Chapter 6

Fig.22.—The skull from the cave of Engis—viewed from the right side.a, glabella,b, occipital protuberance, (atobglabello-occipital line),c, auditory foramen.

“The face and the base of the cranium had been detached before the skull was deposited in the cave, for we were unable to find those parts, though the whole cavern was regularly searched. The cranium was met with at a depth of a metre and a half [five feet nearly] hidden under an osseous breccia, composed of the remains of small animals, and containing one rhinoceros tusk, with several teeth of horses and of ruminants. This breccia, which has been spoken of above (p. 30), was a metre [31⁄4feet about] wide, and rose to the height of a metre and a half above the floor of the cavern, to the walls of which it adhered strongly.“The earth which contained this human skull exhibited no trace of disturbance: teeth of rhinoceros, horse, hyæna,and bear, surrounded it on all sides.“The famous Blumenbach[38]has directed attention to the differences presented by the form and the dimensions of human crania of different races. This important work would have assisted us greatly, if the face, a part essential for the determination of race, with more or less accuracy, had not been wanting in our fossil cranium.“We are convinced that even if the skull had been complete, it would not have been possible to pronounce, with certainty, upon a single specimen; for individual variations are so numerous in the crania of one and the same race, that one cannot, without laying oneself open to large chances of error, draw any inference from a single fragment of a cranium to the general form of the head to which it belonged.“Nevertheless, in order to neglect no point respecting the form of this fossil skull, we may observe that, from the first, the elongated and narrow form of the forehead attracted our attention.“In fact, the slight elevation of the frontal, its narrowness, and the form of the orbit, approximate it more nearly to the cranium of an Ethiopian than to that of an European: the elongated form and the produced occiput are also characters which we believe to be observable in our fossil cranium; but to remove all doubt upon that subject I have caused the contours of the cranium of an European and of an Ethiopian to be drawn and the foreheads represented. Plate II., Figs. 1 and 2, and, in the same plate, Figs. 3 and 4, will render the differences easily distinguishable; and a single glance at the figures, will be more instructive than a long and wearisome description.“At whatever conclusion we may arrive as to the origin of the man from whence this fossil skull proceeded, we may express an opinion without exposing ourselves to a fruitless controversy. Each may adopt the hypothesis which seems to him most probable: for my own part, I hold it to be demonstrated that this cranium has belongedto a person of limited intellectual faculties, and we conclude thence that it belonged to a man of a low degree of civilization: a deduction which is borne out by contrasting the capacity of the frontal with that of the occipital region.“Another cranium of a young individual was discovered in the floor of the cavern beside the tooth of an elephant; the skull was entire when found, but the moment it was lifted it fell into pieces, which I have not, as yet, been able to put together again. But I have represented the bones of the upper jaw, Plate I., Fig. 5. The state of the alveoli and the teeth, shows that the molars had not yet pierced the gum. Detached milk molars and some fragments of a human skull, proceed from this same place. The Figure 3, represents a human superior incisor tooth, the size of which is truly remarkable.[39]“Figure 4 is a fragment of a superior maxillary bone, the molar teeth of which are worn down to the roots.“I possess two vertebræ, a first and last dorsal.“A clavicle of the left side (see Plate III., Fig. 1); although it belonged to a young individual, this bone shows that he must have been of great stature.[40]“Two fragments of the radius, badly preserved, do not indicate that the height of the man, to whom they belonged, exceeded five feet and a half.“As to the remains of the upper extremities, those which are in my possession, consist merely of a fragment of an ulna and of a radius (Plate III., Fig. 5 and 6).“Figure 2, Plate IV., represents a metacarpal bone, contained in the breccia, of which we have spoken; it was found in the lower part above the cranium: add to this some metacarpal bones, found at very different distances, half-a-dozen metatarsals, three phalanges of the hand, and one of the foot.“This is a brief enumeration of the remains of human bones collected in the cavern of Engis, which has preserved for us the remains of three individuals, surrounded by those of the Elephant, of the Rhinoceros, and of Carnivora of species unknown in the present creation.”

“The face and the base of the cranium had been detached before the skull was deposited in the cave, for we were unable to find those parts, though the whole cavern was regularly searched. The cranium was met with at a depth of a metre and a half [five feet nearly] hidden under an osseous breccia, composed of the remains of small animals, and containing one rhinoceros tusk, with several teeth of horses and of ruminants. This breccia, which has been spoken of above (p. 30), was a metre [31⁄4feet about] wide, and rose to the height of a metre and a half above the floor of the cavern, to the walls of which it adhered strongly.

“The earth which contained this human skull exhibited no trace of disturbance: teeth of rhinoceros, horse, hyæna,and bear, surrounded it on all sides.

“The famous Blumenbach[38]has directed attention to the differences presented by the form and the dimensions of human crania of different races. This important work would have assisted us greatly, if the face, a part essential for the determination of race, with more or less accuracy, had not been wanting in our fossil cranium.

“We are convinced that even if the skull had been complete, it would not have been possible to pronounce, with certainty, upon a single specimen; for individual variations are so numerous in the crania of one and the same race, that one cannot, without laying oneself open to large chances of error, draw any inference from a single fragment of a cranium to the general form of the head to which it belonged.

“Nevertheless, in order to neglect no point respecting the form of this fossil skull, we may observe that, from the first, the elongated and narrow form of the forehead attracted our attention.

“In fact, the slight elevation of the frontal, its narrowness, and the form of the orbit, approximate it more nearly to the cranium of an Ethiopian than to that of an European: the elongated form and the produced occiput are also characters which we believe to be observable in our fossil cranium; but to remove all doubt upon that subject I have caused the contours of the cranium of an European and of an Ethiopian to be drawn and the foreheads represented. Plate II., Figs. 1 and 2, and, in the same plate, Figs. 3 and 4, will render the differences easily distinguishable; and a single glance at the figures, will be more instructive than a long and wearisome description.

“At whatever conclusion we may arrive as to the origin of the man from whence this fossil skull proceeded, we may express an opinion without exposing ourselves to a fruitless controversy. Each may adopt the hypothesis which seems to him most probable: for my own part, I hold it to be demonstrated that this cranium has belongedto a person of limited intellectual faculties, and we conclude thence that it belonged to a man of a low degree of civilization: a deduction which is borne out by contrasting the capacity of the frontal with that of the occipital region.

“Another cranium of a young individual was discovered in the floor of the cavern beside the tooth of an elephant; the skull was entire when found, but the moment it was lifted it fell into pieces, which I have not, as yet, been able to put together again. But I have represented the bones of the upper jaw, Plate I., Fig. 5. The state of the alveoli and the teeth, shows that the molars had not yet pierced the gum. Detached milk molars and some fragments of a human skull, proceed from this same place. The Figure 3, represents a human superior incisor tooth, the size of which is truly remarkable.[39]

“Figure 4 is a fragment of a superior maxillary bone, the molar teeth of which are worn down to the roots.

“I possess two vertebræ, a first and last dorsal.

“A clavicle of the left side (see Plate III., Fig. 1); although it belonged to a young individual, this bone shows that he must have been of great stature.[40]

“Two fragments of the radius, badly preserved, do not indicate that the height of the man, to whom they belonged, exceeded five feet and a half.

“As to the remains of the upper extremities, those which are in my possession, consist merely of a fragment of an ulna and of a radius (Plate III., Fig. 5 and 6).

“Figure 2, Plate IV., represents a metacarpal bone, contained in the breccia, of which we have spoken; it was found in the lower part above the cranium: add to this some metacarpal bones, found at very different distances, half-a-dozen metatarsals, three phalanges of the hand, and one of the foot.

“This is a brief enumeration of the remains of human bones collected in the cavern of Engis, which has preserved for us the remains of three individuals, surrounded by those of the Elephant, of the Rhinoceros, and of Carnivora of species unknown in the present creation.”

From the cave of Engihoul, opposite that of Engis, on the right bank of the Meuse, Schmerling obtained the remains of three other individuals of Man, among which were only two fragments of parietal bones, but many bones of the extremities. In one case, a broken fragment of an ulna was soldered to a like fragment of a radius by stalagmite, a condition frequently observed among the bones of the Cave Bear (Ursus spelæus), found in the Belgian caverns.

It was in the cavern of Engis that Professor Schmerling found, incrusted with stalagmite and joined to a stone, the pointed bone implement, which he has figured in Fig. 7 of his Plate XXXVI., and worked flints were found by him in all those Belgian caves, which contained an abundance of fossil bones.

A short letter from M. Geoffroy St. Hilaire, published in the Comptes Rendus of the Academy of Sciences of Paris, for July 2nd, 1838, speaks of a visit (and apparently a very hasty one) paid to the collection of Professor “Schermidt” (which is presumably a misprint for Schmerling) at Liège. The writer briefly criticises the drawings which illustrate Schmerling’s work, and affirms that the “human cranium is a little longer than it is represented” in Schmerling’s figure. The only other remark worth quoting is this:—“The aspect of the human bones differs little from that of the cave bones, with which we are familiar, and of which there is a considerable collection in the same place. With respect to their special forms, compared with those of the varieties of recent human crania, fewcertainconclusions can be put forward; for much greater differences exist between the different specimens of well-characterized varieties, than between the fossil cranium of Liège and that of one of those varieties selected as a term of comparison.”

Geoffroy St. Hilaire’s remarks are, it will be observed, little but an echo of the philosophic doubts of the describer and discoverer of the remains. As to the critique upon Schmerling’s figures, I find that the side view given by the latter is really about3⁄10ths of an inch shorter than the original, and that the front view is diminished to about the same extent. Otherwise the representation is not, in any way, inaccurate, but corresponds very well with the cast which is in my possession.

A piece of the occipital bone, which Schmerling seems to have missed, has since been fitted on to the rest of the cranium by an accomplished anatomist, Dr. Spring of Liège, under whose direction an excellent plaster cast was made for Sir Charles Lyell. It is upon and from a duplicate of that cast that my own observations and the accompanying figures, the outlines of which are copied from very accurate Camera lucida drawings, by my friend Mr. Busk, reduced to one-half of the natural size, are made.

As Professor Schmerling observes, the base of the skull is destroyed, and the facial bones are entirely absent; but the roof of the cranium, consisting of the frontal, parietal, and the greater part of the occipital bones, as far as the middle of the occipital foramen, is entire or nearly so. The left temporal bone is wanting. Of the right temporal, the parts in the immediate neighbourhood of the auditory foramen, the mastoid process, and a considerable portion of the squamous element of the temporal are well preserved (Fig. 22).

The lines of fracture which remain between the coadjusted pieces of the skull, and are faithfully displayed in Schmerling’s figure, are readily traceable in the cast. The sutures are also discernible, but the complex disposition of their serrations, shown in the figure, is not obvious in the cast. Though the ridges which give attachment to muscles are not excessively prominent, they are well marked, and taken together with the apparently well developed frontal sinuses, and the condition of the sutures, leave no doubt on my mind that the skull is that of an adult, if not middle-aged man.

The extreme length of the skull is 7.7 inches. Its extreme breadth, which corresponds very nearly with the interval between the parietal protuberances, is not more than 5.4 inches. The proportion of the length to the breadth is therefore very nearly as 100 to 70. If a line be drawn from the point at which the brow curves in towards the root of the nose, and which is called the “glabella” (a), (Fig. 22), to the occipital protuberance (b), and the distance to the highest point of the arch of the skull be measured perpendicularly from this line, it will be found to be 4.75 inches. Viewed from above,Fig. 23, A, the forehead presents an evenly rounded curve, and passes into the contour of the sides and back of the skull, which describes a tolerably regular elliptical curve.

The front view (Fig. 23, B) shows that the roof of the skull was very regularly and elegantly arched in the transverse direction, and that the transverse diameter was a little less below the parietal protuberances, than above them. The forehead cannot be called narrow in relation to the rest of the skull, nor can it be called a retreating forehead; on the contrary, the antero-posterior contour of the skull is well arched, so that the distance along that contour, from the nasal depression to the occipital protuberance, measures about 13.75 inches. The transverse arc of the skull, measured from one auditory foramen to the other, across the middle of the sagittal suture, is about 13 inches. The sagittal suture itself is 5.5 inches long.

The supraciliary prominences or brow-ridges (on each side ofa,Fig. 22) are well, but not excessively, developed, and are separated by a median depression. Their principal elevation is disposed so obliquely that I judge them to be due to large frontal sinuses.

If a line joining the glabella and the occipital protuberance (a,b,Fig. 22) be made horizontal, no part of the occipital region projects more than1⁄10th an inch behind the posterior extremity of that line, and the upper edge of the auditory foramen (c) is almost in contact with a line drawn parallel with this upon the outer surface of the skull.

A transverse line drawn from one auditory foramen tothe other traverses, as usual, the forepart of the occipital foramen. The capacity of the interior of this fragmentary skull has not been ascertained.

Fig.23.—The Engis skull viewed from above (A) and in front (B).

The history of the Human remains from the cavern in the Neanderthal may best be given in the words of their original describer, Dr. Schaaffhausen,[41]as translated by Mr. Busk.

“In the early part of the year 1857, a human skeleton was discovered in a limestone cave in the Neanderthal, near Hochdal, between Düsseldorf and Elberfeld. Of this, however, I was unable to procure more than a plaster cast of the cranium, taken at Elberfeld, from which I drew up an account of its remarkable conformation, which was, in the first instance, read on the 4th of February, 1857, at the meeting of the Lower Rhine Medical and Natural History Society, at Bonn.[42]Subsequently Dr. Fuhlrott, to whom science is indebted for the preservation of these bones, which were not at first regarded as human, and into whose possession they afterwards came, brought the cranium from Elberfeld to Bonn, and entrusted it to me for more accurate anatomical examination. At the General Meeting of the Natural History Society of Prussian Rhineland and Westphalia, at Bonn, on the 2nd of June, 1857,[43]Dr. Fuhlrott himself gave a full account of the locality, and of the circumstances under which the discovery was made. He was of opinion that the bones might be regarded as fossil; and in coming to this conclusion, he laid especial stress upon the existence of dendritic deposits, with which their surface was covered, and which were first noticed upon them by Professor Mayer. To this communication I appended a brief report on the results of my anatomical examination of thebones. The conclusions at which I arrived were:—1st. That the extraordinary form of the skull was due to a natural conformation hitherto not known to exist, even in the most barbarous races. 2nd. That these remarkable human remains belonged to a period antecedent to the time of the Celts and Germans, and were in all probability derived from one of the wild races of Northwestern Europe, spoken of by Latin writers; and which were encountered as autochthones by the German immigrants. And 3rdly. That it was beyond doubt that these human relics were traceable to a period at which the latest animals of the diluvium still existed; but that no proof of this assumption, nor consequently of their so-termedfossilcondition, was afforded by the circumstances under which the bones were discovered.”

As Dr. Fuhlrott has not yet published his description of these circumstances, I borrow the following account of them from one of his letters. “A small cave or grotto, high enough to admit a man, and about 15 feet deep from the entrance, which is 7 or 8 feet wide, exists in the southern wall of the gorge of the Neanderthal, as it is termed, at a distance of about 100 feet from the Düssel, and about 60 feet above the bottom of the valley. In its earlier and uninjured condition, this cavern opened upon a narrow plateau lying in front of it, and from which the rocky wall descended almost perpendicularly into the river. It could be reached, though with difficulty, from above. The uneven floor was covered to a thickness of 4 or 5 feet with a deposit of mud, sparingly intermixed with rounded fragments of chert. In the removing of this deposit, the bones were discovered. The skull was first noticed, placed nearest to the entrance of the cavern; and further in, the other bones, lying in the same horizontal plane. Of this I was assured, in the most positive terms, by two labourers who were employed to clear out the grotto, and who were questioned by me on the spot. At first no idea was entertained of the bones being human; and it was not till several weeks after their discovery that they were recognised as such by me, and placed in security. But, as the importance of the discovery was not at the time perceived, the labourers werevery careless in the collecting, and secured chiefly only the larger bones; and to this circumstance it may be attributed that fragments merely of the probably perfect skeleton came into my possession.”

My anatomical examination of these bones afforded the following results:—

The cranium is of unusual size, and of a long elliptical form. A most remarkable peculiarity is at once obvious in the extraordinary development of the frontal sinuses, owing to which the superciliary ridges, which coalesce completely in the middle, are rendered so prominent, that the frontal bone exhibits a considerable hollow or depression above, or rather behind them, whilst a deep depression is also formed in the situation of the root of the nose. The forehead is narrow and low, though the middle and hinder portions of the cranial arch are well developed. Unfortunately, the fragment of the skull that has been preserved consists only of the portion situated above the roof of the orbits and the superior occipital ridges, which are greatly developed, and almost conjoined so as to form a horizontal eminence. It includes almost the whole of the frontal bone, both parietals, a small part of the squamous and the upper-third of the occipital. The recently fractured surfaces show that the skull was broken at the time of its disinterment. The cavity holds 16,876 grains of water, whence its cubical contents may be estimated at 57.64 inches, or 1033.24 cubic centimetres. In making this estimation, the water is supposed to stand on a level with the orbital plate of the frontal, with the deepest notch in the squamous margin of the parietal, and with the superior semicircular ridges of the occipital. Estimated in dried millet-seed, the contents equalled 31 ounces, Prussian Apothecaries’ weight. The semicircular line indicating the upper boundary of the attachment of the temporal muscle, though not very strongly marked, ascends nevertheless to more than half the height of the parietal bone. On the right superciliary ridge is observable an oblique furrow or depression, indicative of an injury received during life.[44]The coronaland sagittal sutures are on the exterior nearly closed, and on the inside so completely ossified as to have left no traces whatever, whilst the lambdoidal remains quite open. The depressions for the Pacchionian glands are deep and numerous; and there is an unusually deep vascular groove immediately behind the coronal suture, which, as it terminates in a foramen, no doubt transmitted avena emissaria. The course of the frontal suture is indicated externally by a slight ridge; and where it joins the coronal, this ridge rises into a small protuberance. The course of the sagittal suture is grooved, and above the angle of the occipital bone the parietals are depressed.

Besides the cranium, the following bones have been secured:—

1. Both thigh-bones, perfect. These, like the skull, and all the other bones, are characterized by their unusual thickness, and the great development of all the elevations and depressions for the attachment of muscles. In the Anatomical Museum at Bonn, under the designation of “Giant’s-bones,” are some recent thigh-bones, with which in thickness the foregoing pretty nearly correspond, although they are shorter.

Giant’s bones.Fossil bones.mm.mm.Length542=21.4″438=17.4″Diameterof head of femur54=2.14″53=2.0″„of lower articular end, fromone condyle to the other89=3.5″87=3.4″Diameterof femur in the middle33=1.2″30=1.1″

2. A perfect right humerus, whose size shows that it belongs to the thigh-bones.

mm.Length312=12.3″Thickness in the middle26=1.0″Diameter of head49=1.9″

Also a perfect right radius of corresponding dimensions, and the upper-third of a right ulna corresponding to the humerus and radius.

3. A left humerus, of which the upper-third is wanting, and which is so much slenderer than the right as apparently to belong to a distinct individual; a leftulna, which, though complete, is pathologically deformed, the coronoid process being so much enlarged by bony growth, that flexure of the elbow beyond a right angle must have been impossible; the anterior fossa of the humerus for the reception of the coronoid process being also filled up with a similar bony growth. At the same time, the olecranon is curved strongly downwards. As the bone presents no sign of rachitic degeneration, it may be supposed that an injury sustained during life was the cause of the anchylosis. When the left ulna is compared withthe right radius, it might at first sight be concluded that the bones respectively belonged to different individuals, the ulna being more than half an inch too short for articulation with a corresponding radius. But it is clear that this shortening, as well as the attenuation of the left humerus, are both consequent upon the pathological condition above described.

4. A leftilium, almost perfect, and belonging to the femur; a fragment of the rightscapula; the anterior extremity of a rib of the right side; and the same part of a rib of the left side; the hinder part of a rib of the right side; and, lastly, two hinder portions and one middle portion of ribs, which, from their unusually rounded shape, and abrupt curvature, more resemble the ribs of a carnivorous animal than those of a man. Dr. H. v. Meyer, however, to whose judgment I defer, will not venture to declare them to be ribs of any animal; and it only remains to suppose that this abnormal condition has arisen from an unusually powerful development of the thoracic muscles.

The bones adhere strongly to the tongue, although, as proved by the use of hydrochloric acid, the greater part of the cartilage is still retained in them, which appears, however, to have undergone that transformation into gelatine which has been observed by v. Bibra in fossil bones. The surface of all the bones is in many spots covered with minute black specks, which, more especially under a lens, are seen to be formed of very delicatedendrites. These deposits, which were first observed on the bones by Dr. Meyer, are most distinct on the inner surface of the cranial bones. They consist of a ferruginous compound, and, from their black colour, may be supposed to contain manganese. Similar dendritic formations also occur, not unfrequently, on laminated rocks, and are usually found in minute fissures and cracks. At the meeting of the Lower Rhine Society at Bonn, on the 1st April, 1857, Prof. Meyer stated that he had noticed in the museum of Poppelsdorf similar dendritic crystallizations on several fossil bones of animals, and particularly on those ofUrsus spelæus, but still more abundantly and beautifully displayed onthe fossil bones and teeth ofEquus adamiticus,Elephas primigenius, &c., from the caves of Bolve and Sundwig. Faint indications of similardendriteswere visible in a Roman skull from Siegburg; whilst other ancient skulls, which had lain for centuries in the earth, presented no trace of them.[46]I am indebted to H. v. Meyer for the following remarks on this subject:—

“The incipient formation of dendritic deposits, which were formerly regarded as a sign of a truly fossil condition, is interesting. It has even been supposed that in diluvial deposits the presence ofdendritesmight be regarded as affording a certain mark of distinction between bones mixed with the diluvium at a somewhat later period and the true diluvial relics, to which alone it was supposed that these deposits were confined. But I have long been convinced that neither can the absence ofdendritesbe regarded as indicative of recent age, nor their presence as sufficient to establish the great antiquity of the objects upon which they occur. I have myself noticed upon paper, which could scarcely be more than a year old, dendritic deposits, which could not be distinguished from those on fossil bones. Thus I possess a dog’s skull from the Roman colony of the neighbouring Heddersheim,Castrum Hadrianum, which is in no way distinguishable from the fossil bones from the Frankish caves; it presents the same colour, and adheres to the tongue just as they do; so that this character also, which, at a former meeting of German naturalists at Bonn, gave rise to amusing scenes between Buckland and Schmerling, is no longer of any value. In disputed cases, therefore, the condition of the bone can scarcely afford the means for determining with certainty whether it be fossil, that is to say, whether it belong to geological antiquity or to the historical period.”

“The incipient formation of dendritic deposits, which were formerly regarded as a sign of a truly fossil condition, is interesting. It has even been supposed that in diluvial deposits the presence ofdendritesmight be regarded as affording a certain mark of distinction between bones mixed with the diluvium at a somewhat later period and the true diluvial relics, to which alone it was supposed that these deposits were confined. But I have long been convinced that neither can the absence ofdendritesbe regarded as indicative of recent age, nor their presence as sufficient to establish the great antiquity of the objects upon which they occur. I have myself noticed upon paper, which could scarcely be more than a year old, dendritic deposits, which could not be distinguished from those on fossil bones. Thus I possess a dog’s skull from the Roman colony of the neighbouring Heddersheim,Castrum Hadrianum, which is in no way distinguishable from the fossil bones from the Frankish caves; it presents the same colour, and adheres to the tongue just as they do; so that this character also, which, at a former meeting of German naturalists at Bonn, gave rise to amusing scenes between Buckland and Schmerling, is no longer of any value. In disputed cases, therefore, the condition of the bone can scarcely afford the means for determining with certainty whether it be fossil, that is to say, whether it belong to geological antiquity or to the historical period.”

As we cannot now look upon the primitive world as representing a wholly different condition of things, from which no transition exists to the organic life of the present time, the designation offossil, as applied toa bone, has no longer the sense it conveyed in the time of Cuvier. Sufficient grounds exist for the assumption that mancoexisted with the animals found in thediluvium; and many a barbarous race may, before all historical time, have disappeared, together with the animals of the ancient world, whilst the races whose organization is improved have continued the genus. The bones which form the subject of this paper present characters which, although not decisive as regards a geological epoch, are, nevertheless, such as indicate a very high antiquity. It may also be remarked that, common as is the occurrence of diluvial animal bones in the muddy deposits of caverns, such remains have not hitherto been met with in the caves of the Neanderthal; and that the bones, which were covered by a deposit of mud not more than four or five feet thick, and without any protective covering of stalagmite, have retained the greatest part of their organic substance.

These circumstances might be adduced against the probability of a geological antiquity. Nor should we be justified in regarding the cranial conformation as perhaps representing the most savage primitive type of the human race, since crania exist among living savages, which, though not exhibiting such a remarkable conformation of the forehead, which gives the skull somewhat the aspect of that of the large apes, still in other respects, as for instance in the greater depth of the temporal fossæ, the crest-like, prominent temporal ridges, and a generally less capacious cranial cavity, exhibit an equally low stage of development. There is no reason for supposing that the deep frontal hollow is due to any artificial flattening, such as is practised in various modes by barbarous nations in the Old and New World. The skull is quite symmetrical, and shows no indication of counter-pressure at the occiput, whilst, according to Morton, in the Flat-heads of the Columbia, the frontal and parietal bones are always unsymmetrical. Its conformation exhibits the sparing development of the anterior part of the head which has been so often observed in very ancient crania, and affords one of the most striking proofs of the influence of culture and civilization on the form of the human skull.

In a subsequent passage, Dr. Schaaffhausen remarks:

“There is no reason whatever for regarding the unusual development of the frontal sinuses in the remarkable skull from the Neanderthal as an individual or pathological deformity; it is unquestionably a typical race-character, and is physiologically connected with the uncommon thickness of the other bones of the skeleton, which exceeds by about one-half the usual proportions. This expansion of the frontal sinuses, which are appendages of the air-passages, also indicates an unusual force and power of endurance in the movements of the body, as may be concluded from the size of all the ridges and processes for the attachment of the muscles or bones. That this conclusion may be drawn from the existence of large frontal sinuses, and a prominence of the lower frontal region, is confirmed in many ways by other observations. By the same characters, according to Pallas, the wild horse is distinguished from the domesticated, and, according to Cuvier, the fossil cave-bear from every recent species of bear, whilst, according to Roulin, the pig, which has become wild in America, and regained a resemblance to the wild boar, is thus distinguished from the same animal in the domesticated state, as is the chamois from the goat; and, lastly, the bull-dog, which is characterised by its large bones and strongly-developed muscles from every other kind of dog. The estimation of the facial angle, the determination of which, according to Professor Owen, is also difficult in the great apes, owing to the very prominent supra-orbital ridges, in the present case is rendered still more difficult from the absence both of the auditory opening and of the nasal spine. But if the proper horizontal position of the skull be taken from the remaining portions of the orbital plates, and the ascending line made to touch the surface of the frontal bone behind the prominent supra-orbital ridges, the facial angle is not found to exceed 56°.[47]Unfortunately, no portions of the facial bones, whose conformation is so decisive as regards the form and expression of the head, have been preserved. The cranial capacity, compared with the uncommon strength of the corporeal frame, would seem to indicate a small cerebral development. The skull, as it is, holds about 31 ounces of millet-seed; and as, from the proportionate size of the wanting bones, the whole cranial cavity should have about 6 ounces more added, the contents, were it perfect, may be taken at 37 ounces. Tiedemann assigns, as the cranial contents in the Negro, 40, 38, and 35 ounces. The cranium holds rather more than 36 ounces of water, which corresponds to a capacity of 1033.24 cubic centimetres. Huschke estimates the cranial contents of a Negress at 1127 cubic centimetres; of an old Negro at 1146 cubic centimetres. The capacity of the Malay skulls, estimated by water, equalled 36, 33 ounces, whilst in the diminutive Hindoos it falls to as little as 27 ounces.”

“There is no reason whatever for regarding the unusual development of the frontal sinuses in the remarkable skull from the Neanderthal as an individual or pathological deformity; it is unquestionably a typical race-character, and is physiologically connected with the uncommon thickness of the other bones of the skeleton, which exceeds by about one-half the usual proportions. This expansion of the frontal sinuses, which are appendages of the air-passages, also indicates an unusual force and power of endurance in the movements of the body, as may be concluded from the size of all the ridges and processes for the attachment of the muscles or bones. That this conclusion may be drawn from the existence of large frontal sinuses, and a prominence of the lower frontal region, is confirmed in many ways by other observations. By the same characters, according to Pallas, the wild horse is distinguished from the domesticated, and, according to Cuvier, the fossil cave-bear from every recent species of bear, whilst, according to Roulin, the pig, which has become wild in America, and regained a resemblance to the wild boar, is thus distinguished from the same animal in the domesticated state, as is the chamois from the goat; and, lastly, the bull-dog, which is characterised by its large bones and strongly-developed muscles from every other kind of dog. The estimation of the facial angle, the determination of which, according to Professor Owen, is also difficult in the great apes, owing to the very prominent supra-orbital ridges, in the present case is rendered still more difficult from the absence both of the auditory opening and of the nasal spine. But if the proper horizontal position of the skull be taken from the remaining portions of the orbital plates, and the ascending line made to touch the surface of the frontal bone behind the prominent supra-orbital ridges, the facial angle is not found to exceed 56°.[47]Unfortunately, no portions of the facial bones, whose conformation is so decisive as regards the form and expression of the head, have been preserved. The cranial capacity, compared with the uncommon strength of the corporeal frame, would seem to indicate a small cerebral development. The skull, as it is, holds about 31 ounces of millet-seed; and as, from the proportionate size of the wanting bones, the whole cranial cavity should have about 6 ounces more added, the contents, were it perfect, may be taken at 37 ounces. Tiedemann assigns, as the cranial contents in the Negro, 40, 38, and 35 ounces. The cranium holds rather more than 36 ounces of water, which corresponds to a capacity of 1033.24 cubic centimetres. Huschke estimates the cranial contents of a Negress at 1127 cubic centimetres; of an old Negro at 1146 cubic centimetres. The capacity of the Malay skulls, estimated by water, equalled 36, 33 ounces, whilst in the diminutive Hindoos it falls to as little as 27 ounces.”

After comparing the Neanderthal cranium with many others, ancient and modern, Professor Schaaffhausen concludes thus:—

“But the human bones and cranium from the Neanderthal exceed all the rest in those peculiarities of conformation which lead to the conclusion of their belonging to a barbarous and savage race. Whether the cavern in which they were found, unaccompanied with any trace of human art, were the place of their interment, or whether, like the bones of extinct animals elsewhere, they had been washed into it, they may still be regarded as the most ancient memorial of the early inhabitants of Europe.”

“But the human bones and cranium from the Neanderthal exceed all the rest in those peculiarities of conformation which lead to the conclusion of their belonging to a barbarous and savage race. Whether the cavern in which they were found, unaccompanied with any trace of human art, were the place of their interment, or whether, like the bones of extinct animals elsewhere, they had been washed into it, they may still be regarded as the most ancient memorial of the early inhabitants of Europe.”

Mr. Busk, the translator of Dr. Schaaffhausen’s paper, has enabled us to form a very vivid conception of the degraded character of the Neanderthal skull, by placing side by side with its outline, that of the skull of a Chimpanzee, drawn to the same absolute size.

Some time after the publication of the translation of Professor Schaaffhausen’s Memoir, I was led to study the cast of the Neanderthal cranium with more attention than I had previously bestowed upon it, in consequence of wishing to supply Sir Charles Lyell with a diagram, exhibiting the special peculiarities of this skull, as compared with other human skulls. In order to do this it was necessary to identify, with precision, those points inthe skulls compared which corresponded anatomically. Of these points, the glabella was obvious enough; but when I had distinguished another, defined by the occipital protuberance and superior semicircular line, and had placed the outline of the Neanderthal skull against that of the Engis skull, in such a position that the glabella and occipital protuberance of both were intersected by the same straight line, the difference was so vast and the flattening of the Neanderthal skull so prodigious (compareFigs. 22and24, A), that I at first imagined I must have fallen into some error. And I was the more inclined to suspect this, as, in ordinary human skulls, the occipital protuberance and superior semicircular curved line on the exterior of the occiput correspond pretty closely with the “lateral sinuses” and the line of attachment of the tentorium internally. But on the tentorium rests, as I have said in the preceding Essay, the posterior lobe of the brain; and hence, the occipital protuberance, and the curved line in question, indicate, approximately, the lower limits of that lobe. Was it possible for a human being to have the brain thus flattened and depressed; or, on the other hand, had the muscular ridges shifted their position? In order to solve these doubts, and to decide the question whether the great supraciliary projections did, or did not, arise from the development of the frontal sinuses, I requested Sir Charles Lyell to be so good as to obtain for me from Dr. Fuhlrott, the possessor of the skull, answers to certain queries, and if possible a cast, or at any rate drawings, or photographs, of the interior of the skull.

Fig.24.—The skull from the Neanderthal cavern. A. side, B. front, and C. top view. One-third the natural size. The outlines from camera lucida drawings, one-half the natural size, by Mr. Busk: the details from the cast and from Dr. Fuhlrott’s photographs.a, glabella;b, occipital protuberance;d, lambdoidal suture.

Dr. Fuhlrott replied, with a courtesy and readiness for which I am infinitely indebted to him, to my inquiries, and furthermore sent three excellent photographs. One of these gives a side view of the skull, and from itFig. 24, A. has been shaded. The second (Fig. 25, A.) exhibits the wide openings of the frontal sinuses upon the inferior surface of the frontal part of the skull, into which, Dr. Fuhlrott writes, “a probe may be introduced to the depth of an inch,” and demonstrates the great extension of the thickened supraciliary ridges beyond the cerebral cavity. The third, lastly (Fig. 25, B.), exhibits the edge and theinterior of the posterior, or occipital, part of the skull, and shows very clearly the two depressions for the lateral sinuses, sweeping inwards towards the middle line of the roof of the skull, to form the longitudinal sinus. It was clear, therefore, that I had not erred in my interpretation, and that the posterior lobe of the brain of the Neanderthal man must have been as much flattened as I suspected it to be.

Fig.25.—Drawings from Dr. Fuhlrott’s photographs of parts of the interior of the Neanderthal cranium. A. view of the under and inner surface of the frontal region, showing the inferior apertures of the frontal sinuses (a). B. corresponding view of the occipital region of the skull, showing the impressions of the lateral sinuses (aa).

In truth, the Neanderthal cranium has most extraordinary characters. It has an extreme length of 8 inches, while its breadth is only 5.75 inches, or, in other words, its length is to its breadth as 100 : 72. It is exceedingly depressed, measuring only about 3.4 inches from the glabello-occipital line to the vertex. The longitudinal arc, measured in the same way as in the Engis skull, is 12 inches; the transverse arc cannot be exactly ascertained, in consequence of the absence of the temporal bones, but was probably about the same, and certainly exceeded 101⁄4inches. The horizontal circumference is 23 inches. But this great circumference arises largely from the vast development of the supraciliary ridges, though the perimeter of the brain case itself is not small. The large supraciliary ridges give the forehead a far more retreating appearance than its internal contour would bear out.

To an anatomical eye the posterior part of the skull is even more striking than the anterior. The occipital protuberance occupies the extreme posterior end of the skull, when the glabello-occipital line is made horizontal, and so far from any part of the occipital region extending beyond it, this region of the skull slopes obliquely upward and forward, so that the lambdoidal suture is situated well upon the upper surface of the cranium. At the same time, notwithstanding the great length of the skull, the sagittal suture is remarkably short (41⁄2inches), and the squamosal suture is very straight.

In reply to my questions Dr. Fuhlrott writes that the occipital bone “is in a state of perfect preservation as far as the upper semicircular line, which is a very strong ridge, linear at its extremities, but enlarging towards the middle, where it forms two ridges (bourrelets), united by a linear continuation, which is slightly depressed in the middle.”

“Below the left ridge the bone exhibits an obliquely inclined surface, six lines (French) long, and twelve lines wide.”

This last must be the surface, the contour of which is shown inFig. 24, A, belowb. It is particularly interesting, as it suggests that, notwithstanding the flattened conditionof the occiput, the posterior cerebral lobes must have projected considerably beyond the cerebellum, and as it constitutes one among several points of similarity between the Neanderthal cranium and certain Australian skulls.

Such are the two best known forms of human cranium, which have been found in what may be fairly termed a fossil state. Can either be shown to fill up or diminish, to any appreciable extent, the structural interval which exists between Man and the man-like Apes? Or, on the other hand, does neither depart more widely from the average structure of the human cranium, than normally formed skulls of men are known to do at the present day?

It is impossible to form any opinion on these questions, without some preliminary acquaintance with the range of variation exhibited by human structure in general—a subject which has been but imperfectly studied, while even of what is known, my limits will necessarily allow me to give only a very imperfect sketch.

The student of anatomy is perfectly well aware that there is not a single organ of the human body the structure of which does not vary, to a greater or less extent, in different individuals. The skeleton varies in the proportions, and even to a certain extent in the connexions, of its constituent bones. The muscles which move the bones vary largely in their attachments. The varieties in the mode of distribution of the arteries are carefully classified, on account of the practical importance of a knowledge of their shiftings to the surgeon. The characters of the brain vary immensely, nothing being less constant than the form and size of the cerebral hemispheres, and the richness of the convolutions upon their surface, while the most changeable structures of all in the human brain, are exactly those on which the unwise attempt has been made to base the distinctive characters of humanity, viz. the posterior cornu of the lateral ventricle, the hippocampus minor, and the degree of projection of the posterior lobe beyond the cerebellum. Finally, as all the world knows, the hair and skin of human beings may present the most extraordinary diversities in colour and in texture.

So far as our present knowledge goes, the majority of the structural varieties to which allusion is here made, are individual. The ape-like arrangement of certain muscles which is occasionally met with[48]in the white races of mankind, is not known to be more common among Negroes or Australians: nor because the brain of the Hottentot Venus was found to be smoother, to have its convolutions more symmetrically disposed, and to be, so far, more ape-like than that of ordinary Europeans, are we justified in concluding a like condition of the brain to prevail universally among the lower races of mankind, however probable that conclusion may be.

We are, in fact, sadly wanting in information respecting the disposition of the soft and destructible organs of every Race of Mankind but our own; and even of the skeleton, our Museums are lamentably deficient in every part but the cranium. Skulls enough there are, and since the time when Blumenbach and Camper first called attention to the marked and singular differences which they exhibit, skull collecting and skull measuring has been a zealously pursued branch of Natural History, and the results obtained have been arranged and classified by various writers, among whom the late active and able Retzius must always be the first named.

Human skulls have been found to differ from one another, not merely in their absolute size and in the absolute capacity of the brain case, but in the proportions which the diameters of the latter bear to one another; in the relative size of the bones of the face (and more particularly of the jaws and teeth) as compared with those of the skull; in the degree to which the upper jaw (which is of course followed by the lower) is thrown backwards and downwards under the forepart of the brain case, or forwards and upwards in front of and beyond it. They differ further in the relations of the transverse diameter of the face, taken through the cheek bones, to the transverse diameter of the skull; in the more rounded or more gable-like form of the roof of the skull, and in the degree to which the hinder part of the skull is flattenedor projects beyond the ridge, into and below which, the muscles of the neck are inserted.

In some skulls the brain case may be said to be “round,” the extreme length not exceeding the extreme breadth by a greater proportion than 100 to 80, while the difference may be much less.[49]Men possessing such skulls were termed by Retzius “brachycephalic,” and the skull of a Calmuck, of which a front and side view (reduced outline copies of which are given inFigure 26) are depicted by Von Baer in his excellent “Crania selecta,” affords a very admirable example of that kind of skull. Other skulls, such as that of a Negro copied inFig. 27from Mr. Busk’s “Crania typica,” have a very different, greatly elongated form, and may be termed “oblong.” In this skull the extreme length is to the extreme breadth as 100 to not more than 67, and the transverse diameter of the human skull may fall below even this proportion. People having such skulls were called by Retzius “dolichocephalic.”

The most cursory glance at the side views of these two skulls will suffice to prove that they differ, in another respect, to a very striking extent. The profile of the face of the Calmuck is almost vertical, the facial bones being thrown downwards and under the fore part of the skull. The profile of the face of the Negro, on the other hand, is singularly inclined, the front part of the jaws projecting far forward beyond the level of the fore part of the skull. In the former case the skull is said to be “orthognathous” or straight-jawed; in the latter, it is called “prognathous,” a term which has been rendered, with more force than elegance, by the Saxon equivalent,—“snouty.”

Various methods have been devised in order to express with some accuracy the degree of prognathism or orthognathism of any given skull; most of these methods being essentially modifications of that devised by Peter Camper, in order to attain what he called the “facial angle.”


Back to IndexNext