Chapter 5

* **

A little more than a hundred years after Thomas Traherne taught his fellow-men 'from experience' that there is an original condition of man's soul, before it is yet able to prize 'those living stars, mine eyes', in which it is endowed with the faculty to see 'the true (fair) Ideas of all things', Goethe was led to the realization that he had achieved the possibility of 'seeing Ideas with the very eyes'. Although he was himself not aware of it, the conception of the Idea was at this moment restored through him to its true and original Platonic significance.

The present chapter has shown us how this conception of the Idea is bound up with the view that is held of the relationship between human nature in early childhood and human nature in later life. We have seen that, when Plato introduced the term Idea as an expression for spiritual entities having a real and independent existence, men were still in possession of some recollection of their own pre-earthly existence. We then found Traherne saying from his recollections that in the original form of man's consciousness his soul is endowed with the faculty of seeing 'true' Ideas, and we found Reid on similar grounds fighting the significance which the term 'idea' had assumed under his predecessors. By their side we see Goethe as one in whom the faculty of seeing Ideas appears for the first time in adult man as a result of a systematic training of observation and thought.

If our view of the interdependence of the Platonic conception of the Idea with the picture man has of himself is seen rightly, then Goethe must have been the bearer of such a picture. Our expectation is shown to be right by the following two passages from Goethe's autobiography,Truth and Fiction.

In that part of his life story where Goethe concludes the report of the first period of his childhood (Book II), he writes:

'Who is able to speak worthily of the fullness of childhood? We cannot behold the little creatures which flit about before us otherwise than with delight, nay, with admiration; for they generally promise more than they perform and it seems that nature, among the other roguish tricks that she plays us, here also especially designs to make sport of us. The first organs she bestows upon children coming into the world, are adapted to the nearest immediate condition of the creature, which, unassuming and artless, makes use of them in the readiest way for its present purposes. The child, considered in and for itself, with its equals, and in relations suited to its powers, seems so intelligent and rational, and at the same time so easy, cheerful and clever, that one can hardly wish it further cultivation. If children grew up according to early indications, we should have nothing but geniuses.'9

We find further evidence in Goethe's account of an event in his seventh year, which shows how deeply his soul was filled at that time with the knowledge of its kinship with the realm from which nature herself receives its existence. This knowledge led him to approach the 'great God of Nature' through an act of ritual conceived by himself. The boy took a four-sectioned music stand and arranged on it all kinds of natural specimens, minerals and the like, until the whole formed a kind of pyramidal altar. On the top of this pyramid he placed some fumigating candles, the burning of which was to represent the 'upward yearning of the soul for its God'. In order to give nature herself an active part in the ritual, he contrived to kindle the candles by focusing upon them through a magnifying-glass the light of the rising sun. Before this symbol of the unity of the soul with the divine in nature the boy then paid his devotions.

'Unity of the soul with the divine in nature' - this was what lived vividly as a conviction in the seven-year-old boy, impelling him to act as 'nature's priest' (Wordsworth). The same impulse, in a metamorphosed form, impelled the adult to go out in quest of an understanding of nature which, as Traherne put it, was to bring back through highest reason what once had been his by way of primeval intuition.

1The present writer's interest in Reid was first aroused by a remark of Rudolf Steiner, in his bookA Theory of 'Knowledge according to Goethe's World Conception.

2In a comment on a letter Carlyle had written to him, and in a note dealing with the contemporary philosophy in Germany.

3This observation of Reid's shows that the origin of language is very different from what the evolutionists since Darwin have imagined it to be.

4Confessions,Book I,Chapter 8.

5As we have seen, the word had better luck with Goethe.

6Wordsworth, with all his limitations, had a real affinity with Goethe in his view of nature. Mr. Norman Lacey gives some indication of this in his recent book,Wordsworth's View of Nature.

7This same period of life played a decisive part in the spiritual evolution of Rudolf Steiner, as may be seen in his autobiography,The Story of My Life.

8The difference in spelling between the prose and poetry excerpts arises from the fact that whereas we can draw on Miss Wade's new edition of the poems for Traherne's original spelling, we have as yet only Dobell's edition of theCenturies,in which the spelling is modernized.

9Oxenford's translation.

CHAPTER VII

'Always Stand by Form'

Immediacy of approach to certain essentials of nature as a result of their religious or artistic experience of the sense-world, is the characteristic of two more representatives of British cultural life. They are Luke Howard (1772-1864) and John Ruskin (1819-1900), both true readers in the book of nature. Like those discussed in the previous chapter they can be of especial help to us in our attempt to establish an up-to-date method of apprehending nature's phenomena throughreadingthem.

At the same time we shall find ourselves led into another sphere of Goethe's scientific work. For we cannot properly discuss Howard without recognizing the importance of his findings for Goethe's meteorological studies or without referring to the personal connexion between the two men arising out of their common interest and similar approach to nature. We shall thus come as a matter of course to speak of Goethe's thoughts about meteorology, and this again will give opportunity to introduce a leading concept of Goethean science in addition to those brought forward already.

Of Ruskin only so much will appear in the present chapter as is necessary to show him as an exemplary reader in the book of nature. He will then be a more or less permanent companion in our investigations.

The following words of Ruskin fromThe Queen of the Airreveal him at once as a true reader in the book of nature:

'Over the entire surface of the earth and its waters, as influenced by the power of the air under solar light, there is developed a series of changing forms, in clouds, plants and animals, all of which have reference in their action, or nature, to the human intelligence that perceives them.' (II, 89.)

Here Ruskin in an entirely Goethean way pointsto formin nature as the element in her that speaks to human intelligence - meaning by form, as other utterances of his show, all those qualities through which the natural object under observation reveals itself to our senses as a whole.

By virtue of his pictorial-dynamic way of regarding nature, Ruskin was quite clear that the scientists' one-sided seeking after external forces and the mathematically calculable interplay between them can never lead to a comprehension of life in nature. For in such a search man loses sight of the real signature oflife:form as a dynamic element. Accordingly, in hisEthics of the Dust,Ruskin does not answer the question: 'What is Life?' with a scientific explanation, but with the laconic injunction: 'Always stand by Form against Force.' This he later enlarges pictorially in the words: 'Discern the moulding hand of the potter commanding the clay from the merely beating foot as it turns the wheel.' (Lect. X.)

In thus opposing form and force to each other, Ruskin is actually referring to two kinds of forces. There exist those forces which resemble the potter's foot in producing mere numerically regulated movements (so that this part of the potter's activity can be replaced by a power-machine), and others, which like the potter's hand, strive for a certain end and so in the process create definite forms. Ruskin goes a step further still inThe Queen of the Air,where he speaks of selective order as a mark of the spirit:

'It does not merely crystallize indefinite masses, but it gives to limited portions of matter the power of gathering, selectively, other elements proper to them, and binding these elements into their own peculiar and adopted form. ...

'For the mere force of junction is not spirit, but the power that catches out of chaos, charcoal, water, lime and what not, and fastens them into given form, is properly called "spirit"; and we shall not diminish, but strengthen our cognition of this creative energy by recognizing its presence in lower states of matter than our own.' (II, 59.)1

When Ruskin wrote this passage, he could count on a certain measure of agreement from his contemporaries that the essence of man himself is spirit, though certainly without any very exact notion being implied. This persuaded him to fight on behalf of the spirit, lest its activity on the lower levels of nature should not be duly acknowledged. To-day, when the purely physical conception of nature has laid hold of the entire man, Ruskin might have given his thought the following turn: '... and we shall certainly attain to no real insight into this creative force (of the spirit) at the level of man, unless we win the capacity to recognize its activity in lower states of matter.'

What Ruskin is really pointing towards is the very thing for which Goethe formed the concept 'type'. And just as Ruskin, like Goethe, recognized the signature of the spirit in the material processes which work towards a goal, so he counted as another such signature what Goethe calledSteigerung,though certainly without forming such a universally valid idea of it:

'The Spirit in the plant - that is to say, its power of gathering dead matter out of the wreck round it, and shaping it into its own chosen shape - is of course strongest in the moment of flowering, for it then not only gathers, but forms, with the greatest energy.' It is characteristic of Ruskin's conception of the relationship between man's mind and nature that he added: 'And where this life is in it at full power, its form becomes invested with aspects that are chiefly delightful to our own senses.' (II, 60.)

Obviously, a mind capable of looking at nature in this way could not accept such a picture of evolution as was put forward by Ruskin's contemporary, Darwin. So we find Ruskin, inThe Queen of the Air,opposing the Darwinistic conception of the preservation of the species as the driving factor in the life of nature:

'With respect to plants as animals, we are wrong in speaking as if the object of life were only the bequeathing of itself. The flower is the end and proper object of the seeds, not the seed of the flower. The reason for the seed is that flowers may be, not the reason of flowers that seeds may be. The flower itself is the creature which the spirit makes; only, in connection with its perfectedness, is placed the giving birth to its successor.' (II, 60.)

For Ruskin the true meaning of life in all its stages lay not in the maintenance of physical continuity from generation to generation, but in the ever-renewed, ever more enhanced revelation of the spirit.

He was never for a moment in doubt regarding the inevitable effect of such an evolutionary theory as Darwin's on the general social attitude of humanity. Men would be led, he realized, to see themselves as the accidental products of an animal nature based on the struggle for existence and the preservation of the species. Enough has been said to stamp Ruskin as a reader in the book of nature, capable of deciphering the signature of the spirit in the phenomena of the sense-world.

*

Outwardly different from Ruskin's and yet spiritually comparable, is the contribution made by his older contemporary, Luke Howard, to the foundation of a science of nature based on intuition. Whereas Ruskin throws out a multitude of aphoristic utterances about many different aspects of nature, which will provide us with further starting-points for our own observation and thought, Howard is concerned with a single sphere of phenomena, that of cloud formation. On the other hand, his contribution consists of a definite discovery which he himself methodically and consciously achieved, and it is the content of this discovery, together with the method of research leading to it, which will supply us ever and again with a model for our own procedure. At the same time, as we have indicated, he will help us to become familiar with another side of Goethe, and to widen our knowledge of the basic scientific concepts formed by him.

Anyone interested to-day in weather phenomena is acquainted with the terms used in cloud classification - Cirrus, Cumulus, Stratus, and Nimbus. These have come so far into general use that it is not easy to realize that, until Howard's paper,On the Modification of Clouds,appeared in 1803, no names for classifying clouds were available. Superficially, it may seem that Howard had done nothing more than science has so often done in grouping and classifying and naming the contents of nature. In fact, however, he did something essentially different.

In the introduction to his essay, Howard describes the motives which led him to devote himself to a study of meteorological phenomena:

'It is the frequent observation of the countenance of the sky, and of its connexion with the present and ensuing phenomena, that constitutes the ancient and popular meteorology. The want of this branch of knowledge renders the prediction of the philosopher (who in attending his instruments may be said to examine the pulse of the atmosphere), less generally successful than those of the weather-wise mariners and husbandmen.'

When he thus speaks of studying 'the countenance of the sky', Howard is not using a mere form of speech; he is exactly describing his own procedure, as he shows when he proceeds to justify it as a means to scientific knowledge. The clouds with their ever-moving, ever-changing forms are not, he says, to be regarded as the mere 'sport of the winds', nor is their existence 'the mere result of the condensation of vapour in the masses of the atmosphere which they occupy'. What comes to view in them is identical, in its own realm, with what the changing expression of the human face reveals of 'a person's state of mind or body'. It would hardly be possible to represent oneself more clearly as a genuine reader in the book of nature than by such words. What is it but Ruskin's 'Stand by Form against Force' that Howard is here saying in his own way?

*

Before entering into a further description of Howard's system, we must make clear why we disregard the fact that modern meteorology has developed the scale of cloud-formation far beyond Howard, and why we shall keep to his own fourfold scale.

It is characteristic of Goethe that, on becoming acquainted with Howard's work, he at once gave a warning against subdividing his scale without limit. Goethe foresaw that the attempt to insert too many transitory forms between Howard's chief types would result only in obscuring that view of the essentials which Howard's original classification had opened up. Obviously, for a science based on mere onlooking there is no objection to breaking up an established system into ever more subdivisions in order to keep it in line with an increasingly detailed outer observation. This, indeed, modern meteorology has done with Howard's system, with the result that, to-day, the total scale is made up of ten different stages of cloud-formation.

Valuable as this tenfold scale may be for certain practical purposes, it must be ignored by one who realizes that through Howard's fourfold scale nature herself speaks to man's intuitive judgment. Let us, therefore, turn to Howard's discovery, undisturbed by the extension to which modern meteorology has subjected it.

Luke Howard, a chemist by profession, knew well how to value the results of scientific knowledge above traditional folk-knowledge. He saw the superiority of scientifically acquired knowledge in the fact that it was universally communicable, whereas folk-wisdom is bound up with the personality of its bearer, his individual observations and his memory of them. Nevertheless, the increasing mathematizing of science, including his own branch of it, gave him great concern, for he could not regard it as helpful in the true progress of man'sunderstandingof nature. Accordingly, he sought for a method of observation in which the practice of 'the weatherwise mariner and husbandman' could be raised to the level of scientific procedure. To this end he studied the changing phenomena of the sky for many years, until he was able so to read its play of features that it disclosed to him the archetypal forms of cloud-formation underlying all change. To these he gave the now well-known names (in Latin, so that they might be internationally comprehensible):

Cirrus: Parallel, flexuous or divergent fibres extensible in any and all directions.

Cumulus: Convex or conical heaps, increasing upwards from a horizontal base.

Stratus: A widely extended, continuous, horizontal sheet, increasing from below.

Nimbus: The rain cloud.

Let us, on the background of Howard's brief definitions, try to form a more exact picture of the atmospheric dynamics at work in each of the stages he describes.2

Among the three formations of cirrus, cumulus and stratus, the cumulus has a special place as representing in the most actual sense what is meant by the term 'cloud'. The reason is that both cirrus and stratus have characteristics which in one or the other direction tend away from the pure realm of atmospheric cloud-formation. In the stratus, the atmospheric vapour is gathered into a horizontal, relatively arched layer around the earth, and so anticipates the actual water covering below which extends spherically around the earth's centre. Thus the stratus arranges itself in a direction which is already conditioned by the earth's field of gravity. In the language of physics, the stratus forms an equipotential surface in the gravitational field permeating the earth's atmosphere.

As the exact opposite of this we have the cirrus. If in the stratus the form ceases to consist of distinct particulars, because the entire cloud-mass runs together into a single layer, in the cirrus the form begins to vanish before our eyes, because it dissolves into the surrounding atmospheric space. In the cirrus there is present a tendency to expand; in the stratus to contract.

Between the two, the cumulus, even viewed simply as a form-type, represents an exact mean. In how densely mounded a shape does the majestically towering cumulus appear before us, and yet how buoyantly it hovers aloft in the heights! If one ever comes into the midst of a cumulus cloud in the mountains, one sees how its myriads of single particles are in ceaseless movement. And yet the whole remains stationary, on windless days preserving its form unchanged for hours. More recent meteorological research has established that in many cumulus forms the entire mass is in constant rotation, although seen from outside, it appears as a stable, unvarying shape. Nowhere in nature may the supremacy of form over matter be so vividly observed as in the cumulus cloud. And the forms of the cumuli themselves tell us in manifold metamorphoses of a state of equilibrium between expansive and contractive tendencies within the atmosphere.

Our description of the three cloud-types of cirrus, cumulus and stratus, makes it clear that we have to do with a self-contained symmetrical system of forms, within which the two outer, dynamically regarded, represent the extreme tendencies of expansion and contraction, whilst in the middle forms these are held more or less in balance. By adding Howard's nimbus formation to this system, we destroy its symmetry. Actually, in the nimbus we have cloud in such a condition that it ceases to be an atmospheric phenomenon in any real sense of the word; for it now breaks up into single drops of water, each of which, under the pull of gravity, makes its own independent way to the earth. (The symmetry is restored as soon as we realize that the nimbus, as a frontier stage below the stratus, has a counterpart in a corresponding frontier stage above the cirrus. To provide insight into this upper frontier stage, of which neither Howard nor Goethe was at that time in a position to develop a clear enough conception to deal with it scientifically, is one of the aims of this book.)

*

In order to understand what prompted Goethe to accept, as he did, Howard's classification and terminology at first glance, and what persuaded him to make himself its eloquent herald, we must note from what point Goethe's labours for a natural understanding of nature had originated.

In hisHistory of my Botanical StudiesGoethe mentions, besides Shakespeare and Spinoza, Linnaeus as one who had most influenced his own development. Concerning Linnaeus, however, this is to be understood in a negative sense. For when Goethe, himself searching for a way of bringing the confusing multiplicity of plant phenomena into a comprehensive system, met with the Linnaean system, he was, despite his admiration for the thoroughness and ingenuity of Linnaeus's work, repelled by his method. Thus by way of reaction, his thought was brought into its own creative movement: 'As I sought to take in his acute, ingenious analysis, his apt, appropriate, though often arbitrary laws, a cleft was set up in my inner nature: what he sought to hold forcibly apart could not but strive for union according to the inmost need of my own being.'

Linnaeus's system agonized Goethe because it demanded from him 'to memorize a ready-made terminology, to hold in readiness a certain number of nouns and adjectives, so as to be able, whenever any form was in question, to employ them in apt and skilful selection, and so to give it its characteristic designation and appropriate position.' Such a procedure appeared to Goethe as a kind of mosaic, in which one ready-made piece is set next to another in order to produce out of a thousand details the semblance of a picture; and this was 'in a certain way repugnant' to him. What Goethe awoke to when he met Linnaeus's attempt at systematizing the plant kingdom was the old problem of whether the study of nature should proceed from the parts to the whole or from the whole to the parts.

Seeing, therefore, how it became a question for Goethe, at the very beginning of his scientific studies, whether anaturalclassification of nature's phenomena could be achieved, we can understand why he was so overjoyed when, towards the end of his life, in a field of observation which had meanwhile caught much of his interest, he met with a classification which showed, down to the single names employed, that it had been read off from reality.

*

The following is a comprehensive description of Goethe's meteorological views, which he gave a few years before his death in one of his conversations with his secretary, Eckermann:

'I compare the earth and her hygrosphere3to a great living being perpetually inhaling and exhaling. If she inhales, she draws the hygrosphere to her, so that, coming near her surface, it is condensed to clouds and rain. This state I call water-affirmative(WasserBejahung).Should it continue for an indefinite period, the earth would be drowned. This the earth does not allow, but exhales again, and sends the watery vapours upwards, when they are dissipated through the whole space of the higher atmosphere. These become so rarefied that not only does the sun penetrate them with its brilliancy, but the eternal darkness of infinite space is seen through them as a fresh blue. This state of the atmosphere I call water-negative (WasserVerneinung).For just as, under the contrary influence, not only does water come profusely from above, but also the moisture of the earth cannot be dried and dissipated - so, on the contrary, in this state not only does no moisture come from above, but the damp of the earth itself flies upwards; so that, if this should continue for an indefinite period, the earth, even if the sun did not shine, would be in danger of drying up.' (llth April 1827.)

Goethe's notes of the results of his meteorological observations show how in them, too, he followed his principle of keeping strictly to the phenomenon. His first concern is to bring the recorded measurements of weather phenomena into their proper order of significance. To this end he compares measurements of atmospheric temperature and local density with barometric measurements. He finds that the first two, being of a more local and accidental nature, have the value of 'derived' phenomena, whereas the variations in the atmosphere revealed by the barometer are the same over wide areas and therefore point to fundamental changes in the general conditions of the earth. Measurements made regularly over long periods of time finally lead him to recognize in the barometric variations of atmospheric pressure the basic meteorological phenomenon.

In all this we find Goethe carefully guarding himself against 'explaining' these atmospheric changes by assuming some kind of purely mechanical cause, such as the accumulation of air-masses over a certain area or the like. Just as little would he permit himself lightly to assume influences of an extra-terrestrial nature, such as those of the moon. Not that he would have had anything against such things, if they had rested on genuine observation. But his own observations, as far as he was able to carry them, told him simply that the atmosphere presses with greater or lesser intensity on the earth in more or less regular rhythms. He was not abandoning the phenomenal sphere, however, when he said that these changes are results of the activity of earthly gravity, or when he concluded from this that barometric variations were caused by variations in the intensity of the field of terrestrial gravity, whereby the earth sometimes drew the atmosphere to it with a stronger, and sometimes with a weaker, pull.

He was again not departing from the realm of the phenomenal when he looked round for other indications in nature of such an alternation of drawing in and letting forth of air, and found them in the respiratory processes of animated beings. (To regard the earth as a merely physical structure was impossible for Goethe, for he could have done this only by leaving out of account the life visibly bound up with it.) Accordingly, barometric measurements became for him the sign of a breathing process carried out by the earth.

Alongside the alternating phases of contraction and expansion within the atmosphere, Goethe placed the fact that atmospheric density decreases with height. Observation of differences in cloud formation at different levels, of the boundary of snow formation, etc., led him to speak of different 'atmospheres', or of atmospheric circles or spheres, which when undisturbed are arranged concentrically round the earth. Here also he saw, in space, phases of contraction alternating with phases of expansion.

*

At this point in our discussion it is necessary to introduce another leading concept of Goethean nature-observation, which was for him - as it will be for us - of particular significance for carrying over the Goethean method of research from the organic into the inorganic realm of nature. This is the concept of the ur-phenomenon(Urphänomen).In this latter realm, nature no longer brings forth related phenomena in the ordering proper to them; hence we are obliged to acquire the capacity of penetrating to this ordering by means of our own realistically trained observation and thought.

From among the various utterances of Goethe regarding his general conception of the ur-phenomenon, we here select a passage from that part of the historical section of hisTheory of Colourwhere he discusses the method of investigation introduced into science by Bacon. He says:

'In the range of phenomena all had equal value in Bacon's eyes. For although he himself always points out that one should collect the particulars only to select from them and to arrange them, in order finally to attain to Universals, yet too much privilege is granted to the single facts; and before it becomes possible to attain to simplification and conclusion by means of induction (the very way he recommends), life vanishes and forces get exhausted. He who cannot realize that one instance is often worth a thousand, bearing all within itself; he who proves unable to comprehend and esteem what we called ur-phenomena, will never be in a position to advance anything, either to his own or to others' joy and profit.'

What Goethe says here calls for the following comparison. We can say that nature seen through Bacon's eyes appears as if painted on a two-dimensional surface, so that all its facts are seen alongside each other at exactly the same distance from the observer. Goethe, on the other hand, ascribed to the human spirit the power of seeing the phenomenal world in all its three-dimensional multiplicity; that is, of seeing it in perspective and distinguishing between foreground and background.4Things in the foreground he called ur-phenomena. Here the idea creatively determining the relevant field of facts comes to its purest expression. The sole task of the investigator of nature, he considered, was to seek for the ur-phenomena and to bring all other phenomena into relation with them; and in the fulfilment of this task he saw the means of fully satisfying the human mind's need to theorize. He expressed this in the words, 'Every fact is itself already theory'. In Goethe's meteorological studies we have a lucid example of how he sought and found the relevant ur-phenomenon. It is the breathing-process of the earth as shown by the variations of barometric pressure.

*

Once again we find Thomas Reid, along his line of intuitively guided observation, coming quite close to Goethe where he deals with the question of the apprehension of natural law by the human mind. He, too, was an opponent of the method of 'explaining' phenomena by means of abstract theories spun out of sheer thinking, and more than once in his writings he inveighs against it in his downright, humorous way.5

His conviction that human thinking ought to remain within the realm of directly experienced observation is shown in the following words: 'In the solution of natural phenomena, all the length that the human faculties can carry us is only this, that from particular phenomena, we may, by induction, trace out general phenomena, of which all the particular ones are necessary consequences.'6As an example of this he takes gravity, leading the reader from one phenomenon to the next without ever abandoning them, and concluding the journey by saying: 'The most general phenomena we can reach are what we call laws of nature. So that the laws of nature are nothing else but the most general facts relating to the operations of nature, which include a great many particular facts under them.'

*

It was while on his way with the Grand Duke of Weimar to visit a newly erected meteorological observatory that Goethe, in the course of informing his companion of his own meteorological ideas, first heard of Howard's writings about the formation of clouds. The Duke had read a report of them in a German scientific periodical, and it seemed to him that Howard's cloud system corresponded with what he now heard of Goethe's thoughts about the force relationships working in the different atmospheric levels. He had made no mistake. Goethe, who immediately obtained Howard's essay, recognized at first glance in Howard's cloud scale the law of atmospheric changes which he himself had discovered. He found here, what he had always missed in the customary practice of merely tabulating the results of scientific measurements. And so he took hold of the Howard system with delight, for it 'provided him with a thread which had hitherto been lacking'.

Moreover, in the names which Howard had chosen for designating the basic cloud forms, Goethe saw the dynamic element in each of them coming to immediate expression in human speech.7He therefore always spoke of Howard's system as a 'welcome terminology'.

All this inspired Goethe to celebrate Howard's personality and his work in a number of verses in which he gave a description of these dynamic elements and a paraphrase of the names, moulding them together into an artistic unity. In a few accompanying verses he honoured Howard as the first to 'distinguish and suitably name' the clouds.8

The reason why Goethe laid so much stress on Howard's terminology was because he was very much aware of the power of names to help or hinder men in their quest for knowledge. He himself usually waited a long time before deciding on a name for a natural phenomenon or a connexion between phenomena which he had discovered. The Idea which his spiritual eye had observed had first to appear so clearly before him that he could clothe it in a thought-form proper to it. Seeing in the act of name - giving an essential function of man (we are reminded of what in this respect the biblical story of creation says of Adam),9Goethe called man 'the first conversation which Nature conducts with God'.

It is characteristic of Goethe that he did not content himself with knowing the truth which someone had brought forward in a field of knowledge in which he himself was interested, but that he felt his acquaintance with this truth to be complete only when he also knew something about the personality of the man himself. So he introduces his account of his endeavours to know more about Howard, the man, with the following words: 'Increasingly convinced that everything occurring through man should be regarded in an ethical sense, and that moral value is to be estimated only from a man's way of life, I asked a friend in London to find out if possible something about Howard's life, if only the simplest facts.' Goethe was uncertain whether the Englishman was still alive, so his delight and surprise were considerable when from Howard himself he received an answer in the form of a short autobiographical sketch, which fully confirmed his expectations regarding Howard's ethical personality.

Howard's account of himself is known to us, as Goethe included a translation of it in the collection of his own meteorological studies. Howard in a modest yet dignified way describes his Christian faith, his guide through all his relationships, whether to other men or to nature.10A man comes before us who, untroubled by the prevailing philosophy of his day, was able to advance to the knowledge of an objective truth in nature, because he had the ability to carry religious experience even into his observation of the sense-world.

*

In view of all this, it is perhaps not too much to say that in the meeting between Howard and Goethe by way of the spiritual bridge of the clouds, something happened that was more than a mere event in the personal history of these two men.

1These words should be weighed with the fact in mind that they were written at the time when Crookes was intent on finding the unknown land of the spirit by means of just such 'a mere force of junction'.

2See also Goethe's sketch of the basic cloud forms on Plate IV.

3Goethe'sDunstkreis- meaning the humidity contained in the air and, as such, spherically surrounding the earth. I had to make up the word 'hygrosphere' (after hygrometer, etc.) to keep clear the distinction from both atmosphere and hydrosphere. Except for this term in the first two sentences, the above follows Oxenford's translation (who, following the dictionaries, has rendered Goethe's term inadequately by 'atmosphere').

4We may here recall Eddington's statement concerning the restriction of scientific observation to 'non-stereoscopic vision'.

5An example of this is Reid's commentary on existing theories about sight as a mere activity of the optic nerve. (Inq., VI, 19.)

6SeeInq.,VI, 13. This is precisely what Kant had declared to be outside human possibility.

7Stratus means layer, cumulus - heap, cirrus - curl.

8There exists no adequate translation of these verses.

9Genesis ii, 19, 20.

10A fact which Howard did not mention, and which presumably remained unknown to Goethe, was the work he had done as chairman of a relief committee for the parts of Germany devastated by the Napoleonic wars. For this work Howard received a series of public honours.

CHAPTER VIII

DynamicsversusKinetics

At the present time the human mind is in danger of confusing the realm of dynamic events, into which modern atomic research has penetrated, with the world of the spirit; that is, the world whence nature is endowed with intelligent design, and of which human thinking is an expression in terms of consciousness. If a view of nature as a manifestation of spirit, such as Goethe and kindred minds conceived it, is to be of any significance in our time, it must include a conception of matter which shows as one of its attributes its capacity to serve Form (in the sense in which Ruskin spoke of it in opposition to mere Force) as a means of manifestation.

The present part of this book, comprising Chapters VIII-XI, will be devoted to working out such a conception of matter. An example will thereby be given of how Goethe's method of acquiring understanding of natural phenomena through reading the phenomena themselves may be carried beyond his own field of observation. There are, however, certain theoretical obstacles, erected by the onlooker-consciousness, which require to be removed before we can actually set foot on the new path. The present chapter will in particular serve this purpose.

*

Science, since Galileo, has been rooted in the conviction that the logic of mathematics is a means of expressing the behaviour of natural events. The material for the mathematical treatment of sense data is obtained through measurement. The actual thing, therefore, in which the scientific observer is interested in each case, is the position of some kind of pointer. In fact, physical science is essentially, as Professor Eddington put it, a 'pointer-reading science'. Looking at this fact in our way we can say that all pointer instruments which man has constructed ever since the beginning of science, have as their model man himself, restricted to colourless, non-stereoscopic observation. For all that is left to him in this condition is to focus points in space and register changes of their positions. Indeed, the perfect scientific observer is himself the arch-pointer-instrument.

The birth of the method of pointer-reading is marked by Galileo's construction of the first thermometer (actually, a thermoscope). The conviction of the applicability of mathematical concepts to the description of natural events is grounded in his discovery of the so-called Parallelogram of Forces. It is with these two innovations that we shall concern ourselves in this chapter.

Let it be said at once that our investigations will lead to the unveiling of certain illusions which the spectator-consciousness has woven round these two gifts of Galileo. This does not mean that their significance as fundamentals of science will be questioned. Nor will the practical uses to which they have been put with so much success be criticized in any way. But there are certain deceptive ideas which became connected with them, and the result is that to-day, when man is in need of finding new epistemological ground under his feet, he is entangled in a network of conceptual illusions which prevent him from using his reason with the required freedom.

A special word is necessary at this point regarding the term illusion, as it is used here and elsewhere. In respect of this, it will be well to remember what was pointed out earlier in connexion with the term 'tragedy' (Chapter II). In speaking of 'illusion', we neither intend to cast any blame on some person or another who took part in weaving the illusion, nor to suggest that the emergence of it should be thought of as an avoidable calamity. Rather should illusion be thought of as something which man has been allowed to weave because only by his own active overcoming of it can he fulfil his destiny as the bearer of truth in freedom. Illusion, in the sense used here, belongs to those things in man's existence which are truly to be called tragic. It loses this quality, and assumes a quite different one, only when man, once the time has come for overcoming an illusion, insists on clinging to it.

As our further studies will show, the criticism to be applied here does not only leave the validity of measurement and the mathematical treatment of the data thus obtained fully intact, but by giving them their appropriate place in a wider conception of nature it opens the way to an ever more firmly grounded and, at the same time, enhanced

application of both.

*

Our primary knowledge of the existence of something we call 'warmth' or 'heat' is due to a particular sense of warmth which modern research has recognized as a clearly definable sense. Naturally, seen from the spectator-standpoint, the experiences of this sense appear to be of purely subjective value and therefore useless for obtaining an objective insight into the nature of warmth and its effects in the physical world. In order to learn about these, resort is had to certain instruments which, through the change of the spatial position of a point, allow the onlooker-observer to register changes in the thermal condition of a physical object. An instrument of this kind is the thermometer. In the following way an indubitable proof seems to be given of the correctness of the view concerning the subjectivity of the impressions obtained through the sense of warmth, and of the objectivity of thermometrical measurement. A description of it is frequently given in physical textbooks as an introduction to the chapter on Heat.

To begin with, the well-known fact is cited that if one plunges one's hands first into two different bowls, one filled with hot water and the other with cold, and then plunges them together into a bowl of tepid water, this will feel cold to the hand coming from the hot water and warm to the hand coming from the cold. Next, it is pointed out that two thermometers which are put through the same procedure will register an equal degree of temperature for the tepid water. In this way the student is given a lasting impression of the superiority of the 'objective' recording of the instrument over the 'subjective' character of the experiences mediated by his sense of warmth.

Let us now test this procedure by carrying out the same experiment with the help of thermometrical instruments in their original form, that is, the form in which Galileo first applied them. By doing so we proceed in a truly Goethean manner, because we divest the experiment of all accessories which prevent the phenomenon from appearing in its primary form.

To turn a modern thermometer into a thermoscope we need only remove the figures from its scale. If we make the experiment with two such thermoscopes we at once become aware of something which usually escapes us, our attention being fixed on the figures recorded by the two instruments. For we now notice that the two instruments, when transferred from the hot and cold water into the tepid water, behave quite differently. In one the column will fall, in the other it will rise.

It is important to note that by this treatment of the two instruments we have not changed the way in which they usually indicate temperature. For thermometrical measurement is in actual fact never anything else than a recording of the movement of the indicator from one level to another. We choose merely to take a certain temperature level - that of melting ice or something else - as a fixed point of reference and mark it once for all on the instrument. Because we find this mark clearly distinguished on our thermometers, and the scales numbered accordingly, we fail to notice what lies ideally behind this use of the same zero for every new operation we undertake.

What the zero signifies becomes clear directly we start to work with thermometers not marked with scales. For in order to be used in this form as real thermometers, they must be exposed on each occasion first of all to some zero level of temperature, say, that of melting ice. If we then take them into the region of temperature we want to measure, we shall discern the difference of levels through the corresponding movement of the column. The final position of the column tells us nothing in itself. It is always thechangefrom one level to another that the thermometer registers - precisely as does the sense of warmth in our hands in the experiment just described.

Hence we see that in the ordinary operation with the thermometers, and when we use our hands in the prescribed manner, we are dealing with the zero level in two quite different ways. While in the/two instruments the zero level is the same, in accordance with the whole idea of thermometric measurement, we make a special arrangement so as to expose our hands to two different levels. So we need not be surprised if these two ways yield different results. If, after placing two thermometers without scales in hot and cold water, we were to assign to each its own zero in accordance with the respective height of its column, and then graduate them from this reference point, they would necessarily record different levels when exposed to the tepid water, in just the same way as the hands do. Our two hands, moreover, will receive the same sense-impression from the tepid water, if we keep them in it long enough.

Seen in this light, the original experiment, designed to show the subjective character of the impressions gained through the sense of warmth, reveals itself as a piece of self-deception by the onlooker-consciousness. The truth of the matter is that, in so far as there is any subjective element in the experience and measurement of heat, it does not lie on the side of our sense of warmth, but in our judgment of the significance of thermometrical readings. In fact, our test of the alleged proof of the absolute superiority of pointer-readings over the impressions gained by our senses gives us proof of the correctness of Goethe's statement, quoted earlier, that the senses do not deceive, but the judgment deceives.

Let it be repeated here that what we have found in this way does not lead to any depreciation of the method of pointer-reading. For the direct findings of the senses cannot be compared quantitatively. The point is that the idea of the absolute superiority of physical measurement as a means of scientific knowledge, in all circumstances, must be abandoned as false.

*

We now turn to Galileo's discovery known as the theorem of the Parallelogram of Forces. The illusion which has been woven round this theorem expresses itself in the way it is described as being connected ideally with another theorem, outwardly similar in character, known as the theorem of the Parallelogram of Movements (or Velocities), by stating that the former follows logically from the latter. This statement is to be found in every textbook on physics at the outset of the chapter on dynamics (kinetics), where it serves to establish the right to treat the dynamic occurrences in nature in a purely kinematic fashion, true to the requirements of the onlooker-consciousness.1

The following description will show that, directly we free ourselves from the onlooker-limitations of our consciousness in the way shown by Goethe - and, in respect of the present problem, in particular also by Reid - the ideal relationship between the two theorems is seen to be precisely the opposite to the one expressed in the above statement. The reason why we take pains to show this at the present point of our discussion is that only through replacing the fallacious conception by the correct one, do we open the way for forming a concrete concept of Force and thereby for establishing a truly dynamic conception of nature.

*

Let us begin by describing briefly the content of the two theorems in question. In Fig. 1, a diagrammatical representation is given of the parallelogram of movements. It sets out to show that when a point moves with a certain velocity in the direction indicated by the arrowa,so that in a certain time it passes from P to A, and when it simultaneously moves with a second velocity in the direction indicated by

b,through which alone it would pass to B in the same time, its actual movement is indicated byc,the diagonal in the parallelogram formed byaandb.An example of the way in which this

theorem is practically applied is the well-known case of a rower who sets out from P in order to cross at right angles a river indicated by the parallel lines. He has to overcome the velocityaof the water of the river flowing to the right by steering obliquely left towards B in order to arrive finally at C.

It is essential to observe that the content of this theorem does not need the confirmation of any outer experience for its discovery, or to establish its truth. Even though the recognition of the fact which it expresses may have first come to men through practical observation, yet the content of this theorem can be discovered and proved by purely logical means. In this respect it resembles any purely geometrical statement such as, that the sum of the angles of a triangle is two right angles (180°). Even though this too may have first been learnt through outer observation, yet it remains true that for the discovery of the fact expressed by it - valid for all plane triangles - no outer experience is needed. In both cases we find ourselves in the domain of pure geometric conceptions (length and direction of straight lines, movement of a point along these), whose reciprocal relationships are ordered by the laws of pure geometric logic. So in the theorem of the Parallelogram of Velocities we have a strictly geometrical theorem, whose content is in the narrowest sense kinematic. In fact, it is the basic theorem of kinematics.

We now turn to the second theorem which speaks of an outwardly similar relationship between forces. As is well nown, this states that

Lehrs_MoM-4.jpg

two forces of different magnitude and direction, when they apply at the same point, act together in the manner of a single force whose magnitude and direction may be represented by the diagonal of a parallelogram whose sides express in extent and direction the first two forces. Thus in Fig. 2, R exercises upon P the same effect as F1and F2together.

Lehrs_MoM-5.jpg

Expressed in another way, a force of this magnitude working in the reverse direction (R') will establish an equilibrium with the other two forces. In technical practice, as is well known, this theorem is used for countless calculations, in both statics and dynamics, and indeed more frequently not in the form given here but in the converse manner, when a single known force is resolved into two component forces. (Distribution of a pressure along frameworks, of air pressure along moving surfaces, etc.)

It will now be our task to examine the logical link which is believed to connect one theorem with the other. This link is found in the well-known definition of physical force as a product of 'mass' and 'acceleration' - in algebraic symbolsF=ma.We will discuss the implications of this definition in more detail later on. Let us first see how it is used as a foundation for the above assertion.

The conception of 'force' as the product of 'mass' and 'acceleration' is based on the fact - easily experienced by anyone who cycles along a level road - that it is not velocity itself which requires the exertion of force, but the change of velocity - that is, acceleration or retardation ('negative acceleration' in the sense of mathematical physics); also that in the case of equal accelerations, the force depends upon the mass of the accelerated object. The more massive the object, the greater will be the force necessary for accelerating it. This mass, in turn, reveals itself in the resistance a particular object offers to any change of its state of motion. Where different accelerations and the same mass are considered, the factormin the above formula remains constant, and force and acceleration are directly proportional to each other. Thus in the acceleration is discovered a measure for the magnitude of the force which thereby acts.

Now it is logically evident that the theorem of the parallelogram of velocities is equally valid for movements with constant or variable velocities. Even though it is somewhat more difficult to perceive mentally the movement of a point in two different directions with two differently accelerated motions, and to form an inner conception of the resulting movement, we are nevertheless still within a domain which may be fully embraced by thought. Thus accelerated movements and movements under constant velocity can be resolved and combined according to the law of the parallelogram of movements, a law which is fully attainable by means of logical thought.

With the help of the definition of force as the product of mass and acceleration it seems possible, indeed, to derive the parallelogram of forces from that of accelerations in a purely logical manner. For it is necessary only to extend all sides of an a parallelogram by means of the same factormin order to turn it into anFparallelogram. A single geometrical figure on paper can represent both cases, since only the scale needs to be altered in order that the same geometrical length should represent at one time the magnitudeaand on another occasionma.It is in this way that present-day scientific thought keeps itself convinced that the parallelogram of forces follows with logical evidence from the parallelogram of accelerations, and that the discovery of the former is therefore due to a purely mental process.

Since the parallelogram of forces is the prototype of each further mathematical representation of physical force-relationships in nature, the conceptual link thus forged between it and the basic theorem of kinematics has led to the conviction that the fact that natural events can be expressed in terms of mathematics could be, and actually has been, discovered through pure logical reasoning, and thus by the brain-bound, day-waking consciousness 'of the world-spectator. Justification thereby seemed to be given for the building of a valid scientific world-picture, purely kinematic in character.

*

The line of consideration we shall now have to enter upon for carrying out our own examination of what is believed to be the link between the two theorems may seem to the scientifically trained reader to be of an all too elementary kind compared with the complexities of thought in which he is used to engage in order to settle a scientific problem. It is therefore necessary to state here that anyone who wishes to help to overcome the tangle of modern theoretical science must not be shy in applying thoughts and observations of seemingly so simple a nature as those used both here and on other occasions. Some readiness, in fact, is required to play where necessary the part of the child in Hans Andersen's fairy-story ofThe Emperor's New Clothes,where all the people are loud in praise of the magnificent robes of the Emperor, who is actually passing through the streets with no clothes on at all, and a single child's voice exclaims the truth that 'the Emperor has nothing on'. There will repeatedly be occasion to adopt the role of this child in the course of our own studies.

*

In the scientific definition of force given above force appears as the result of a multiplication of two other magnitudes. Now as is well known, it is essential for the operation of multiplication that of the two factors forming the product at least one should exhibit the properties of a pure number. For two pure numbers may be multiplied together - e.g. 2 and 4 - and a number of concrete things can be multiplied by a pure number - e. g. 3 apples and the number 4 - but no sense can be attached to the multiplication of 3 apples by 4 apples, let alone by 4 pears! The result of multiplication is therefore always either itself a pure number, when both factors have this property; or when one of the two factors is of the nature of a concrete object, the result is of the same quality as the latter. An apple will always remain an apple after multiplication, and what distinguishes the final product (apples) from the original factor (apples) is only a pure number.

If we take seriously what this simple consideration tells us of the nature of multiplication, and if we do not allow ourselves to deviate from it for whatever purpose we make use of this algebraic operation, then the various concepts we connect with the basic measurements in physics undergo a considerable change of meaning.

Let us test, in this respect, the well-known formula which, in the conceptual language of physics, connects 'distance'(s),'time' (t), and 'velocity'(c).It is writtenc=s / t,ors=ct.

In this formula,shas most definitely the meaning of a 'thing', for it represents measured spatial distance. Of the two factors on the other side of the second equation, one must needs have the same quality ass:this isc.Thus for the other factor,t,there remains the property of a pure number. We are, therefore, under an illusion if we assume the factorcto represent anything of whatvelocityimplies in outer cosmic reality. The truth is thatcrepresents a spatial distance just assdoes, with the difference only that it is a certain unit-distance. Just as little does realtimeenter into this formula - nor does it into any other formula of mathematical physics. 'Time', in physics, is always a pure number without any cosmic quality. Indeed, how could it be otherwise for a purely kinematic world-observation?

We now submit the formulaF=mato the same scrutiny. If we attach to the factoraon the right side of the equation a definite quality, namely an observable acceleration, the other factor in the product is permitted to have only the properties of a pure number; F, therefore, can be only of the same nature asaand must itself be an acceleration. Were it otherwise, then the equationF=macould certainly not serve as a logical link between the Velocity and Force parallelograms.

Our present investigation has done no more than grant us an insight into the process of thought whereby the consciousness limited to a purely kinematic experience has deprived the concept of force of any real content. Let us look at the equationF=maas a means of splitting of the magnitude F into two componentsmand a. The equation then tells us that F is reduced to the nature of pure acceleration, for that which resides in the force as a factor not observable by kinematic vision has been split away from it as the factorm.For this factor, however, as we have seen, nothing remains over but the property of a pure number.

Let us note here that the first thinker to concern himself with a comprehensive world-picture in which the non-existence of a real concept of force is taken in earnest-namely, Albert Einstein - was also the first to consider mass as a form of energy and even to predict correctly, as was proved later, the amount of energy represented by the unit of mass, thereby encouraging decisively the new branch of experimental research which has led to the freeing of the so-called atomic energy. Is it then possible that pure numbers can effect what took place above and within Nagasaki, Hiroshima, etc.? Here we are standing once again before one of the paradoxes of modern science which we have found to play so considerable a part in its development.

To find an interpretation of the formulaF=ma,which is free from illusion, we must turn our attention first of all to the concepts 'force' and 'mass' themselves. The fact that men have these two words in their languages shows that the concepts expressed by them must be based on some experience that has been man's long before he was capable of any scientific reflexion. Let us ask what kind of experience this is and by what part of his being he gathers it.

The answer is, as simple self-observation will show, that we know of the existence of force through the fact that we ourselves must exert it in order to move our own body. Thus it is the resistance of our body against any alteration of its state of motion, as a result of its being composed of inert matter, which gives us the experience of force both as a possession of our own and as a property of the outer world. All other references to force, in places where it cannot be immediately experienced, arise by way of analogy based on the similarity of the content of our observation to that which springs from the exertion of force in our own bodies.

As we see, in this experience of force that of mass is at once implied. Still, we can strengthen the latter by experimenting with some outer physical object. Take a fairly heavy object in your hand, stretch out your arm lightly and move it slowly up and down, watching intently the sensation this operation rouses in you.2Evidently the experience of mass outside ourselves, as with that of our own body, comes to us through the experience of the force which we ourselves must exert in order to overcome some resisting force occasioned by the mass. Already this simple observation - as such made by means of the sense of movement and therefore outside the frontiers of the onlooker-consciousness - tells us that mass is nothing but a particular manifestation of force.

Seen in the light of this experience, the equationF=marequires to be interpreted in a manner quite different from that to which scientific logic has submitted it. For if we have to ascribe to F andmthe same quality, then the rule of multiplication allows us to ascribe toanothing but the character of a pure number. This implies that there is no such thing as acceleration as a self-contained entity, merely attached to mass in an external way.

What we designate as acceleration, and measure as such, is nothing else than a numerical factor comparing two different conditions of force within the physical-material world.

Only when we give the three factors in our equation this meaning, does it express some concrete outer reality. At the same time it forbids the use of this equation for a logical derivation of the parallelogram of forces from that of pure velocities.


Back to IndexNext