There are some folks that sayThey have found out a wayTo be healthy and wealthy and wise:—"Let your thoughts be but few,Do as other folks do,And never be caught by surprise.Let your motto be follow the fashion,But let other people alone;Do not love them nor hate them nor care for their fate,But keep a lookout for your own.Then what though the world may run riot,Still playing at catch who catch can,You may just eat your dinner in quietAnd live like a sensible man."In Nature I read quite a different creed,There everything lives in the rest;Each feels the same forceAs it moves in its course,And all by one blessing are blest.The end that we live for is single,But we labor not therefor alone;For together we feel how by wheel within wheelWe are helped by a force not our own.So we flee not the world and its dangers,For He that has made it is wise;He knows we are pilgrims and strangers,And He will enlighten our eyes.
There are some folks that sayThey have found out a wayTo be healthy and wealthy and wise:—"Let your thoughts be but few,Do as other folks do,And never be caught by surprise.Let your motto be follow the fashion,But let other people alone;Do not love them nor hate them nor care for their fate,But keep a lookout for your own.Then what though the world may run riot,Still playing at catch who catch can,You may just eat your dinner in quietAnd live like a sensible man."
In Nature I read quite a different creed,There everything lives in the rest;Each feels the same forceAs it moves in its course,And all by one blessing are blest.The end that we live for is single,But we labor not therefor alone;For together we feel how by wheel within wheelWe are helped by a force not our own.So we flee not the world and its dangers,For He that has made it is wise;He knows we are pilgrims and strangers,And He will enlighten our eyes.
There probably was not a more nicely logical or more accurately reasoning intellect among all our nineteenth century scientists than that of the great mathematical electrician. He had none of the one-sidedness of the merely experimental scientist, nor, on the other hand, the narrowness of the exclusively speculative philosopher. With a power of analysis that was seldom equaled during the century, he had a power of synthesis that probably surpassed any of his contemporaries in any part of Europe. His ideas with regard to matter and its ultimate constitution are most suggestive. His suggestion of a strain in the ether as an explanation of electricity, thus enabling scientists to get away from the curious theories of the foretime which had required them to accept "action at a distance," that is, without any connecting medium, shows his power of following outabstruse ideas to definite practical conclusions. His religious life, then, will be a surprise to those who think that science leads men away from religion.
In the life of Clerk Maxwell, written by Campbell and Garnett,[34]there is a passage from his friend and sometime pastor, Guillemard, in which the details of his religious life are given so fully as scarcely to require any further gleaning of information in this regard.
"He was a constant, regular attendant at church, and seldom, if ever, failed to join in our monthly late celebration of Holy Communion, and he was a generous contributor to all our parish charitable institutions. But his illness drew out the whole heart and soul and spirit of the man; his firm and undoubting faith in the Incarnation and all its results; in the full sufficing of atonement; in the works of the Holy Spirit. He had gauged and fathomed all the schemes and systems of philosophy, and had found them utterly empty and unsatisfying—'unworkable' was his own word about them—and he turned with simple faith to the Gospel of the Saviour."
His faith was not disturbed at the near approach of death, but, on the contrary, seemed strengthened. His biographers tell the story of some of the expressions used to his friends during these last days, which furnish manifest proof of this. Some of these passages are so characteristic and so striking that they deserve to be in the note-book of those to whom the modern idea that science is opposed to religion or faith may sometimes have been a source of worry, or at least an occasion forargument. Here is a typical one of these passages:
"Mr. Colin Mackenzie has repeated to us two sayings of his during those last days, which may be repeated here: 'Old chap, I have read up many queer religions; there is nothing like the old thing, after all; and I have looked into most philosophical systems, and I have seen that none will work without a God.'"
It must not be imagined, because Clerk Maxwell was a deeply religious man, that, therefore, he was frigid or formal or extremely serious, or inclined to be puritanic with regard to the pleasures of life, or a fanatic in the matter of taking all the good-natured fun there might be in anything that turned up. He was far from over-serious, or what has been called, though not quite properly, ascetic; but, on the contrary, was often, indeed usually, the soul of the party with which he was at the moment. He had none at all of the self-centered interest of the narrow-minded, but had many friends, and was liked by all his acquaintances. His friends were enthusiastic about his kindness of heart and the thorough congeniality of his disposition. On this point, the sketch of him in the National Dictionary of Biography gives a charming picture:
"As a man, Maxwell was loved and honored by all who knew him; to his pupils, he was the kindest and most sympathetic of teachers; to his friends, he was the most charming of companions, brimful of fun, the life and soul of a Red Lion dinner at the British Association meetings; but in due season brave and thoughtful, with keen interest in problems that lay outside the domain of his own work, and throughout his life a stern foe to all that was superficial or untrue. On religious questions,his beliefs were strong and deeply rooted."
It may be added to this, that his religion had nothing of the merely formal about it, nor was it perfunctory. It entered into most of the details of his life, and the fact that, every day as the head of the house he led evening prayers for the family, was only a token of the deep hold which religion had upon his life. When his last illness came, though he knew that his end was not far off, and at his age sometimes the approach of death hampers religious faith because it does seem that longer life might be afforded to one who has been so faithful in his realization of the obligations of life, Clerk Maxwell's piety increased rather than diminished. A favorite expression of his during his last days was the verselet from Richard Baxter, which one would be apt to think of as frequently repeated by some feminine devotee rather than by the greatest mathematical scientist of the nineteenth century:
"Lord, it belongs not to my care,Whether I die or live;To love and serve Thee is my share,And that Thy grace must give."
"Lord, it belongs not to my care,Whether I die or live;To love and serve Thee is my share,And that Thy grace must give."
A friend who knew him intimately says: "In private life, Clerk Maxwell was one of the most lovable of men, a sincere and unostentatious Christian. Though perfectly free from any trace of envy or ill-will, he yet showed on fit occasions his contempt for that pseudo-science which seeks for the applause of the ignorant by professing to reduce the whole system of the universe to a fortuitous sequence of uncaused events."
In these phases of his intellectual life, the greatest of the mathematical electricians of the nineteenth century deserves to be taken as the type of the man of science, rather than the many mediocre intelligences whose minds were not large enough apparently for the two sets of truths—those of the moral as well as of the physical order.
FOOTNOTES:[31]See life of Johann Müller, in Makers of Modern Medicine, Fordham University Press, N. Y., 1906.[32]Heroes of Science Physicists, N.Y., Young & Co., 1885.[33]Heroes of Science Physicists, by Wm. Garnett, M. A., D. C. L. London Society for Promoting Christian Knowledge, Northumberland Ave., Charing Cross, W. C. New York, E. and J. B. Young.[34]The Life of James Clerk Maxwell, with a selection from his correspondence and occasional writings, and a sketch of his contributions to science. Lewis Campbell and William Garnett. London, 1882.
[31]See life of Johann Müller, in Makers of Modern Medicine, Fordham University Press, N. Y., 1906.
[31]See life of Johann Müller, in Makers of Modern Medicine, Fordham University Press, N. Y., 1906.
[32]Heroes of Science Physicists, N.Y., Young & Co., 1885.
[32]Heroes of Science Physicists, N.Y., Young & Co., 1885.
[33]Heroes of Science Physicists, by Wm. Garnett, M. A., D. C. L. London Society for Promoting Christian Knowledge, Northumberland Ave., Charing Cross, W. C. New York, E. and J. B. Young.
[33]Heroes of Science Physicists, by Wm. Garnett, M. A., D. C. L. London Society for Promoting Christian Knowledge, Northumberland Ave., Charing Cross, W. C. New York, E. and J. B. Young.
[34]The Life of James Clerk Maxwell, with a selection from his correspondence and occasional writings, and a sketch of his contributions to science. Lewis Campbell and William Garnett. London, 1882.
[34]The Life of James Clerk Maxwell, with a selection from his correspondence and occasional writings, and a sketch of his contributions to science. Lewis Campbell and William Garnett. London, 1882.
Lord Kelvin
Few men lived to witness so many remarkable discoveries in science and so many applications of the same to the welfare of the race as did the man whose name stands at the head of this chapter. When William Thomson, the future Lord Kelvin, first saw the light of day, the voltaic pile was in a rudimentary and inefficient form. It is true that water had been decomposed by the current from a pile in 1800,[35]that the magnetic effect of the current had been discovered in 1820, and the possibility of a practical form of an electric telegraph suggested in the same year; but Ohm's law was still one of nature's secrets, electromagnetic induction was undiscovered, and the doctrine of energy but ill understood. Light, electricity and magnetism were regarded as distinct forces, and heat was thought to be a material substance, to which the name caloric was assigned. What Young, Fresnel and Ampère were in the early years of the nineteenth century; what Faraday, Regnault and Joseph Henry were some time later, Kelvin became in the 'fifties, a leader in the intellectual and scientific life of the time, a leader destined to extend the frontiers of knowledge, to establish an accurate system of electrical measurement, and to enrich the world with instruments of marvelous ingenuity and precision.
William Thomson, born in Belfast in 1824, received his early training in the Royal Academic Institute of that city. When eight years of age, he left his native land, exchanging the shores of Antrim for the banks of the Clyde. His father, James Thomson, a mathematician of note, having been appointed to the chair of mathematics in the University of Glasgow (founded in 1451), proceeded early in the summer of 1832 to the commercial metropolis of Scotland, accompanied by his two sons William and James, both of whom were destined to add lustre to the family name.
After a period of preparatory study, the two brothers, who were ten and eleven years of age, respectively, matriculated at the university. With the iron-clad regulations that govern admission to American colleges and universities, these boys would at best have been admitted to one of our high schools, and kept there until they reached the maturity required by the age limit. By the time young William attained that limit, he had already finished his work at the university, and captured the first prizes in mathematics, astronomy and natural philosophy. He was then only sixteen years of age, small of stature, but a giant in intellect; brilliant, versatile, and with a passion for work. It was his good fortune, also, to come under the influence of a great teacher, in the person of Prof. Nichol. "I have to thank what I heard in the natural philosophy class," he said in 1903, "for all I did in connection with submarine cables. The knowledge of Fourier was my start in the theory of signaling through submarine cables, which occupied a large part of my after-life. The inspiring character of Dr. Nichol's personality and his bright enthusiasm live still in my mental picture of those olddays."
Having heard Fourier's treatise on the mathematical theory of heat spoken of one day as a remarkable and inspiring work, young Thomson astonished the Professor when, at the end of the lecture, he addressed Dr. Nichol with the query, "Do you think that I could read it?" To which the Professor smilingly replied: "Well, the mathematical part is very difficult." Many a student would have left Fourier alone for the nonce, after listening to a statement so little calculated to excite courage or awaken interest: but Thomson was not an ordinary student; and, however forbidding the answer which he received, he was determined all the same to handle the volume and seek its inspiration. Without delay, he got the book from the university library, and grew so delighted with the new ideas of the French mathematician about sine-expansions and cosine-expansions, that in the space of two weeks he had "turned over all the pages" of the book, as he modestly put it.
In the summer of 1840, he accompanied his father and his brother on a tour through Germany, partly to see the country and partly also, to acquire a practical knowledge of the language. In both these objects, he was somewhat hindered by his fondness for mathematical studies, which led him to include in his impedimenta for the trip a copy of Fourier'sThéorie analytique de la Chaleur. Most students out on a summer's vacation, especially in foreign parts, would doubtless have preferred to give their minds rest and congenial distraction rather than keep on reading and pondering over abstract mathematical concepts. Our young tourist, on the other hand, seems to have thought of little else than of Fourier's "mathematical poem," as Clerk Maxwellcalled the work, a "poem" that continued to have a charm for him all through life. It is a noteworthy fact that Thomson continually returned to the ideas and methods of this suggestive treatise on the flow of heat, and that he applied them with great success to problems in thermal conductivity, in electricity and in submarine telegraphy.
Shortly after returning home, Thomson was sent to the University of Cambridge, where he entered St. Peter's College, commonly called Peterhouse, one of the oldest colleges of the university, its foundation dating back to the year 1284. Though he, no doubt, followed in a general way the directions given him by William Hopkins, "the best of private tutors," and kept in view the requirements of the honors examination, called the "Mathematical Tripos," for which he intended to present himself at the end of his course, he found his studies somewhat routinal and uninspiring. Original work was more to his taste than conventional subjects; his tutor, however, thought mainly of placing this brilliant pupil at the head of the wranglers, and hailing him the senior wrangler of the year, for which purpose, the beaten track must be followed, the standard works read, favorite problems worked out, short-cuts conned and rapidity of output exercised. Stokes, of Pembroke, had been senior wrangler in 1841; Cayley, of Trinity, in 1842; and Adams, of John's, in 1843; why not Thomson, of Peterhouse, in 1845, argued Hopkins, who had the distinction of being second wrangler of the previous year?
But when the ordeal was over and the work of all candidates appraised, Thomson's name was second on the list, with Parkinson, of John's, at the top. Hopkins was disappointed, as he had a right to be, for it wasthought by many and said by some that Parkinson was not fit to sharpen Thomson's pencils. At the examination for the Smith's prizes, which immediately followed, and which was generally regarded as a higher honor and a better test of original ability, the order was reversed, and Thomson's star blazed out with the brilliancy of the first magnitude.
We have here an instructive instance of the failure of an examination to place rightly the most gifted man; that of Sylvester, in 1837, and Clerk Maxwell, in 1854, both of whom were second wranglers, are equally so. Examinations, however, seldom fail in justly rating candidates when originality is not a necessary qualification, but only a sound knowledge and liberal interpretation of the subjects laid down in the syllabus; a good memory and rapidity of writing will do the rest.
Thomson committed the fatal mistake in the tripos examination of devoting too much time to a particular question in which he was deeply interested. It was a curious coincidence that the solution which Parkinson sent in to the same question was almost identical with that of his rival for mathematical honors. On being questioned about the matter by the Moderators, Parkinson said that he had read the solution some time before in theCambridge Mathematical Journal; Thomson's explanation was that the solution given in the Journal was his! As he had not memorized the details, he was obliged of course to work the problem outde novo.
Parkinson in later years wrote a treatise on elementary mechanics that has long since made way for others; Thomson, on the other hand, published in collaboration with Tait aTreatise on Natural Philosophyfor advanced students, which became at once the accepted standard.Throughout this treatise, the view is emphasized that physics deals with realities more than with theories, with mutual relations more than with their mathematical expression. Helmholtz thought so highly of this work that he translated it into German, saying in his preface: "William Thomson, one of the most penetrating and ingenious thinkers, deserves the thanks of the scientific world, in that he takes us into the workshop of his thoughts and unravels the guiding threads which have helped him to master and set in order the most resisting and confused material." And again: "Following the example given by Faraday, he avoids as far as possible hypotheses about unknown subjects, and endeavors to express by his mathematical treatment of problems simply the law of observable phenomena."
We are not to think of Thomson, the undergraduate, as of one who gave himself up, mind and body, to his favorite studies; he knew how to combine, in some measure, thedulcewith theutile, for he was fond of music, and so proficient in the art that he was elected President of the Musical Society. He also took a practical interest in aquatic sports, and on the Cam he could ply his sculls with the best of the men. Indeed, he was fond of the water all through life, hisLalla Rookhbeing well known on the Clyde and in the Solent. Expert in the navigation of his yacht, he liked to be out on the deep, caressed by wind and buffeted by wave, on which occasions he usually studied, pencil in hand, problems connected with navigation and hydrodynamics.
Thomson was never without his note-book. Even in his journeys to London, when he usually took the night train to save time, his mind was active, and the green-bookwas in frequent requisition to receive thoughts that occurred relative to problems that engaged his attention. Unlike many mortals, he was able to sleep soundly on those night trips, although in the early days he had none of the luxuries of traveling which we consider indispensable to our comfort.
Helmholtz records that, being on theLalla Rookhon one occasion, Thomson "carried the freedom of intercourse so far that he always had a mathematical note-book with him; and as soon as an idea occurred to him, he began to reckon right in the midst of company." This reminds us of the answer which Newton gave to a friend who asked him how he accomplished so much. "By constantly thinking of it," was the brief reply. Concentration of the faculties is necessary for all good work; a distracted mind never achieved anything of value in philosophy, in science, in religious worship. Concentration is like a convex lens, which brings rays to a focus; whereas distraction is like a concave lens, which breaks them up into a number of divergent and scattered elements.
On leaving Cambridge in 1845, Thomson proceeded to London, and was warmly received by Faraday, then of world-wide reputation. He next went to Paris, where, in the laboratory of Regnault, he devoted himself to original research, under the direction of that great and accurate physicist who was then carrying out his classic work on the thermal constants of bodies.
The year 1846 marks an epoch in Thomson's life; for, in that year, he was chosen to succeed Nichol, his friend and master, in the chair of natural philosophy in the University of Glasgow. Though only in his twenty-second year, he chose for the subject of his inauguraladdress the age of the earth, a subject which continued to have a life-long interest for him because of its very fascination, and perhaps, too, because of the opposition which his views aroused on the part of biologists and geologists. These demanded untold æons for the original fire-mist to cool down and form a spinning globe fit to be the abode of organic life, whereas Thomson endeavored to show the weakness of the arguments which they advanced to uphold their claim for unlimited time. Basing his estimate on the rate of increase of temperature as we go below the earth's surface, he concluded that the earth required from 100 to 200 million years, and probably less, to cool from its molten state to its present condition.
Impressed by the value of the experimental work which he did under Regnault in Paris, Prof. Thomson gave himself no rest until he secured a place in which the demonstrations of the lecture-room could be supplemented by qualitative and quantitative work in the laboratory. This was the first "physical laboratory" open to students in Great Britain, a fact that makes the year 1846 a memorable one in the history of university development. Two apartments were allotted him for experimental purposes,viz., an abandoned wine-cellar and a disused examination-room, to which, as time went on, were added a corridor, some spare attics, and even the university tower itself, so great was the power of annexation possessed by the young Professor. In those dark and cheerless rooms, a few old instruments were installed, after which students were invited and work begun. A band of men, whose ardor was enkindled by the glowing enthusiasm of the presiding genius, gathered around him, and helped him to carry out investigationson the properties of metals, on moduli of elasticity, elastic fatigue and atmospheric electricity. Among this band of earnest students it will suffice to mention the names of the late Prof. Ayrton, an eminent electrician; Prof. John Perry, known for his Homeric battles in favor of reform in the teaching of mathematics; Sir William Ramsay, the discoverer of the "newer" gases of the atmosphere; and Prof. Andrew Gray, who succeeded his master in the University of Glasgow.
Writing of his laboratory experiences, Prof. Ramsay says: "I remember that my first exercise, which occupied over a week, was to take the kinks out of a bundle of copper wire. Having achieved this with some success, I was placed opposite a quadrant electrometer and made to study its construction and use." "Although this method," he adds, "is not without its disadvantages—for systematic instruction is of much value—there is something to be said for it. On the one hand, too long a course of experimenting on old and well known lines is likely to imbue the young student with the idea that all physics consists in learning the use of apparatus and repeating measurements which have already been made. On the other hand, too early attempts to investigate the unknown are likely to prove fruitless for want of manipulative skill and for want of knowledge of what has already been done."
Prof. Gray wrote: "In the physical laboratory, Prof. Thomson was both inspiring and distracting. He continually thought of new things to be tried, and interrupted the course of work with interpolated experiments which often robbed the previous sequence of operations of their final result."
It may bring a grain of consolation to teachers who meet with troublesome elements in the discharge of their duties, to know that Thomson, great and brilliant as he was, had similar experiences now and again. At one time a book of mathematical data would be removed from the place assigned to it, upon which he would give orders that it should be chained to the table; at others, there would be no chalk near the blackboard, and then the assistant would be solemnly instructed to have one hundred pieces available next time. On one occasion, he settled in a very novel manner the case of a student who insisted on disturbing the class by moving his foot back and forth on the floor. Calling his assistant, Thomson told him in a whisper to go down into the room under the tiers of seats, to listen attentively, and locate the wandering foot by its distance from two adjacent walls of the building. On his return to the lecture-room, the triumphant assistant gave the desired coordinates to the Professor, who took out his tape at once and measured off the distances, by which the outwitted offender was mathematically located. In obedience to orders, the latter rose and left the room, muttering a few graceful epithets as he went, in honor of Descartes, the founder of a system of geometry that could serve so well the twofold purpose of the detective and the mathematician.
It was the custom in Glasgow to open the daily sessions, morning and afternoon, with prayer, the selection of which was left to the discretion of the Professor. Thomson usually recited from memory the third collect from the morning service of the Church of England, to which he sometimes added reflections of his own forthe spiritual benefit of his hearers.
In his teaching, Prof. Thomson was particularly insistent that his students should not bow their intellects in mute admiration before an array of mathematical symbols; but that, on all occasions, they should seek the physical meaning behind them. Writing on his blackboard one daydx/dt, he was not satisfied when told that it represented the ratio of the increment ofxto the increment of the independent variablet(time); he wanted the student to say it represents velocity. He himself was so wont to look for the physical meaning of symbols that, like the prophets of old, he saw many things that were hidden from the eyes of ordinary mortals.
He had the rare gift of translating mathematical equations into real facts; and he strove all throughout his life, by word and writing, to purify mathematical theory from mere assumptions. He often said that he could not understand a thing until he was able to make, or at least conceive, a model of it.
He had a "keen mathematical instinct," as Prof. Silvanus P. Thomson puts it in a letter to the writer, an insight that "grew to see things." He often left matters in the dark for years, then returned to see them in the clear light of truth. At the age of sixteen, he wrote a mathematical essay on the figure of the earth; and at eighty-three, took it up again in order to add a note to the argument!
Thomson was discursive in his lectures, and was never able to boil the matter down to suit the taste and digestive powers of the ordinary student. The activity of his mind and its fecundity were such that new ideas, new problems, new modes of treatment were continuallyoccurring, and with such fascination that he would leave the main subject to indulge in what often proved prolonged digressions. One of his bugbears was our system of weights and measures, which he denounced in season and out of season as "insane," "brain-wasting" and "dangerous." Occasionally epithets of a more caloric nature would escape the lips of the indignant Professor, who, as a consequence of his denunciation, had always to be indulgent to students who chanced to be shaky in the matter of Troy weight, avoirdupois weight or even apothecaries weight.
In later years, I heard Lord Kelvin at the Royal Institution, London, on some of his favorite dynamical subjects, such as the gyrostat, vortex rings and the like. However impressed by his keen eye, intellectual forehead, his mastery of the subject and wealth of illustration, I was no less impressed by his vivacity, his enthusiasm and the rapidity with which he could leave a train of thought and return to it again.
At meetings of the British Association, he always had something illuminating to say; but not infrequently, carried away by a torrent of ideas, he would indulge in a superfluity of detail, forgetting that other speakers had to be heard and other papers read.
The idea of connecting the Old World with the New by means of an electric cable laid on the bed of the ocean, seemed to most people in the 'fifties quixotic and utopian. Manufacturers said such a cable could not be made; engineers, that it could not be laid; electricians, that it could not be worked; and financiers, that if laid and worked, it would never pay. But with a Field to look after the financial interests of the scheme, and a Thomson to attend to electrical quantities, there was notilting at windmills, and the utopian scheme became in due time the cable whose core pulsated with the news of the world.
As early as 1850, Bishop Mullock, of St. John's, N. F., addressed to an American newspaper, called theCourier, a letter in which he advocated a telegraph line from Newfoundland to New York, so that the news of mail steamers could be intercepted and wired to that City. In 1852, the "Newfoundland Electric Telegraph Company" was formed for the purpose of carrying out a similar plan. This was to be accomplished by means of a telegraph line from Cape Race, at the eastern extremity of Newfoundland to Cape Ray, on the western, as well as by short cables over to Cape Breton Island, to Prince Edward Island and the mainland, and thence by ordinary telegraph lines to Canada and the United States. But owing to the want of money, nothing was done.
The first attempt at laying a cable under the Atlantic was made by the Atlantic Telegraph Company in 1857, after a careful survey of the ocean had revealed the existence of a submarine plain, or extended table-land, on which the cable could rest undisturbed by passing keels, monsters of the deep or angry billows. The result was the first of a series of failures, which caused great perplexity and depression at the time; for, after 330 miles had been paid out from Valentia on the Irish coast, the cable suddenly parted, burying in 2000 fathoms of water an electrical conductor which had cost $150,000 for its manufacture.
A second attempt was made in 1858, when the U. S. frigateNiagaraand H. M. S.Agamemnon, each carrying half of the cable, met in mid-ocean; and, after splicing the two ends together, steamed away in opposite directions, theNiagaratoward Newfoundland and theAgamemnontoward Valentia. Fortunately for the enterprise, Prof. Thomson was on board the English ship as chief electrician. No doubt, his mind turned many a time during those anxious days to Fourier's differential equation for the flow of heat along a conductor, and his own application of it to the conduction of the electric current through the copper core of the cable as it came up from the tanks, trailed out behind the ship, dipped silently into the blue water and slowly settled down to its bed of ooze on the ocean floor.
After a series of disheartening mishaps, necessitating as many returns of the ships to the rendezvous in mid-ocean, theAgamemnonlanded the shore-end safely in Valentia; and theNiagara, after rolling and pitching for days and nights in tempestuous seas, landed hers in Trinity Bay on the morning of August 5th, 1858, on which historic date the telegraphic union of the two worlds was finally consummated and the great feat of the century accomplished.
Though not fully realized at the time by the capitalists who financed his scheme, by the engineers and electricians who carried it out, or even by statesmen, economists and social reformers, the slender copper cord, buried away from human ken amidst thedébrisof minute organisms, was destined to effect a revolution in the affairs of men greater than any achieved by the wisdom of sages or the policy of legislators.
Owing to the electrostatic capacity of the cable, signaling would have been difficult and unsatisfactory had it not been for the resourcefulness of Prof. Thomson, who devised his reflecting galvanometer to serve asreceiving instrument. The principle of the mirror applied in this way was not new, for it had been suggested by Poggendorff and even used by Gauss in connection with very heavy magnets. The magnets used by Thomson, on the other hand, were strips of watch-spring weighing about a grain each, so that even a very weak current coming through the cable would be sufficient to produce strong displacements of the spot of light on the scale. Thomson was clearly the first to insist on small dimensions in magnetic instruments, and to show that reduction in size would be attended with corresponding increase in sensitiveness.
The mirror galvanometer, surrounded with a thick iron case to screen it from the magnetic field due to the iron of the ship, the "iron-clad galvanometer" as it was called, was used for the first time on the telegraphic expedition of 1858.
The instrument itself, which was fitted up on board theNiagaraand which was connected with so many episodes of thrilling interest, was placed by Prof. Thomson in the collection of historical apparatus in the University of Glasgow, where it is at the present day.
Beautiful as was the invention of the mirror galvanometer, it gave neither warning of the beginning of a message nor a permanent record of it. Sitting in his dark room, the operator had to be always on the alert for the first swing of the spot of light over the scale. To obviate these drawbacks, Thomson, after some thinking and more talking with his friend White, of Glasgow, finally patented thesiphon-recorder, in which a glass siphon of capillary dimensions is pulled to the right or left by the action of the current flowing through a light movable coil, and is thus made to register signals in inkon a vertical strip of paper which is kept in uniform motion by a train of clockwork. It is by this simple but very ingenious instrument that messages are received and recorded to-day at all the cable-stations of the world.
The inaugural message through the cable came from the Directors of the Atlantic Telegraph Company in Great Britain to the Directors in America, saying: "Europe and America are united by telegraph; glory to God in the highest, on earth peace and good will toward men."
The message from Queen Victoria to President Buchanan, consisting of 95 words, took 67 minutes in transmission; it read:
"The Queen desires to congratulate the President upon the successful completion of this great international work, in which the Queen has taken the deepest interest.
"The Queen is convinced that the President will join with her in fervently hoping that the electric cable which now connects Great Britain with the United States will prove an additional link between the nations whose friendship is founded upon their common interests and reciprocal esteem.
"The Queen has much pleasure in thus communicating with the President, and renewing to him her wishes for the prosperity of the United States."
The reply of President Buchanan was as follows:
"The President cordially reciprocates the congratulations of Her Majesty, the Queen, on the success of the great international enterprise accomplished by the science, skill and indomitable energy of the two countries. It is a triumph more glorious, because far more useful to mankind, than was ever won by conqueror onthe field of battle.
"May the Atlantic telegraph, under the blessing of Heaven, prove to be a bond of perpetual peace and friendship between the kindred nations, and an instrument destined by Divine Providence to diffuse religion, civilization, liberty and law throughout the world. In this view will not all nations of Christendom spontaneously unite in the declaration that it shall be forever neutral, and that its communications shall be held sacred in passing to their places of destination, even in the midst of hostilities?"
The historian of the enterprise was Mr. John Mullaly, of New York, who was on theNiagaraas secretary to Prof. Morse and subsequently to Mr. Cyrus W. Field and correspondent of theNew York Herald. He has published three interesting works on the subject: aTrip to Newfoundland, with an account of the laying of the submarine Cable(between Port au Basque and North Sydney), 1855;The Ocean Telegraph, 1858; andThe first Atlantic Telegraph Cable, a pamphlet of 28 pages, reprinted from the "Journal of the Franklin Institute," 1907. From it, we learn that Archbishop Hughes was one of the principal American subscribers to the capital of the Atlantic Cable Company.
When, in 1855, the subject of laying a cable under the Atlantic ocean began to be seriously considered, Thomson, who was then only 31 years of age, discussed in a series of masterly papers the theory of signaling through such conductors, showinginter aliathat the instruments used on land-lines would be inoperative on cables, and also that the same speed of transmission could not be attained on cables as on ordinary telegraph lines. It was shown at the same time, that these differences are due to the fact that, unlike an air-line, the cable is an electricalcondenserin which the copper core is separated from the waters of the ocean by a layer of gutta percha, a nonconducting material. As a submerged cable is, therefore, a long Leyden jar of great electrical capacity, it follows that a signal sent in at the American end will not reach the other instantly; for while the current flows along the conductor, it has also to charge up the cable as it progresses, which operation retards the signals, and also deprives them of the clearness and sharpness with which they were sent. The phenomenon is analogous to the diffusion of heat along a bar, the temperature of the various cross-sections rising in gradual succession until the distant end is reached. The mathematical investigations of Thomson showed the necessity of working slowly, and of using weak currents as well as very delicate receiving instruments. The interval of time required for the transmission of a signal from Newfoundland to Valentia is about one second.
Some years later, in 1858, Thomson had the opportunity of putting his theoretical views to the test of experiment on a grand, commercial scale, and had the satisfaction of finding that all his conclusions were confirmed. Electricians of the early period distrusted the inexperienced young man who had never erected a mile of telegraph line or even served for a month in a telegraph office; but their distrust was followed by admiration when they saw the efficient manner in which he handled every problem and dealt with every difficulty that occurred while laying the cable of 1858. It was generally admitted that, had it not been for the brilliant work of the young Glasgow Professor, many years would have passed away before the Old World and theNew would have been brought into telegraphic communication.
Like all interested in the enterprise, Thomson was greatly shocked when the news reached him that signals could no longer be transmitted through the cable, which, after costing so much money, so much thought and labor, now lay a useless thing in two and a half miles of water. Attempts were made to raise it, but without success.
During its short life of less than a month, 366 messages were flashed through the cable, aggregating 4359 words of 21,421 letters.
The failure of the pioneer cable has been attributed to a variety of causes, chief of which were defective construction and imperfect paying-out machinery, which produced unequal strains in the cable. Defective as the cable was at the moment of immersion, the various troubles became intensified with time, until at last, when provoked by the feebleness of the signals, the injudicious electrician at Valentia had recourse to the great penetrative power of the induction coil, and gave the dying cable thecoup de grâce.
An experiment made by Mr. Latimer Clark is not only germane to the subject, but is also of very great interest. Writing from Valentia on Sept. 12th, 1866, Mr. Latimer Clark says: "With a single galvanic cell, composed of a few drops of acid in asilver thimble[36]and a fragment of zinc, weighing a grain or two, conversation may easily, though slowly, be carried on through one of the cables (1865, 1866) or through the two joined together at Newfoundland; and although in the lattercase, the spark, twice traversing the breadth of the Atlantic, has to pass through 3700 miles of cable, its effects at the receiving end are visible in the galvanometer in a little more than a second after contact is made with the battery. The deflections are not of a dubious character, but full and long, the spot of light traversing freely a space of 12 in. or 13 in. on the scale; and it is manifest that a battery many times smaller would suffice to produce similar effects."
Not to be outdone by the English electrician, Mr. William Dickerson devised the gun-cap cell, which he used in 1866 with success in transmitting signals from Heart's Content, Newfoundland, to Valentia on the Irish coast.
A piece of No. 16 bare copper wire was procured, one end of which was firmly twisted around the head of an emptypercussion-cap. To one end of another similar length of wire was bound, with fine copper wire, a short strip of zinc bent at a right angle to form the anode element of the diminutive cell. After charging the cell with a drop of acidulated water of the size of an ordinary well-formed tear, and properly connecting the terminals with earth and cable, signals were transmitted over the cable by the infinitesimal current generated by this novel cell. The receiving operator reported that the signals were "awfully small"; but they were intelligible, and messages were successfully transmitted under the ocean by this tiny element.
Contrast with this Lilliputian cell the enormous power that was used on the cable of 1858 toward the end of its short existence, when batteries of 380 and 420 Daniell cells were employed to force signals across.
When, in 1865, it was decided to make another attempt at laying a cable under the Atlantic, Prof. Thomson, whose reputation was enhanced during the seven intervening years by a number of communications on the theory and practice of submarine telegraphy, was again retained as scientific expert in a consultative sense, with Mr. Cromwell F. Varley as chief electrician. In accordance with the costly experience that had been gained, a new cable was made and coiled on board theGreat Eastern,[37]a leviathan which was well fitted for the work by the great manœuvring power afforded by its screw and paddles combined. Leaving Valentia, the big ship steamed with her prow to the west at a slow rate of speed, in order to give the cable time to sink beneath the waves and adapt itself to the configuration of the ocean floor. Eleven hundred miles had been successfully paid out when, to the consternation of all, the cable suddenly snapped and disappeared in more than two miles of water. Attempts were made during the next nine days to recover it from those abysmal depths; and, though grappled many times during those trying hours, it gave way each time under the strain to which it was subjected. Like its predecessors of 1857 and 1858, the cable of 1865 was finally abandoned to its fate, and theGreat Easternreturned home with three greatly disappointed men on board,viz., Prof. Thomson, Mr. C. F. Varley and Captain (later Sir James) Anderson.
In the following year, a sum of three-quarters of a million sterling, nearly $4,000,000, was offered to the Directors of the "Telegraph Construction Company" if they would complete the cable of 1865 and lay a new one. After consultation and careful consideration, theoffer was accepted and the cable constructed according to the best engineering knowledge available.
In 1866, Prof. Thomson was again on board theGreat Easternwith Captain Anderson; and this time the big ship had snugly coiled up in her deep, cavernous tanksthecable that was destined to put Europe and America in permanent telegraphic communication. With a well-manufactured cable, improved paying-out machinery and an experienced staff of mechanical engineers, not to mention the foremost electricians of the day, the immersion of the cable was successfully effected, after which the American end of the cable of 1865 was raised, a new length spliced on, and the shore-end safely landed in Trinity Bay. Europe and America were thus united together by two electric bonds.
It may here be mentioned that ocean cables are usually made in three sections, called, respectively, the shore-end, the intermediate section and the deep-sea section. It is clear that the submerged conductor needs the greatest protection in the shallow water that surrounds the coast, where it lies on a pebbly or rocky bottom, exposed to the drifting action of currents and tides, as well as to the haling flukes of the anchors of storm-tossed ships. In deep water, on the other hand, there is neither shingly bottom nor violent movement to displace and abrade the cable; for all is quiet and peaceful in the profound depths where the god of the trident holds his court; and hence few coverings and a light armor afford sufficient protection. The wear and tear in the ocean depths is a vanishing quantity when compared with the abrasive effects near coast-lines. Looking at the sections of an ocean cable, the biggest and heaviest is the shore-end, while the thinnest and lightest is that which goes down into the depths of the sea. The lengths of the various sections are determined by the survey of the route, which is always carefully made before completing the specification of the cable. Moreover, as the position of the cable-ship at noon every day is known from its longitude and latitude, it follows that the location of the cable on the bed of the ocean is also exactly known. When a cable is broken either by an upheaval or by a subsidence of the ocean floor, the distance of the rupture from the shore end is determined by an electrical test, after which a repair-ship is dispatched to the spot, when the cable is lifted, the "fault" cut away, a new length spliced on, and the amended cable allowed to settle down into its watery depths.
At the present time (July, 1909), there are sixteen cables carrying the work of the North Atlantic, at an average speed of 20 words a minute duplex, or 40 words a minute, counting both directions.
This cable narrative affords as striking an illustration of thetriumph of failureas any recorded in the history of human enterprise. It was a victory of mind over matter; of character and tactfulness, energy and endurance over difficulties of every kind, moral and financial, mechanical and meteorological. The four expeditions of 1857, 1858, 1865 and 1866 represent years of hard work, anxiety and distressing failures; but, sustained by the patience of hope and by an unshaken confidence in the soundness of the enterprise as well as in the ability of their staff, the Directors of the Atlantic Company were well rewarded for the disappointment occasioned and the monetary losses incurred. "It has been a long struggle," said the initial promoter of the enterprise,Mr. Cyrus W. Field, speaking at a banquet given in his honor on November 15th, 1866, at the Metropolitan Hotel, New York, "a long struggle of nearly thirteen years of anxious watching and ceaseless toil. Often my heart was ready to sink. Many times, when wandering in the forests of Newfoundland in pelting rain, or on the decks of ships in dark, stormy nights, I almost accused myself of madness and folly to sacrifice the peace of my family for what might have proved but a dream. I have seen my companions, one after another, fall by my side, and I feared that I, too, might not live to see the end. And yet one hope has led me on; I prayed that I might not taste of death till the work was accomplished. That prayer has been answered; and now, beyond all acknowledgments to men, is the feeling of gratitude to Almighty God."
It was men like Field and Thomson that the poet had in mind when he wrote: