Electricity still continues to be generated in the machine, and electricity is generated, by induction, in the brass rod, and in my body. But these two opposite electricities discharge themselves silently, by means of this pointed rod, and no sensible effect of any kind is exhibited.

These experiments are very simple, but they really put before us, in the clearest possible way, the whole theory of lightning conductors. In particular, they give us ocular demonstration that an efficient lightning rod not only makes the lightning harmless when it comes, but tends very much to prevent its coming. A remarkable example, on a large scale, of this important property, is furnished by the town of Pietermaritzburg, the capital of the colony of Natal, in South Africa. This town is subject to the frequent visitation of thunderstorms, at certain seasons of the year, and much damage was formerly done by lightning, but since the erection of lightning conductors on the principal buildings, the lightning has never fallen within the town. Thunderclouds come as before, but they pass silently over the city, and only begin to emit their lightning flashes when they reach the open country, and have passed beyond the range of the lightning conductors.[28]

But it will often happen, even in the case of a pointed conductor, that the accumulation of electricity goes on so fast that the silent discharge is insufficient to keep it in check. A disruptive discharge will then take place, from time to time, and a flash of lightning will pass. Under these circumstances, the lightning conductor is called upon to fulfill its second function, and to convey the lightning harmless to the earth.

Conditions of a Lightning Conductor.—From the consideration of the functions which it has to fulfill, we may now infer what are the conditions necessary for an efficient lightning conductor. The first condition is that the end of the conductor, projecting into the air, should have, at least, one sharp point. Our experiments have shown us that a pointed conductor tends, in a manner, to suppress the flash of lightning altogether; whereas a blunt conductor, or one ending in a ball, tends only to make it harmless when it comes. It is evident, therefore, that the pointed conductor offers the greater security.

But a fine point is very liable to be melted when the lightning falls upon it, and thus to be rendered less efficient for future service. To meet this danger, it has recently been suggested, by the Lightning Rod Conference, that the extreme end of the conductor should be a blunt point, destined to receive the full force of the lightning flash,when it comes; and that, a little lower down, a number of very fine points should be provided, with a view to favor the silent discharge. This suggestion, which appears admirably fitted to provide for the twofold function of a lightning conductor, deserves to be recorded in the exact terms of the official report.

“It seems best to separate the double functions of the point, prolonging the upper terminal to the very summit, and merely beveling it off, so that, if a disruptive discharge does take place, the full conducting power of the rod may be ready to receive it. At the same time, having regard to the importance of silent discharge from sharp points, we suggest that, at one foot below the extreme top of the upper terminal, there be firmly attached, by screws and solder, a copper ring bearing three or four copper needles, each six inches long, and tapering from a quarter of an inch diameter to as fine a point as can be made; and with the object of rendering the sharpness as permanent as possible, we advise that they be platinized, gilded, or nickel plated.”[29]

The second condition of a lightning conductor is, that it should be made of such material, and of such dimensions, as to offer an easy passage to the greatest flash of lightning likely to fall on it; otherwise it might be melted by the discharge, and the lightning, seeking for itself another path, might force its way through bad conductors, which it would partly rend asunder, and partly consume by fire. Copper is now generally regarded as the best material for lightning conductors, and it is almost universally employed in these countries. If it is used in the form of a rope, it should not be less than half an inch in diameter; if a band of copper is preferred—and it is often found more convenient by builders—it should be about an inch and a half broad and an eighth of an inch thick. In France it has been hitherto more usual to employ iron rods for lightning conductors, but since iron is much inferior to copper in its conducting power, the iron rod must be of much larger dimensions; it should be at least one inch in diameter.[30]

The third condition is that the lightning conductor should be continuous throughout its whole length, and should be placed in good electrical contact with the earth. This is a condition of the first importance, and experience has shown that it is the one most likely of all to be neglected. In a large town the best earth connection is furnished by the system of water-mains and gas-mains, each of which constitutes a great network of conductors everywhere in contact withthe earth. Two points, however, must be carefully attended to—first, that the electrical contact between the lightning conductor and the metal pipe should be absolutely perfect; and, secondly, that the pipe selected should be of such large dimensions as to allow the lightning an easy passage through it to the principal main.

If no such system of water-pipes or gas-pipes is at hand, then the lightning rod should be connected with moist earth by means of a bed of charcoal or a metal plate not less than three feet square. This metal plate should be always of the same material as the conductor, otherwise a galvanic action would be set up between the two metals, which in course of time might seriously damage the contact. Dry earth, sand, rock, and shingle are bad conductors; and, if such materials exist near the surface of the earth, the lightning rod must pass through them and be carried down until it reaches water or permanently damp earth.

Mischief Done by Bad Conductors.—If the earth contact is bad, a lightning conductor does more harm than good. It invites the lightning down upon the building without providing for it, at the same time, a free passage to earth. The consequence is that the lightning forces a way for itself, violently bursting asunder whatever opposes its progress, and setting fire to whatever is combustible.

I will give you some recent and striking examples. In the month of May, 1879, the church of Laughton-en-le-Morthen, in England, though provided with a conductor, was struck by lightning and sustained considerable damage. On examination it was found that the lightning followed the conductor down along the spire as far as the roof; then, changing its course, it forced its way through a buttress of massive masonwork, dislodging about two cartloads of stones, and leaped over to the leads of the roof, about six feet distant. It now followed the leads until it came to the cast-iron down-pipes intended to discharge the rain-water, and through these it descended to the earth. When the earth contact of the lightning conductor was examined, it was found exceedingly deficient. The rod was simply bent underground, and buried in dry loose rubbish at a depth not exceeding eighteen inches. This is a very instructive example. The lightning had a choice of two paths—one by the conductor prepared for it, the other by the leads of the roof and the down-pipes—and, by a kind of instinct which, however we may explain, we must always contemplate with wonder, it chose the path of least resistance, though in doing so it had to burst its way at the outset through a massive wall of solid masonry.[31]

On the 5th of June, in the same year, a flash of lightning struck the house ofMr.Osbaldiston, near Sheffield, and, notwithstanding the supposed protection of a lightning conductor, it did damage to theamount of about five hundred pounds. The lightning here followed the conductor to a point about nine feet from the ground, then passed through a thick wall to a gas-pipe at the back of the drawing-room mirror. It melted the gas-pipe, set fire to the gas, smashed the mirror to atoms, broke the Sevres vases on the chimney-piece, and dashed the furniture about. In this case, as in the former, it was found that the earth contact was bad; and, in addition, the conductor itself was of too small dimensions. Hence, the electric discharge found an easier path to earth through the gas-pipes, though to reach them it had to force for itself a passage through a resisting mass of non-conductors.[32]

Again in the same year, on the 28th of May, the house ofMr.Tomes, of Caterham, was struck by lightning, and some slight damage was done. After a careful examination it was found that the greater part of the discharge left the lightning conductor with which the house was provided, and passed over the slope of the roof to an attic room, into which it forced its way through a brick wall, and reached a small iron cistern. This cistern was connected by an iron pipe of considerable dimensions with two pumps in the basement story; and through them the lightning found an easy passage to the earth, and did but little harm on its way. When the earth contact of the lightning conductor was examined, it was discovered that the end of the rod was simply stuck into a dry chalky soil to a depth of about twelve inches. Thus in this case, as in the two former, it was made quite clear that the lightning conductor failed to fulfill its functions because the earth contact was bad.[33]

Cases are not uncommon in which builders provide underground a carefully constructed reservoir of water, into which the lower end of the lightning rod is introduced. The idea seems to prevail that a reservoir of water constitutes a good earth contact; and this is quite true of a natural reservoir, such as a lake, where the water is in contact with moist earth over a considerable area. But an artificial reservoir may have quite an opposite character, and practically insulate the lightning conductor from the earth. One which came under my notice lately, in the neighborhood of this city, consists of a large earthenware pipe set on end in a bed of cement, and kept half full of water. Now, the earthenware pipe is a good insulator, and so is the bed of cement in which it rests; and the whole arrangement is identical, in all essential features, with the apparatus of Professor Richman, in which he introduced his lightning rod into a glass bottle, and by which he lost his life a hundred and thirty years ago.

A conductor mounted in this manner will, probably enough, draw down lightning from the clouds; but it is more likely to discharge it, with destructive effect, into the building it is intended to guard, than to transmit it harmlessly to the earth. An example is at hand in thecase of Christ Church, in the town of Clevedon, in Somersetshire. This church was provided with a very efficient system of lightning conductors, five in number, corresponding to the four pinnacles and the flagstaff, on the summit of the principal tower. The five conductors consisted of good copper-wire rope; all were united together inside the tower, through which they were carried down to earth, and there ended in an earthenware drain. This kind of earth contact might be pretty good as long as water was flowing in the drain; but whenever the drain was dry the conductor was practically insulated from the earth. On the fifteenth of March, 1876, the church was struck by lightning, which for some distance followed the line of the conductor; then finding its passage barred by the earthenware drain, which was dry at the time, it burst through the walls of the church, displacing several hundredweight of stone, and making its way to earth through the gas-pipe.[34]

Another very instructive example is furnished by the lightning conductor attached to the lighthouse of Berehaven, on the south-west coast of Ireland. It consists of a half-inch copper-wire rope, which is carried down the face of the tower “until it reaches the rock at its base, where it terminates ina small hole, three inches by three inches, jumped out of the rock, about six inches under the surface.” Here, again, we have a good imitation of Professor Richman’s experiment, with only this difference, that a small hole in the rock is substituted for a glass bottle. A lightning conductor of this kind fulfills two functions: it increases the chance of the lightning coming down on the building, and it makes it positively certain that, having come, it cannot get to earth without doing mischief.

The lightning did come down on the Berehaven Lighthouse, about five years ago. As might have been expected, it made no use of the lightning conductor in finding a path to earth, but forced its way through the building, dealing destruction around as it descended from stage to stage. The Board of Irish Lights furnished a detailed report of this accident to the Lightning Rod Conference, in March, 1880, from which the above particulars have been derived.[35]

Precaution Against Rival Conductors.—But it is not enough to provide a good lightning conductor, which is itself able to convey the electric discharge harmless to the earth; we must take care that there are no rival conductors near at hand in the building, to draw off the lightning from the path prepared for it, and conduct it by another route in which its course might be marked with destruction. This precaution is of especial importance at the present day, owing to the great extent to which metal, of various kinds, is employed in the construction and fittings of modern buildings. I will take a typical case which will bring home this point clearly to your minds.

A great part of the roof of many large buildings is covered with lead. The lead, at one or more points may come near the gutters intended to collect the rain water; the gutters are in connection with the cast-iron down-pipes into which the water flows, and these down-pipes often pass into the earth, which, under the circumstances, is generally moist, and, therefore, in good electrical contact with the metal pipes. Here, then, is an irregular line of conductors, which, though it has gaps here and there, may, under certain conditions, offer to the lightning discharge a path not less free than the lightning conductor itself. What is the consequence? The flash of lightning, or a part of it, will quit the lightning rod, and make its way to earth through the broken series of conductors, doing, perhaps, serious mischief, as it leaps across, or bursts asunder, the non-conducting links in the chain.

Another illustration may be taken from the gas and water-pipes, with which almost all buildings in great cities are now provided, and which constitute a network of conductors, spreading out over the walls and ceilings, and stretching down into the earth, with which they have the best possible electrical contact. Now, it often happens that a lightning conductor, at some point in its course, comes within a short distance of this network of pipes. In such a case, a portion of the electrical discharge is apt to leave the lightning conductor, force its way destructively through masses of masonry, enter the network of pipes, melt the leaden gas-pipe, ignite the gas, and set the building on fire.

These are not merely the speculations of philosophers. All the various incidents I have just described have occurred, over and over again, during the last few years. You will remember, in some of the examples I have already set before you, when the electric discharge failed to find a sufficient path to earth through the lightning rod, it followed some such broken series of chance conductors as we are now considering. But this broken series of conductors seems to bring with it a special danger of its own, even when the lightning conductor is otherwise in efficient working order. I will give you just one case in point.

On the fifth of June, 1879, the Church of Saint Marie, Rugby, was struck by lightning and set on fire, and narrowly escaped being burned to the ground. A number of workmen were engaged on that day in repairing the spire of the church. About three o’clock they saw a dense black cloud approaching, and they came down to take shelter within the building. In a few minutes they heard a terrific crash just overhead; at the same moment the gas was lighted under the organ loft and the woodwork was set in a blaze. The men soon succeeded in putting out the fire, and the church escaped with very little damage.

Now, in this case there was no reason to suppose that the lightningconductor was in any way defective. But about half-way up the spire there was a peal of eight bells. Attached to these bells were iron wires, about the eighth of an inch in diameter, leading from the clappers down to the organ-loft, where they came within a short distance of a gas-pipe fixed in the wall. It would seem that a great part of the discharge was carried safely to earth by the lightning conductor. But a part branched off at the bells in the spire, descended by the iron wires, and forced its way into the organ loft, to reach the network of gas-pipes, through which it passed down to the earth, melting the soft leaden gas-pipe in its course and lighting the gas.

The remedy for this danger is obvious. All large masses of metal used in the structure of a building—the leads and gutters of the roof, the cast-iron down-pipes, the iron gas and water mains—should be put in good metallic connection with the lightning conductor, and, as far as may be, with one another. Connected in this way they furnish a continuous and effective line of conductors leading safely down to earth; and, instead of being a dangerous rival, they become a useful auxiliary to the lightning rod.

I would observe, however, that the lightning conductor ought not to be connected directly with the soft leaden pipes which are commonly employed to convey gas and water to the several parts of a building. Such pipes, as we have seen, are liable to be melted when any considerable part of the lightning discharge passes through them; and thus much harm might be done, and the building might even be set on fire by the lighting of the gas. Every good end will be attained if the conductor is put in metallic connection with the iron gas and watermainseither inside or outside the building.

Insulation of Lightning Conductors.—It is a question often asked whether a lightning rod should be insulated from the building it is intended to protect. I believe that this practice was formerly recommended by some writers, and I have observed that glass insulators are still employed not infrequently by builders in the erection of lightning conductors; but, from the principles I have set before you to-day, it seems clear that any insulation of this kind is, to say the least, altogether useless. The building to be protected is itself in electrical communication with the earth, and the lightning conductor, if efficient, is also in electrical communication with the earth—therefore, the lightning conductor and the building are in electrical communication with each other through the earth, and any attempt at insulating them from one another above the earth is only labor thrown away.

Further, I have just shown you that the masses of metal employed in the structure or decoration of a building ought to be electrically connected with each other and with the lightning conductor. Now, if this be done, the lightning conductor is, by the fact, in direct communication with the building, and the glass insulators are utterlyfutile. Again, the building itself, during a thunderstorm, becomes highly electrified by the inductive action of the cloud, and needs to be discharged through the conductor just as the surrounding earth needs to be discharged; therefore, the more thoroughly it is connected with the conductor, the more effectively will the conductor fulfill its functions.

Personal Safety in a Thunderstorm.—I suppose there is hardly any one to whom the question has not occurred, at some time or another, what he had best do to secure his personal safety during a thunderstorm. This question is of so much practical interest that I think I shall be excused if I say a few words about it, though perhaps, strictly speaking, it is somewhat beside the subject of lightning conductors.

At the outset, perhaps, I shall surprise you when I say that you would enjoy the most perfect security if you were in a chamber entirely composed of metal plates, or in a cage constructed of metal bars, or if you were incased, like the knights of old, in a complete suit of metal armor. This kind of defense is looked upon as so perfect, among scientific men, that Professor Tait does not hesitate to recommend his adventurous young friends devoted to the cause of science to provide themselves with a light suit of copper, and, thus protected, take the first opportunity of plunging into a thundercloud, there to investigate, at its source, the process by which lightning is manufactured.[36]

The reason why a metal covering affords complete protection is that, when a conductor is electrified, the whole charge of electricity exists on the outside surface of the conductor; and therefore, when a discharge takes place, it is only the outside surface that is affected. Thus, if you were completely incased in a metal covering, and then charged with electricity by the inductive action of a thundercloud, it is only the metal covering that would undergo any change of electrical condition; and when the lightning flash would pass, it is only the metal covering that would be discharged.

Let me show you a very pretty and interesting experiment to illustrate this principle: Here is a hollow brass cylinder, open at the ends, mounted on an insulating stand. On the outside is erected a light brass rod with two pith balls suspended from it by linen threads. Two pith balls are also suspended by linen threads from the inner surface of the cylinder. You know that these pith balls will indicate to us the electrical condition of the surfaces to which they are attached. If the surface be electrified, the pith balls attached to it will share in its electrical condition, and will repel each other; if the surface be neutral, the pith balls attached to it will be neutral, and will remain at rest.

I now put this apparatus under the influence of our thundercloud, that is, the large brass conductor of our machine. The moment my assistant turns the handle, the electricity begins to be developed on the conductor, and you see, at once, the effect on the brass cylinder. The pith balls attached to the outer surface fly asunder; those attached to the inner surface remain at rest. And now a spark passes; our thundercloud is discharged; the inductive action ceases; the pith balls on the outside suddenly collapse, while those on the inside are in no way affected.

PROTECTION FROM LIGHTNING FURNISHED BY A CLOSED CONDUCTOR.

PROTECTION FROM LIGHTNING FURNISHED BY A CLOSED CONDUCTOR.

It is not necessary that the brass cylinder should be insulated. To vary the experiment, I will now connect it with the earth by a chain; you will observe that the effect is precisely the same as before. Flash after flash passes while the machine continues in action; the outside pith balls fly about violently, being charged and discharged alternately; the inside pith balls remain all the time at rest. Thus you see clearly that, if you were sitting inside such a metal chamber as this, or covered with a complete suit of metal armor, you would be perfectly secure during a thunderstorm, whether the chamber were electrically connected with the earth or insulated from it.

Practical Rules.—But it rarely happens, when a thunderstorm comes, that an iron hut or a complete suit of armor is at hand, and you will naturally ask me what you ought to do under ordinary circumstances. First, let me tell you what you ought not to do. You ought not to take shelter under a tree, or under a haystack, or under the lee of a house; you ought not to stand on the bank of a river, or close to a large sheet of water. If indoors, you ought not to stay near the fireplace, or near any of the flues or chimneys; you ought not to stand under a gasalier hanging from the ceiling; you ought not to remain close to the gas pipes or water-pipes, or any large masses of metal, whether used in the construction of the building, or lying loosely about.

The necessity for these precautions is sufficiently evident from the principles I have already put before you. You want to prevent your body from becoming a link in that broken chain of conductors which, as we have seen, the electric discharge between earth and cloud is likely to follow. Now a tree is a better conductor than the air; and your body is a better conductor than a tree. Hence, the lightning, in choosing the path of least resistance, would leave the air to pass through the tree, and would leave the tree to pass through you. A like danger would await you if you stood under the lee of a haystack or of a house.

The number of people who lose their lives by taking refuge under trees in thunderstorms is very remarkable. As one instance out of many, I may cite the following case which was reported in theTimes, July 14, 1887: “Yesterday the funeral of a negress was being conducted in a graveyard at Mount Pleasant, sixty miles north of Nashville, Tennessee, when a storm came on, and the crowd ran for shelter under the trees. Nine persons stood under a large oak, which the lightning struck, killing everyone, including three clergymen, and the mother and two sisters of the girl who had been buried.”

Again, every large sheet of water constitutes practically a great conductor, which offers a very perfect medium of discharge between the earth round about and the cloud. Therefore, when a thundercloud is overhead, the sheet of water is likely to become one end of the line of the lightning discharge; and if you be standing near it, the line of discharge may pass through your body.

When lightning strikes a building, it is very apt to use the stack of chimneys in making its way to earth, partly because the stack of chimneys is generally the most prominent part of the building, and partly because, on account of the heated air and the soot within the chimney, it is usually a moderately good conductor. Therefore, if you be indoors, you must keep well away from the chimneys; and for a similar reason, you must keep as far as you can from large masses of metal of every kind.

Having pointed out the sources of danger which you must try to avoid in a thunderstorm, I have nearly exhausted all the practical advice that I have at my command. But there are some occasions on which it may be possible, not only to avoid evident sources of danger, but to make special provision for your own security. Thus, for example, in the open country, if you stand a short distance from a wood, you may consider yourself as practically protected by a lightning conductor. For a wood, by its numerous branches and leaves, favors very much a quiet discharge of electricity, thus tending to suppress altogether the flash of lightning; and if the flash of lightning does come, it is much more likely to strike the wood than to strike you, because the wood is a far more prominent body, and offers, on the whole, an easier path to earth. In like manner, if you place yourself near a tall solitary tree, some twenty or thirty yards outside its longest branches, you will be in a position of comparative safety. If the storm overtake you in the open plain, far away from trees and buildings, you will be safer lying flat on the ground than standing erect.

In an ordinary dwelling house, the best situation is probably the middle story, and the best position in the room is in the middle of the floor; provided, of course, that there is no gasalier hanging from the ceiling above or below you. Strictly speaking, themiddle of the roomwould be a still safer position than the middle of the floor; and nothing could be more perfect than the plan suggested by Franklin, to get into “a hammock, or swinging bed, suspended by silk cords, and equally distant from the walls on every side, as well as from the ceiling and floor, above and below.” An interesting case has been recently recorded, by a resident of Venezuela, which illustrates in a remarkable way the excellence of this advice. “The lightning,” he says, “struck arancho—a small country house, built of wood and mud, and thatched with straw or large leaves—where one man slept in a hammock, another lay under the hammock on the ground, and three women were busy about the floor; there were also several hens and a pig. The man in the hammock did not receive any injury whatever, while the other four persons and the animals were killed.”[37]

But, as I can hardly hope that many of you when the thunderstorm actually comes will find yourselves provided with a hammock, I would recommend, as more generally useful, another plan of Franklin’s, which is simply to sit on one chair in the middle of the floor and put your feet up on another. This arrangement will approach very nearly to absolute security if you take the further precaution, also mentioned by Franklin, of putting a feather bed or a couple of hair mattresses under the chairs.[38]

Security Afforded by Lightning Rods.—You might, perhaps, be inclined to infer hastily, from the examples I have set before you, in the course of this lecture, of buildings which were struck and severely injured by lightning though provided with lightning conductors, that a lightning rod affords a very imperfect protection to life and property. But such an idea would be entirely at variance with the evidence at hand on the subject. In all the cases to which I have referred, and in many others which might easily have been cited, the damage was done simply because the lightning rods were deficient in one or more of the conditions on which I have so much insisted. Where these conditions are fulfilled, the lightning flash will either not come down at all upon the building, or, if it do come, it will be carried harmless to the earth.

Perhaps there is no one fact that so forcibly brings home to the mind the complete protection afforded by lightning conductors as the change which followed their introduction into the Royal Navy. I have already told you that in former times the damage done by lightning to ships of the Royal Navy was a regular source of expenditure, amounting every year to several thousand pounds sterling. But, after the general adoption of lightning conductors about forty years ago, through the indefatigable exertions of Sir William Snow Harris, this source of expenditure absolutely disappeared, and injury to life and property has long been practically unknown in Her Majesty’s Fleet.

I should say, however, that the trial of lightning conductors in the Navy, though it lasted long enough to prove their perfect efficiency, has almost come to an end in our own days. The great iron monsters which in recent times have taken the place of the wooden ships of Old England are quite independent of lightning rods in the common sense of the word. Their ponderous masts are virtually lightning rods of colossal dimensions, and their unsightly hulls are, so to speak, earth-plates of enormous size in perfect electrical contact with the ocean. To add to such structures lightning conductors of the common kind would be nothing better than “wasteful and ridiculous excess.”

As regards buildings on land, I may refer to the little province of Schleswig-Holstein, of which I have already spoken to you. From some cause or other this small peninsula is singularly exposed to thunderstorms, and of late years it has been more abundantly provided with lightning conductors than, perhaps, any other district of equal extent in Europe. Now, as a simple illustration of the protection afforded by these lightning conductors, I may mention that, on the 26th of May, 1878, a violent thunderstorm burst over the little town of Utersen. Five several flashes of lightning fell in different parts of the town, but not the slightest harm was done, each flash being safely carried to earth by a lightning conductor. Further, itappears from the records of the fire insurance company that, out of 552 buildings injured by lightning during a period of eight years—from 1870 to 1878—only four had lightning conductors; and in these four cases it was found, on examination, that the lightning conductors were defective.[39]

It would be easy to multiply evidence on this subject. But as I have already trespassed, I fear, too far on your patience, I will content myself with saying, in conclusion, that according to all the highest authorities, both practical and theoretical, any structure provided with a lightning conductor properly fitted up in conformity with the principles I have set before you to-day is perfectly secure against lightning. The lightning, indeed, may fall upon it, but it will pass harmless to the earth; and the experience of more than a hundred years has fully justified the simple and modest words of the great inventor of lightning conductors: “It has pleased God, in His goodness to mankind, at length to discover to them the means of securing their habitations and other buildings from mischief by thunder and lightning.”


Back to IndexNext