REYNAUD’S OPTICAL THEATER.
REYNAUD’S OPTICAL THEATER.
The apparatus which we are about to describe is an important link in the history of the synthesis of animated motion. The apparatus is the invention of Ottamar Anschuetz, of Lissa, Prussia. A special camera was used, adapted to take a number of photographs in quick succession. The instrument for displaying the pictures is called the “electrical tachyscope.” It consists of an iron wheel of sufficient diameter to hold an entire series of positive prints on the periphery. The wheel is arranged upon a rigid standard, and provided with a series of pins which register exactly with the picture. Upon the standard behind the wheel is located a box containing a spiral Geissler tube which is connected with the terminals of a Ruhmkorff coil. The primary coil is provided with a contact maker and breaker adapted to be operated by the pins projecting from the wheel, so that every time a picture comes before the Geissler tube it is illuminated by an electrical discharge through thetube. This discharge, being instantaneous, shows each picture in an apparently fixed position. These pictures succeed each other so rapidly that the retinal image of one picture is retained until the next is superimposed upon it, thereby giving to the observer the sense of a continuous image in constant motion.
ANSCHUETZ’S ELECTRICAL TACHYSCOPE.
ANSCHUETZ’S ELECTRICAL TACHYSCOPE.
The chronophotographic apparatus which we illustrate was invented by M. G. Demeny, who is the assistant of Dr. Marey, whose work in chronophotography we have already described. As long ago as 1891, M. Demeny was able to project upon a screen figures which simulated the motion of animal life.
FIGS. 1 AND 2.—THE DEMENY PROJECTION APPARATUS.1. Arranged for use without electricity or gas.2. Arrangement for stopping the strip of film.
FIGS. 1 AND 2.—THE DEMENY PROJECTION APPARATUS.
1. Arranged for use without electricity or gas.2. Arrangement for stopping the strip of film.
Strips of sensitized films from sixty to ninety feet in length were not available at this time, and it was necessary to employ some makeshift. Images were taken from the chronophotographic apparatus upon a strip four or five yards in length, and were printed as positives upon a glass disk sensitized by chloride of silver, and it was by means of this disk that the projection was made. Thenumber of images was limited to forty or fifty, according to the subject, but the advent of the long strips of sensitized film induced the inventor to so modify the apparatus as to be able to take images in long series and for projecting them. The apparatus of M. Demeny, which we show in ourengraving, employs strips of any length, but at present the longest that have been used are one hundred and fifteen feet. This gives about one thousand images of the dimensions adopted by the inventor, one and one half by one and three quarter inches. This wide surface of the image has an immense advantage, since, with the electric light, it permits of throwing the moving pictures on a screen sixteen feet high.
For a small screen the oxyhydrogen light will be sufficient. The lantern is provided with an ordinary condenser, in front of which is placed a water tank to absorb a portion of the heat. At the opposite end of the table stands the chronophotographic projector which carries the film wound around its bobbins. The lantern is so regulated that the luminous rays will fall exactly upon the aperture as the image passes behind the objective, O.
FIG. 3.—INTERIOR VIEW OF M. DEMENY’S REVERSIBLEPROJECTION APPARATUS.
FIG. 3.—INTERIOR VIEW OF M. DEMENY’S REVERSIBLEPROJECTION APPARATUS.
FIG. 4.—FIGURES OF ACTUAL SIZE FROM A STRIP OF FILM 115 FEET IN LENGTH.
FIG. 4.—FIGURES OF ACTUAL SIZE FROM A STRIP OF FILM 115 FEET IN LENGTH.
After the focusing has been effected, all that has to be done is to turn the crank, M. At P and R are seen guide bobbins that serve to put in their normal direction the films that have been used. As is well known, the principle of all projecting apparatus of this kind consists of arresting the film for aninstant at the moment it is uncovered by the shutter. The process employed in the Demeny apparatus is very simple. It is shown inFig. 3of our engraving. Upon coming from the bobbin the film passes over a guide roller, S, and then over a rod, D, mounted eccentrically; thence it goes to the toothed roller, C, designed for causing the images to register accurately. The film then reaches the magazine roller, B. The mechanism is entirely enclosed in a box, and the shutter disk, which is not shown in the engraving, is situated at the other side of the aperture, F. Beneath the bobbin, A, is a rubber roller, E, mounted upon a spring in such a way that it will bear against the film, whatever be the thickness of the ribbon on the bobbin. It is this roller which is moved by gearing that causes the film to unwind in a continuous manner, and thug prepares it for the eccentric rod, D, which pulls upon a portion of the film already unwound, but does not screen it. The film passing under the guide, S, passes between two velvet-lined frames, H and T, that are provided with an aperture F. It is upon making its exit thence, and passing over the guide, S, that the film is taken up by the rod, D, then runs over the toothed roller, C, and finally over the bobbin, B. All these parts, exclusive of the shutter, are interdependent, and are connected by gear wheels set in motion by the crank, M. None of them have a jerky motion. All of the parts of the mechanism have uniform rotary motion, and the stoppage of the films is prepared for by a graduated diminution of the velocity. One advantage of this apparatus is that it is very tender with the films. Our lastengravingrepresents a few images on a strip made for a spectacular drama at the Châtelet Theater, Paris. This strip is one hundred and fifteen feet long, and embraces a thousand images, each of which was colored by hand. The effect is very pleasing.
Since the time the “kinetoscope” brought the art of moving photography prominently into notice, many inventors have been striving to perfect apparatus for successfully projecting these miniature pictures upon the screen by means of a stereopticon, producing the same effect of motion as in the kinetoscope. In the kinetoscope the successive images are illuminated by reflected light, and are seen through a lens enlarging them considerably, say from half an inch in diameter to about four inches. The problem of the kinetoscope stereopticon was to successfully project these little images several thousand times, and secure sufficient illumination upon the screen to make them appear distinct and clear. The two factors which aided in solving the problem were the use of the electric lamp as an illuminant and of continuous flexible transparent celluloid films. Our firstengravingshows some kinetoscopic pictures taken directly from the negative film, by the “phantoscope” invented by Mr. C. F. Jenkins. The successive motions of practicing “puttingthe shot,” shown in these fifteen pictures, may be traced by beginning at the lower left-hand corner and reading upward for each column of pictures. The device for taking the phantoscope pictures is shown inFigures 5 and 6.
KINETOSCOPE PICTURES—PRACTICING PUTTING THE SHOT.
KINETOSCOPE PICTURES—PRACTICING PUTTING THE SHOT.
FIG. 1.—THE EDISON “VITASCOPE.”
FIG. 1.—THE EDISON “VITASCOPE.”
On a shaft is fixed a disk supporting four lenses, and geared to the shaft is a vertical shaft engaging a bevel gear on the axis of the film-winding reel. As the shaft is revolved by the handle on the outside, the lenses are brought respectively behind the opening in the front of the box and transmit the momentary images as they pass the opening to the moving sensitized film which goes in the same direction as the moving lens, and at the same speed. The exposed film is at the same time wound up on the top reel. With the same apparatus the positive pictures may be reeled off of one spool to the other, being projected by the electric light in the rear, illuminated by rotating condensers, one for each lamp. The pictures may be looked at in the box, through a small screen; they are made at the rate of twenty-five to the second, and are about three-quarters of an inch in diameter, and one-quarter of an inch apart, on a continuous sensitized celluloid strip about one and a half inches wide, having perforations in its edges, in which the sprocket wheels of the projecting device engage. The projecting apparatus is shown inFig. 1, and consists of an electric arc lamp in front of which is a condenser. In advance of that is the motor for operating the feed mechanism, and in front of all is the film traveling device and the objective. Our secondengravingis a view of the stand complete, showing the rheostat, switches, etc., for regulating the current. The film, after passing behind the lens, is wound up on the reel below. Our thirdengravingshows the use of the apparatus in the theater. It is placed in a cabinet surrounded by curtains, in an upper gallery, the images being thrown forward upon a screen upon the stage.
FIG. 2.—THE EDISON “VITASCOPE.”
FIG. 2.—THE EDISON “VITASCOPE.”
FIG. 3.—THE “VITASCOPE” IN THE THEATER.
FIG. 3.—THE “VITASCOPE” IN THE THEATER.
FIG. 4.—FILM PROJECTING APPARATUS.
FIG. 4.—FILM PROJECTING APPARATUS.
In projecting pictures of this kind it has been usual to employ shutters operating in unison with the movements of the picture ribbon. After a series of experiments it was found that the same effect of motion could be produced by causing the ribbon itself to have an intermittent movement without the use of shutters at all, which greatly simplifies the apparatus. A film-working apparatus based on this idea is shown in detail atFig. 4. The electric motor operates a main shaft to which it is geared, a worm engaging a gear on the shaft with the main sprocket pulley, and draws the picture ribbon downward at a uniform speed. Back of this shaft may be seen the main shaft, intended to rotate rapidly, on the end of which is a disk having a roller eccentrically fixed thereto. Behind this is a standard supporting spring-tension fingers behind the lens. As the film is drawn forward by the main sprocketpulley, it is quickly pulled downward by each rotation of the rapidly moving eccentric roller on the disk. The sprocket pulley meanwhile takes up the slack of the ribbon, so that at the next rotation the eccentric roller quickly pulls the film down and makes the change; from the sprocket pulley the film is carried to the winding wheel operated automatically from the main shaft bymeans of pulleys; or, when it is desired to repeat the subject over and over again, the endless film is allowed to drop into folds in a box located under the sprocket pulley, passing out at the rear, upward over pulleys arranged above the spring-tension fingers, then downward between them again to the main pulley.
FIGS. 5 AND 6.—THE JENKINS “KINETOSCOPE” CAMERA.
FIGS. 5 AND 6.—THE JENKINS “KINETOSCOPE” CAMERA.
Fig. 7is a diagram of a film-moving mechanism of an English inventor, Mr. Birt Acres, which has been successfully operated in London.
FIG. 7.—ACRES’ PROJECTING DEVICE.
FIG. 7.—ACRES’ PROJECTING DEVICE.
The picture film is drawn from an upper reel, passed over a sprocket pulley, downward through a retaining clamp, and over a second pulley to the bottom or winding reel. The film passes over both sprocket pulleys at a uniform speed, between a stationary and swinging clamp operated automatically from the shaft of the shutter and which holds the film stationary when the opening of the shutter is behind the lens, during the interval the picture is projected on the screen. The clamp is released; then the pivoted lever below, with a roller on the upper end, is pulled inward at the other end by a spring and immediately takes up the slack (asshownby the dotted lines), and causes, by such sudden movement, the bringing of the next picture into position.
THE DARK ROOM AND REEL FOR DEVELOPING FILMS.
THE DARK ROOM AND REEL FOR DEVELOPING FILMS.
The “mutograph” and “mutoscope” are names of very interesting machines for presenting moving photographs. The camera frame is mounted, by means of three adjustable legs, upon a triangular turntable, which may be placed upon any suitable support. Upon the top of the frame is bolted a two horse-power electric motor which is driven by a set of storage batteries; the combination of the turntable with a vertical adjustable enables the camera to be shifted so as to take in the required field. In the front of the camera is fixed a lens of great light-gathering quality which produces an image of exceedingly clear detail. Inside the camera is a strip of gelatine film two and three-quarter inches wide, and usually about one hundred and sixty feet in length, which is wound upon a small pulley and drum. The length of the film varies for different subjects. In case of a prolonged scene it may extend several thousand feet. The film is led through a series of rollers, and is caused to pass directly behind the lens of the camera, and is finally wound upon a drum. The object of the rollers is to cause the film to pass behind the lens with an intermittent instead of a continuous motion. At ordinary speeds this could be easily accomplished, but the difficulties are increased when it is remembered that the impressions are taken at the rate of forty per second, and that the film, which is running at the rate of seven or eight feet a second, has to be stopped and started with equal frequency. The film comes to a rest just as the shutter opens, and starts again as the shutter closes. The impressions vary in actual exposure between one one-hundredth and one four-hundredth ofa second. While the ordinary speed is forty a second, the mutoscope can take equally good pictures at the rate of one hundred per second, if it is necessary. The highest speed would be used in photographing the flight of a projectile or other object which was in extremely rapid motion. After the mutograph has done its work, the films are carefully packed and sent to the New York establishment of the American Mutoscope Company. Here they are taken to the dark room, the interior of which is shown in ourengraving. Arranged along each side of this room is a series of troughs, above which are suspended large skeleton reels three feet in diameter and seven feet long, the axes of the reels being journaled in brackets attached to the end of the trough. The films are wound upon the reels and subjected to the action of the various solutions for developing, fixing, etc., the reels being transferred from bath to bath until the films are ready to go to the drying-room. In this room are also prepared positive transparent strips for use in the biograph and the bromide prints for the mutoscope.
TAKING PICTURES FOR THE “MUTOSCOPE.”
TAKING PICTURES FOR THE “MUTOSCOPE.”
DRYING AND RETOUCHING ROOM. “MUTOSCOPE” SHOWN IN THE FOREGROUND.
DRYING AND RETOUCHING ROOM. “MUTOSCOPE” SHOWN IN THE FOREGROUND.
THE SAUSAGE FACTORY.
THE SAUSAGE FACTORY.
The films are unwound on to large wooden drums about the same size as the reels, where they are carefully dried. At the far end of the room are seen the machines for cutting up the bromide prints. Here also is carried on the work of retouching the films and preparing them for use in the biograph and mutoscope pictures. The biograph is somewhat similar to machines which we have already described.
The annexed engravings show pictures of clay-pigeon shooting and of the firing of a ten-inch disappearing gun at Sandy Hook.
“MUTOGRAPH” PICTURES OF CLAY-PIGEON SHOOTING, AND OF THE FIRING OF A TEN-INCHDISAPPEARING GUN AT SANDY HOOK.
“MUTOGRAPH” PICTURES OF CLAY-PIGEON SHOOTING, AND OF THE FIRING OF A TEN-INCHDISAPPEARING GUN AT SANDY HOOK.
Upon the roof of the New York establishment of the company there has been erected a large movable stage for taking photographs of celebrated scenes from plays or of individual performances in which it is desired to reproduce the motions as well as the features of the subject. It consists of a floor of steel I-beams which carries a series of three concentric steel traps. Upon this rotates the massive frame at one end of which is a stage supplied with the necessary scenery, and at the other end a corrugated iron house, in whichis located the mutograph. The stage is bolted to the frame, but the house travels upon a track, so that it may be moved to or from the stage as required. The frame carrying the stage and house rotates about the smaller circular track located beneath the house, and may be swung around so as to throw the light full upon the scene at any hour of the day.
INTERIOR OF THE “MUTOSCOPE.”
INTERIOR OF THE “MUTOSCOPE.”
The “mutoscope” is compact, and the pictures are large. It is not any larger than the cover of a sewing machine. The enlarged bromide prints, measuring four by six inches, are mounted in close consecutive order around the cylinder and extend out like the leaves of a book, as shown in theillustration. In the operation of the mutoscope the spectator has the performance entirely under his own control by turning a crank which is placed conveniently at hand, and may make the operation as quick or as slow as he desires, and can stop the machine at any particular picture at will. Each picture is momentarily held in front of the lens by the action of a slot attached to the roof of the box, which allows the pictures to slip by in much the same way as the thumb is used upon the leaves of a book.
MOVABLE STAGE FOR PHOTOGRAPHING SCENES WITH THE “MUTOGRAPH.”
MOVABLE STAGE FOR PHOTOGRAPHING SCENES WITH THE “MUTOGRAPH.”
The “cinematograph” camera, invented by the Messrs. Lumière & Sons, works on a somewhat different principle from those we have already described. In this camera the film is carried forward intermittently, no sprocket wheel being used. The film-moving mechanism is fully illustrated inFigs. 1 and 3.
FIGS. 1, 2, AND 3.—FILM-MOVING MECHANISM.
FIGS. 1, 2, AND 3.—FILM-MOVING MECHANISM.
The film-moving device consists of two prongs which somewhat resemble a fork. It is shown at D inFig. 3. The prongs are alternately pushed through or withdrawn from the perforated ribbon by the aid of a rotating bar, C. The film-moving device, D, has really a shuttle movement, having a rapid reciprocating motion. The rotating bar, C, which is secured to the main shaft, is so arranged that its ends, which are bent in opposite directions, strike on alternate sides of the wedge-shaped piece which is secured to the fork, D, and thus impart to the latter a reciprocating motion. The up-and-down motion of the film is accomplished by the aid of a cam which is secured to the main shaft. The reciprocating yoke piece, A, is given a vertical motion when the crank shaft is rotated. The arm, B, is attached to the yoke piece, A, and this carries down the film through the medium of the fork, D. When the film has been lowered the distance of one exposure, the rotating bar, C, strikes the fork and removes the prongs from the film. The yoke piece then raises the prongs, and the other arm of the rotating bar strikes the wedge-shaped piece, and forces the fork, D, through the apertures in the film. On the main shaft is also arranged the shutter, E, which rotateswith the film-moving mechanism.Fig. 2shows the simplicity of the camera. On the upper end of the box is the sensitized ribbon, which passes downward between guides before the lens opening. The bent ends of the cam operating bar, which give the fork, D, its reciprocating motion, are shown in Fig. 3. Fig. 4 is a general view of the instrument, showing the driving gear and film support. Fig. 5 shows the cinematograph camera in operation. It will be seen that the camera is very portable. The same camera can be converted into a projecting apparatus for throwing moving pictures upon the screen. The images are about an inch square.
FIG. 4.—DRIVING GEAR AND FILM SUPPORT.
FIG. 4.—DRIVING GEAR AND FILM SUPPORT.
FIG. 5.—THE CINEMATOGRAPH IN OPERATION.
FIG. 5.—THE CINEMATOGRAPH IN OPERATION.
The camera for ribbon photography which weillustrateis the invention of Mr. C. F. Jenkins, the inventor of the “vitascope,” which we have already described. Instead of using a rotary disk shutter, the radial apertures, and afixed lens, this camera has a single opening in the front, the size of the aperture being regulated at its rear end by a diaphragm disk having radial slots of varying widths cut therein. The operator is thereby enabled to govern the amount of light admitted to the lenses according to the subject to be photographed and the length of the exposure desired. This disk is rotated by hand, like an ordinary stop in a wide-angle lens. Back of the diaphragm disk is the battery of lenses, each of the same focus, arranged in a circle, joining each other, upon a rotating disk which is secured to a shaft which extends rearward and terminates in a bevel gear wheel which meshes with a side bevel gear wheel fixed upon the main shaft, suitably geared to the main driving shaft.
RIBBON PHOTOGRAPHY—A NEW CAMERA.
RIBBON PHOTOGRAPHY—A NEW CAMERA.
The main shaft may be operated by a crank on the outside of the box, by hand or by any suitable motor. The sensitized celluloid perforated ribbon film maybe noticed passing downwards near the front end of the camera, in front of the exposure tension plate, the square aperture in which is exactly in line with the front aperture in the box. From this point the film, after exposure, passes downward between the sprocket wheel and pressure roller to the winding reel in the rear end of the camera, which is rotated by belt-connection to a pulley on the upper shaft and takes up the film ribbon as rapidly as it is exposed. A feed roll for the supply of unexposed film is not shown, but may be located at the rear of the camera, over the winding reel. The operation will be readily understood. The camera is placed upon the tripod or stand; the crank on the outside is rotated, which causes the film to travel downwards continuously, at exactly the same speed at which the lenses rotate, so that at every fraction of a second that it takes for each lens to pass behind the camera aperture an impression of light is made on the downwardly moving film; and as the lenses and film both move in unison, it follows that a sharp picture will be the result while the brilliancy of the illumination is at its maximum. The camera can be carried about as readily as any other camera. In practice it is found that the motion of the hand-operated crank is sufficiently uniform to permit of the proper reproduction of motion by the positive pictures projected upon the screen.
RIBBON PHOTOGRAPHY—EXPOSING AND PRINTING APPARATUS.
RIBBON PHOTOGRAPHY—EXPOSING AND PRINTING APPARATUS.
Our nextengravingshows how the positive ribbon pictures for the vitascope and other forms of apparatus are printed; this is also the invention of Mr. Jenkins. It consists of reels supported on suitable upright standards holding respectively the sensitized ribbon film and the negative film. The film from the negative supply wheel is carried along over the sensitized film wheel, and both pass in contact, in continuous motion, under an exposing chamber illuminated by any source of white light, as an incandescent lamp or a Welsbach incandescent gaslight, thence over the toothed sprocket driving wheel to the winding wheels, the exposed film being wound first. This will be better understood by reference to our detaileddiagramof the mechanism. It will be noticed that the reels are interchangeable, and hence, to make duplicate copies it is only necessary to remove the negative spool from the winding-up end to the supply-spool standard of the apparatus, and begin over again. The perforationsin the edges of the film are of a special square shape, and give the square sprocket wheel of the propelling pulley a better tension on the film. The teeth pass through the perforations of both films, causing both to move at exactly the same time, and at all times to keep in perfect registry. The speed of the film passing under the exposing chamber must be absolutely uniform; this is obtained by propelling the sprocket wheel by an electric motor or by a spring motor. The electric motor is seen in the largewood cut. The axle of the motor has worm gear operating a cog wheel on the main shaft. The V-shaped elastic band holds the frame in which is a ground glass in contact with the film, producing a kind of tension on the film. To the left of the light chamber is a supplementary tension adjusted by screw nuts, as shown. Referring to thediagram, two slotted diaphragm cards will be seen. These are placed over the ground glass just mentioned, at the bottom of the light chamber, and are for the purpose of regulating the amount of light that acts on the negative. Ifthe negative film, as a whole, should be thin, then a card with a narrow slot is used, which allows a short exposure to be made if the negative and film are passed under it. If the negative is full of density, then the narrow card is removed, and the wider slotted card substituted, which allows a larger volume of light to act upon the negative film. The exposed film is wound around large open reels from a spool and is developed by passing through cloths of developer solution. The novelty in the device which we illustrate consists in the fact that the film moves continuously under a uniform source of light, under any intermittent motion or the use of shutters. The operation of exposing the film is carried out in a room illuminated by the usual ruby light.
RIBBON PHOTOGRAPHY—DIAGRAM OF THE PRINTING DEVICE.
RIBBON PHOTOGRAPHY—DIAGRAM OF THE PRINTING DEVICE.
[17]By D. F. St. Clair.
[17]By D. F. St. Clair.
The principles of the kinetoscope or mutoscope have been applied to the microscope, with some interesting results, by Dr. Robert L. Watkins, of New York City. The instrument, though simple, was made a success only after many experiments and failures in adjusting the objective of the microscope in a line with the right sort of light and a rapidly moving film.
The principal difficulties in making a mutoscope out of so delicate an instrument as the microscope are the light and the lens. Every electric lamp in the market, when its light has been concentrated sufficiently for photography, will, after a short time, with its heat, kill, dry up, or impair almost any kind of life in the microscopic field. The greater the magnification, themore intense the light must be and the nearer the microscope. This difficulty was often enhanced by the length of time it took to get a focus on the sensitive film, but most of the pictures taken were good, and show well the various characteristics of the action taking place in cell life, so far as it can be observed with the microscope.
A ROTIFER AS SEEN IN THE MICROMOTOSCOPE.
A ROTIFER AS SEEN IN THE MICROMOTOSCOPE.
Whatever is to be photographed, once it is put in the field of the lens, is adjusted to a horizontal plane. Near one end of the microscope is placed an electric lantern containing a small arc light concentrated on the object. Near the other end is the box that covers the apparatus for moving the long, sensitive gelatine film. The film runs like a belt, on wheels, and passes in front of a tiny window in the box and on a direct line with the lens and light. This machinery is turned by a crank, and its ordinary capacity is about 1,600 pictures per minute. It is possible to increase it to 2,000 or 2,500, but for most purposes 1,000 or even less per minute will record every motion taking place in most cell life. Dr. Watkins found, however, after a number of trials, that he could not turn the machine fast enough to photograph the motion of the blood circulating in the web of a frog’s foot. He simply needed a larger wheel.
The advantages of mutoscopic photography to microscopy are quite evident, especially as regards the action of bacteria and blood cells. Nearly all the numerous families of bacteria have motion, many having motion that the eye cannot always follow clearly. It has already been discovered that the same kind of bacteria will act very differently under different circumstances. For instance, a flash of bright light will suddenly drive some kinds to cover. Some kinds will readily seek the negative pole of the battery. They will also seek food with avidity and reject poison with true instinct. All such phenomena can, of course, be followed with the eye, but not with the same detail in the microscopic field as in a series of clear photographs. The fact is that on account of the motion of some bacteria it has been well nigh impossible to photograph them. The books have had to depend upon the eye and hand of the draughtsman and upon vague description. This may not be of much importance either way, but as yet comparatively little is known about bacteria. It is not yet known whether they are the cause of disease, or its results, or neither. Photography, under the proper circumstances, is most needed for the investigator, and it can be only moving photography.
The capillary or circulatory motion of the blood cells, after the blood has been drawn, is comparatively slow at best; but the amœboid movement of the white cells and the changes taking place in the nuclei are complicated, and often hard to intelligently watch in the field. Many of these changes occurring in the white cells are certain to escape attention, but all of them will be clearly recorded on the rapidly moving sensitive film. These motions in the white cells, though they are as yet imperfectly understood, are full of meaning to the physiologist and pathologist. The offices that the blood performs in the body are believed to be due mainly to the action of the white cells. Certainly, the character of their amœboid action is one of the surest indications of health or disease.
But with the micromotoscope it need no longer be impossible to photograph the blood in actual circulation. With a better light the cells may be seen in the thin tissue of the ear or the web of the fingers. They have often been examined in the peritoneum during an operation, and Dr. Watkins himself has made a close study of them in the web feet of some birds and the tails of fishes.
Unfortunately, theillustrationof blood here reproduced does not show the white cells. They stuck to the glass, while the red cells, it will be perceived, retain something of their motion, continuing to flow across the field for half an hour after the blood was drawn.
MOVEMENT OF BLOOD CORPUSCLES SHOWN BY THE MICROMOTOSCOPE.
MOVEMENT OF BLOOD CORPUSCLES SHOWN BY THE MICROMOTOSCOPE.
APPENDIX.
This was a trick of the late Alexander Herrmann. In the center of the stage is placed a light table with three legs and a plush top. The prestidigitateur moves his hand over the table; suddenly it rises in the air and follows his hands wherever he moves them. The secret of the trick will be easily understood by reference to ourengraving. A small nail is driven in the center of the table. This nail is not noticed by the audience, and the plush top tends to hide it. The magician wears a ring which is flattened on the inner surface and a small notch is filed in it. The ring is placed on the middle finger of the right hand; the hand is spread over the table until the notch fits under the head of the nail. The table can then be lifted with great ease, and it appears to follow the hand of the conjurer in obedience to the magic wand.
THE MAGIC TABLE.
THE MAGIC TABLE.
THE LADY READY FOR ELECTROCUTION.
THE LADY READY FOR ELECTROCUTION.
This very clever illusion was designed by Mr. W. E. Robinson, the assistant of the late Herrmann the Great. It has been exhibited in several of the large cities, and is always a great success. When the curtain is raised the square frame is seen; this frame is braced laterally by side pieces. At the lower part of the frame, within easy reach of the prestidigitateur, is a windlass. Ropes pass from this windlass, over pulleys, to a crossbar in the upper part of the frame. A lady is now brought upon the stage and for some terrible crime is sentenced to be electrocuted. She is seated in a chair, which she grasps tightly. She is then tied tightly to the chair with ropes, and her hands are chained together. The prestidigitateur now secures the chair, with its fair occupant, to the ropes which are connected with the windlass, by means of hooks which fasten to the top frame of the chair. Wires are now secured to the unfortunate lady sothat it really seems as though she was to receive the death-dealing current. The professor of magic now winds away at the windlass and raises the chair until the head of the victim is on a level with the crossbar. He then discharges a pistol, and at the same instant the lady disappears and the chair drops to the floor. Such is, in brief, the mode of operation of the trick called “Gone.”
RAISING THE LADY BY MEANS OF THE WINDLASS.
RAISING THE LADY BY MEANS OF THE WINDLASS.
In reality the illusion is a clever adaptation of the “Pepper Ghost” of which we have already described several variations. A reference to our firstengravingwill show that at the sides of the frame is a row of incandescent lights. While the lady is being secured to the chair, and while she is being hoisted up to the crossbar, these lamps are kept lighted; but the instant the pistol is fired, these lights are extinguished by a stage hand in the side scene. Up over the proscenium arch is arranged a background which corresponds to the background of the stage. Two wooden bars cross it. Directly below this screen, and carefully shielded from the observation of the spectators, is a row of incandescent lights. As the pistol is fired these lights are turned on, while those in the frame are extinguished. Now, according to the principles of the “Pepper Ghost” which we have already described, the person or thing which is brilliantly lighted has its image projected on a sheet of glass and appears to be real. The front of the frame, from the windlass to the horizontal cross piece, is covered with a sheet of glass which is not apparent to the audience.The image of the background is projected upon this glass, which hides the lady from view, although she is immediately behind it, and the pieces of wood and this artificial background take the place of the back posts of the frame, thus deceiving the audience. The chair is made in two sections, the lady being tied to the upper, or skeleton chair. She holds a heavy chair with her hand tightly, and at the instant when the pistol is fired she releases the chair, which falls to the floor with a loud noise.
THE ILLUSION OF “GONE” EXPLAINED.
THE ILLUSION OF “GONE” EXPLAINED.
There is another illusion, called “Out of Sight,” invented also by Mr. W. E. Robinson, which is somewhat similar, but is not as interesting from a scientific point of view. It is, however, better adapted for a traveling company, as there is no glass to break, the large sheet of plate glass in the front of the frame being entirely dispensed with. When the pistol is fired, a curtain of the same color as the background is released by the prestidigitateur, and it is drawn down quickly by means of rubber bands. It takes only an instant for the curtain to descend, its lower edge being hidden from view by the windlass. The audience is usually deceived as easily by this illusion as by the more complicated one.
This is one of the most interesting of the series of tricks which depend upon mirrors, and of which the “Decapitated Princess” is a type. When the curtain rises, the scene shows a gentleman’s country house set upon the embankment and surrounded by grass plots and shrubbery. This is painted scenery such as is usually used in theaters. The house is approached by a set of stone steps which are built out from the scene proper, or, in other words, the drop. These are what is known in theatrical parlance as “practical” steps; that is, they may be ascended. The steps are encased by side walls, and these walls are surmounted by vases of flowers and handsome lamp posts. The steps lead to the doorway of the house; the door is also “practical,” and can be opened and shut. The story runs that the house was deserted for such a long time that the steps were covered by a gigantic spider’s web, and the spectator is surprised to see this web, which extends from post to post and to the side walls of the steps.
In the center of this gigantic web is seen a spider’s body with a woman’s head. The steps leading to the doorway of the house are open, and a person starts to descend, but stops on seeing the spider, and retreats after taking three or four steps down the stairs. This adds greatly to the illusion, as it looks as if it could not be produced by a mirror. You can see both above and below the head, and the steps may be seen at any angle you choose. The puzzling part of the trick is the question of the whereabouts of the lady’s body.