Thrombo-Phlebitis and Thrombosis in Veins

Fig. 65.—Radiogram showing Calcareous Degeneration (Atheroma) of Arteries.Fig. 65.—Radiogram showing Calcareous Degeneration (Atheroma) of Arteries.

Fig. 65.—Radiogram showing Calcareous Degeneration (Atheroma) of Arteries.

The primary cause of arterio-sclerosis is not definitely known, but its almost constant occurrence, to a greater or less degree, in the aged suggests that it is of the nature of a senile degeneration. It is favoured by anything which throws excessive strain on the vessel walls, such as heavy muscular work; by chronic alcoholism and syphilis; or by such general diseases as tend to raise the blood-pressure—for example, chronic Bright's disease or gout. It occurs with greater frequency and with greater severity in men than in women.

Atheromatous degeneration is most common in the large arterial trunks, and the changes are most marked at the arch of the aorta, opposite the flexures of joints, at the mouths of large branches, and at parts where the vessel lies in contact with bone. The presence of diseased patches in the wall of an artery diminishes its elasticity and favours aneurysmal dilatation. Such a vessel also is liable to be ruptured by external violence and so give rise to traumatic aneurysm. Thrombosis is liable to occur when calcareous plates are exposed in the lumen of the vessel by destruction of the endothelium, and this predisposes to embolism. Arterio-sclerosis also interferes with the natural arrest of hæmorrhage, and by rendering the vessels brittle, makes it difficult to secure them by ligature. In advanced cases the accessible arteries—such as the radial, the temporal or the femoral—may be felt as firm, tortuous cords, which are sometimes so hard that they have been aptly compared to “pipe-stems.” The pulse is smaller and less compressible than normal, and the vessel moves bodily with each pulsation. It must be borne in mind, however, that the condition of the radial artery may fail to afford a clue to that of the larger arteries. Calcified arteries are readily identified in skiagrams (Fig. 65).

We have met with a chronic form of arterial degeneration in elderly women, affecting especially the great vessels at the root of the neck, in which the artery is remarkably attenuated and dilated, and so friable that the wall readily tears when seized with an artery-forceps, rendering ligation of the vessel in the ordinary way well-nigh impossible. Matas suggests infolding the wall of the vessel with interrupted sutures that donot pierce the intima, and wrapping it round with a strip of peritoneum or omentum.

The most serious form of arterialthrombosisis that met within the abdominal aorta, which is attended with violent pains in the lower limbs, rapidly followed by paralysis and arrest of the circulation.

Thrombosisis more common in veins than in arteries, because slowing of the blood-stream and irritation of the endothelium of the vessel wall are, owing to the conditions of the venous circulation, more readily induced in veins.

Venous thrombosis may occur from purely mechanical causes—as, for example, when the wall of a vein is incised, or the vessel included in a ligature, or when it is bruised or crushed by a fragment of a broken bone or by a bandage too tightly applied. Under these conditionsthrombosisis essentially a reparative process, and has already been considered in relation to the repair of blood vessels.

In other cases thrombosis is associated with certain constitutional diseases—gout, for example; the endothelium of the veins undergoing changes—possibly the result of irritation by abnormal constituents in the blood—which favour the formation of thrombi.

Under these various conditions the formation of a thrombus is not necessarilyassociatedwith the action of bacteria, although in any of them this additional factor may be present.

The most common cause of venous thrombosis, however, is inflammation of the wall of the vein—phlebitis.

Phlebitis.—Various forms of phlebitis are met with, but for practical purposes they may be divided into two groups—one in which there is a tendency to the formation of a thrombus; the other in which the infective element predominates.

In surgical patients, thethrombotic formis almost invariably met with in the lower extremity, and usually occurs in those who are debilitated and anæmic, and who are confined to bed for prolonged periods—for example, during the treatment of fractures of the leg or pelvis, or after such operations as herniotomy, prostatectomy, or appendectomy.

Clinical Features.—The most typical example of this form of phlebitis is that so frequently met with in the great saphena vein, especially when it is varicose. The onset of the attack is indicated by a sudden pain in the lower limb—sometimesbelow, sometimes above the knee. This initial pain may be associated with shivering or even with a rigor, and the temperature usually rises one or two degrees. There is swelling and tenderness along the line of the affected vein, and the skin over it is a dull-red or purple colour. The swollen vein may be felt as a firm cord, with bead-like enlargements in the position of the valves. The patient experiences a feeling of stiffness and tightness throughout the limb. There is often œdema of the leg and foot, especially when the limb is in the dependent position. The acute symptoms pass off in a few days, but the swelling and tenderness of the vein and the œdema of the limb may last for many weeks.

When the deep veins—iliac, femoral, popliteal—are involved, there is great swelling of the whole limb, which is of a firm almost “wooden” consistence, and of a pale-white colour; the œdema may be so great that it is impossible to feel the affected vein until the swelling has subsided. This is most often seen in puerperal women, and is known asphlegmasia alba dolens.

Treatment.—The patient must be placed at absolute rest, with the foot of the bed raised on blocks 10 or 12 inches high, and the limb immobilised by sand-bags or splints. It is necessary to avoid handling the parts, lest the clot be displaced and embolism occur. To avoid frequent movement of the limb, the necessary dressings should be kept in position by means of a many-tailed rather than a roller bandage.

To relieve the pain, warm fomentations or lead and opium lotion should be applied. Later, ichthyol-glycerin, or glycerin and belladonna, may be substituted.

When, at the end of three weeks, the danger of embolism is past, douching and gentle massage may be employed to disperse the œdema; and when the patient gets up he should wear a supporting elastic bandage.

Theinfectiveform usually begins as a peri-phlebitis arising in connection with some focus of infection in the adjacent tissues. The elements of the vessel wall are destroyed by suppuration, and the thrombus in its lumen becomes infected with pyogenic bacteria and undergoes softening.

Occlusion of the inferior vena cavaas a result of infective thrombosis is a well-known condition, the thrombosis extending into the main trunk from some of its tributaries, either from the femoral or iliac veins below or from the hepatic veins above.

Portions of the softened thrombus are liable to becomedetached and to enter the circulating blood, in which they are carried as emboli. These may lodge in distant parts, and give rise to secondary foci of suppuration—pyæmic abscesses.

Clinical Features.—Infective phlebitis is most frequently met with in the transverse sinus as a sequel to chronic suppuration in the mastoid antrum and middle ear. It also occurs in relation to the peripheral veins, but in these it can seldom be recognised as a separate entity, being merged in the general infective process from which it takes origin. Its occurrence may be inferred, if in the course of a suppurative lesion there is a sudden rise of temperature, with pain, redness, and swelling along the line of a venous trunk, and a rapidly developed œdema of the limb, with pitting of the skin on pressure. In rare cases a localised abscess forms in the vein and points towards the surface.

Treatment.—Attention must be directed towards the condition with which the phlebitis is associated. Ligation of the vein on the cardiac side of the thrombus with a view to preventing embolism is seldom feasible in the peripheral veins, although, as will be pointed out later, the jugular vein is ligated with this object in cases of phlebitis of the transverse sinus.

The term varix is applied to a condition in which veins are so altered in structure that they remain permanently dilated, and are at the same time lengthened and tortuous. Two types are met with: one in which dilatation of a large superficial vein and its tributaries is the most obvious feature; the other, in which bunches of distended and tortuous vessels develop at one or more points in the course of a vein, a condition to which Virchow applied the termangioma racemosum venosum. The two types may occur in combination.

Any vein in the body may become varicose, but the condition is rare except in the veins of the lower extremity, in the veins of the spermatic cord (varicocele), and in the veins of the anal canal (hæmorrhoids).

We are here concerned with varix as it occurs in the veins of the lower extremity.

Etiology.—Considerable difference of opinion exists as to the essential cause of varix. The weight of evidence is in favour of the view that, when dilatation is the predominant element, it results from a congenital deficiency in the number, size, and strength of the valves of the affected veins, and in an inherentweakness in the vessel walls. Theangioma racemosum venosumis probably also due to a congenital alteration in the structure of the vessels, and is allied to tumours of blood vessels. The view that varix is congenital in origin, as was first suggested by Virchow, is supported by the fact that in a large proportion of cases the condition is hereditary; not only may several members of the same family in succeeding generations suffer from varix, but it is often found that the same vein, or segment of a vein, is involved in all of them. The frequent occurrence of varix in youth is also an indication of its congenital origin.

In the majority of cases it is only when some exciting factor comes into operation that the clinical phenomena associated with varix appear. The most common exciting cause is increased pressure within the veins, and this may be produced in a variety of ways. In certain diseases of the heart, lungs, and liver, for example, the venous pressure may be so raised as to cause a localised dilatation of such veins as are congenitally weak. The direct pressure of a tumour, or of the gravid uterus on the large venous trunks in the pelvis, may so obstruct the flow as to distend the veins of the lower extremity. It is a common experience in women that the signs of varix date from an antecedent pregnancy. The importance of the wearing of tight garters as a factor in the production of varicose veins has been exaggerated, although it must be admitted that this practice is calculated to aggravate the condition when it is once established. It has been proved experimentally that the backward pressure in the veins may be greatly increased by straining, a fact which helps to explain the frequency with which varicosity occurs in the lower limbs of athletes and of those whose occupation involves repeated and violent muscular efforts. There is reason to believe, moreover, that a sudden strain may, by rupturing the valves and so rendering them incompetent, induce varicosity independently of any congenital defect. Prolonged standing or walking, by allowing gravity to act on the column of blood in the veins of the lower limbs, is also an important determining factor in the production of varix.

Thrombosis of the deep veins—in the leg, for example—may induce marked dilatation of the superficial veins, by throwing an increased amount of work upon them. This is to be looked upon rather as a compensatory hypertrophy of the superficial vessels than as a true varix.

Morbid Anatomy.—In the lower extremity the varicosity most commonly affects the vessels of the great saphena system;less frequently those of the small saphena system. Sometimes both systems are involved, and large communicating branches may develop between the two.

The essential lesion is the absence or deficiency of valves, so that they are incompetent and fail to support the column of blood which bears back upon them. Normally the valves in the femoral and iliac veins and in the inferior vena cava are imperfectly developed, so that in the erect posture the great saphena receives a large share of the backward pressure of the column of venous blood.

The whole length of the vein may be affected, but as a rule the disease is confined to one or more segments, which are not only dilated, but are also increased in length, so that they become convoluted. The adjacent loops of the convoluted vein are often bound together by fibrous tissue. All the coats are thickened, chiefly by an increased development of connective tissue, and in some cases changes similar to those of arterio-sclerosis occur. The walls of varicose veins are often exceedingly brittle. In some cases the thickening is uniform, and in others it is irregular, so that here and there thin-walled sacs or pouches project from the side of the vein. These pouches vary in size from a bean to a hen's egg, the larger forms being calledvenous cysts, and being most commonly met with in the region of the saphenous opening and of the opening in the popliteal fascia. Such pouches, being exposed to injury, are frequently the seat of thrombosis (Fig. 66).

Fig. 66.—Thrombosis in Tortuous and Pouched Great Saphena Vein, in longitudinal section.Fig. 66.—Thrombosis in Tortuous and Pouched Great Saphena Vein, in longitudinal section.

Fig. 66.—Thrombosis in Tortuous and Pouched Great Saphena Vein, in longitudinal section.

Clinical Features.—Varix is most frequently met with between puberty and the age of thirty, and the sexes appear to suffer about equally.

The amount of discomfort bears no direct proportion to theextent of the varicosity. It depends rather upon the degree of pressure in the veins, as is shown by the fact that it is relieved by elevation of the limb. When the whole length of the main trunk of the great saphena is implicated, the pressure in the vein is high and the patient suffers a good deal of pain and discomfort. When, on the contrary, the upper part of the saphena and its valves are intact, and only the more distal veins are involved, the pressure is not so high and there is comparatively little suffering. The usual complaint is of a sense of weight and fulness in the limb after standing or walking, sometimes accompanied by actual pain, from which relief is at once obtained by raising the limb. Cramp-like pains in the muscles are often associated with varix of the deep veins.

The dilated and tortuous vein can be readily seen and felt when the patient is examined in the upright posture. In advanced cases, bead-like swellings are sometimes to be detected over the position of the valves, and, on running the fingers along the course of the vessel, a firm ridge, due to periphlebitis, may be detected on each side of the vein. When the limb is œdematous, the outline of the veins is obscured, but they can be identified on palpation as gutter-like tracks. When large veins are implicated, a distinct impulse on coughing may be seen to pass down as far as the knee; and if the vessel is sharply percussed a fluid wave may be detected passing both up and down the vein.

If the patient is placed on a couch and the limb elevated, the veins are emptied, and if pressure is then made over the region of the saphenous opening and the patient allowed to stand up, so long as the great saphena system alone is involved, the veins fill again very slowly from below. If the small saphena system also is involved, and if communicating branches are dilated, the veins fill up from below more rapidly. When the pressure over the saphenous opening is removed, the blood rapidly rushes into the varicose vessels from above; this is known as Trendelenburg's test.

The most marked dilatation usually occurs on the medial side of the limb, between the middle of the thigh and the middle of the calf, the arrangement of the veins showing great variety (Fig. 67).

There are usually one or more bunches of enlarged and tortuous veins in the region of the knee. Frequently a large branch establishes a communication between the systems of the great and small saphenous veins in the region of the popliteal space, or across the front of the upper part of the tibia. Thesuperficial position of this last branch and its proximity to the bone render it liable to injury.

Fig. 67.—Extensive Varix of Internal Saphena System on Left Leg, of many years' standing.Fig. 67.—Extensive Varix of Internal Saphena System on Left Leg, of many years' standing.

Fig. 67.—Extensive Varix of Internal Saphena System on Left Leg, of many years' standing.

The small veins of the skin of the ankle and foot often show as fine blue streaks arranged in a stellate or arborescent manner, especially in women who have borne children.

Complications.—When the varix is of long standing, the skin in the lower part of the leg sometimes assumes a mahogany-brown or bluish hue, as a result of thedeposit of blood pigmentin the tissues, and this is frequently a precursor of ulceration.

Chronic dermatitis(varicose eczema) is often met with in the lower part of the leg, and is due to interference with the nutrition of the skin. The incompetence of the valves allows the pressure in the varicose veins to equal that in the arterioles, so that the capillary circulation is impeded. From the same cause the blood in the deep veins is enabled to enter the superficial veins, where the backward pressure is so great that the blood flows down again, and so a vicious circle is established. The blood therefore loses more and more of its oxygen, and so fails to nourish the tissues.

Theulcerof the leg associated with varicose veins has already been described.

Hæmorrhagemay take place from a varicose vein as a result of a wound or of ulceration of its wall. Increased intra-venous pressure produced by severe muscular strain may determine rupture of a vein exposed in the floor of an ulcer. If the limb is dependent, the incompetency of the valves permits of rapid and copious bleeding, which may prove fatal, particularly if the patient is intoxicated when the rupture takes place and no means are taken to arrest the hæmorrhage. The bleeding may be arrested at once by elevating the limb, or by applying pressure directly over the bleeding point.

Phlebitis and thrombosisare common sequelæ of varix, and may prove dangerous, either by spreading into the large venous trunks or by giving rise to emboli. The larger the varix the greater is the tendency for a thrombus to spread upwards and to involve the deep veins. Thrombi usually originate in venous cysts or pouches, and at acute bends on the vessel, especially when these are situated in the vicinity of the knee, and are subjected to repeated injuries—for example in riding. Phleboliths sometimes form in such pouches, and may be recognised in a radiogram. In a certain proportion of cases, especially in elderly people, the occurrence of thrombosis leads to cure of the condition by the thrombus becoming organised and obliterating the vein.

Treatment.—At best the treatment of varicose veins is only palliative, as it is obviously impossible to restore to the vessels their normal structure. The patient must avoid wearing anything, such as a garter, which constricts the limb, and any obvious cause of direct pressure on the pelvic veins, such as atumour, persistent constipation, or an ill-fitting truss, should be removed. Cardiac, renal, or pulmonary causes of venous congestion must also be treated, and the functions of the liver regulated. Severe forms of muscular exertion and prolonged standing or walking are to be avoided, and the patient may with benefit rest the limb in an elevated position for a few hours each day. To support the distended vessels, a closely woven silk or worsted stocking, or a light and porous form of elastic bandage, applied as a puttee, should be worn. These appliances should be put on before the patient leaves his bed in the morning, and should only be removed after he lies down at night. In this way the vessels are never allowed to become dilated. Elastic stockings, and bandages made entirely of india-rubber, are to be avoided. In early and mild cases these measures are usually sufficient to relieve the patient's discomfort.

Operative Treatment.—In aggravated cases, when the patient is suffering pain, when his occupation is interfered with by repeated attacks of phlebitis, or when there are large pouches on the veins, operative treatment is called for. The younger the patient the clearer is the indication to operate. It may be necessary to operate to enable a patient to enter one of the public services, even although no symptoms are present. The presence of an ulcer does not contra-indicate operation; the ulcer should be excised, and the raw surface covered with skin grafts, before dealing with the veins.

Theoperation of Trendelenburgis especially appropriate to cases in which the trunk of the great saphena vein in the thigh is alone involved. It consists in exposing three or four inches of the vein in its upper part, applying a ligature at the upper and lower ends of the exposed portion, and, after tying all tributary branches, resecting this portion of the vein.

The procedure of C. H. Mayo is adapted to cases in which it is desirable to remove longer segments of the veins. It consists in the employment of special instruments known as “ring-enucleators” or “vein-strippers,” by means of which long portions of the vein are removed through comparatively small incisions.

An alternative procedure consists in avulsing segments of the vein by means of Babcock's stylet, which consists of a flexible steel rod, 30 inches in length, with acorn-shaped terminals. The instrument is passed along the lumen of the segment to be dealt with, and a ligature applied around the vein above the bulbous end of the stylet enables nearly the whole length of the great saphena vein to be dragged out inone piece. These methods are not suitable when the veins are brittle, when there are pouches or calcareous deposits in their walls, or where there has been periphlebitis binding the coils together.

Mitchell of Belfast advises exposing the varices at numerous points by half-inch incisions, and, after clamping the vein between two pairs of forceps, cutting it across and twisting out the segments of the vein between adjacent incisions. The edges of the incisions are sutured; and the limb is firmly bandaged from below upwards, and kept in an elevated position. We have employed this method with satisfactory results.

The treatment of the complications of varix has already been considered.

[4]In the description of angiomas we have followed the teaching of the late John Duncan.

Tumours of blood vessels may be divided, according to the nature of the vessels of which they are composed, into the capillary, the venous, and the arterial angiomas.

The most common form of capillary angioma is the nævus or congenital telangiectasis.

Nævus.—A nævus is a collection of dilated capillaries, the afferent arterioles and the efferent venules of which often share in the dilatation. Little is known regarding theetiologyof nævi beyond the fact that they are of congenital origin. They often escape notice until the child is some days old, but attention is usually drawn to them within a fortnight of birth. For practical purposes the most useful classification of nævi is into the cutaneous, the subcutaneous, and the mixed forms.

The cutaneous nævus, “mother's mark,” or “port-wine stain,” consists of an aggregation of dilated capillaries in the substance of the skin. On stretching the skin the vessels can be seen to form a fine network, or to run in leashes parallel to one another. A dilated arteriole or a vein winding about among the capillaries may sometimes be detected. These nævi occur on any part of the body, but they are most frequently met with on the face. They may be multiple, and vary greatly in size, some being no bigger than a pin-head, while others cover large areas of the body. In colour they present every tint frompurple to brilliant red; in the majority there is a considerable dash of blue, especially in cold weather.

Unlike the other forms of nævi, the cutaneous variety shows little tendency to disappear, and it is especially persistent when associated with overgrowth of the epidermis and of the hairs—nævoid mole.

Thetreatmentof the cutaneous nævus is unsatisfactory, owing to the difficulty of removing the nævus without leaving a scar which is even more disfiguring. Very small nævi may be destroyed by a fine pointed Paquelin thermo-cautery, or byescharotics, such as nitric acid. For larger nævi, radium and solidified carbon dioxide (“CO2snow”) may be used. The extensive port-wine stains so often met with on the face are best left alone.

Thesubcutaneous nævusis comparatively rare. It constitutes a well-defined, localised tumour, which may possess a distinct capsule, especially when it has ceased to grow or is retrogressing. On section, it presents the appearance of a finely reticulated sponge.

Although it may be noticed at, or within a few days of, birth, a subcutaneous nævus is often overlooked, especially when on a covered part of the body, and may not be discovered till the patient is some years old. It forms a rounded, lobulated swelling, seldom of large size and yielding a sensation like that of a sponge; the skin over it is normal, or may exhibit a bluish tinge, especially in cold weather. In some cases the tumour is diminished by pressing the blood out of it, but slowly fills again when the pressure is relaxed, and it swells up when the child struggles or cries. From a cold abscess it is diagnosed by the history and progress of the swelling and by the absence of fluctuation. When situated over one of the hernial openings, it closely simulates a hernia; and when it occurs in the middle line of the face, head, or back, it may be mistaken for such other congenital conditions as meningocele or spina bifida. When other means fail, the use of an exploring needle clears up the diagnosis.

Mixed Nævus.—As its name indicates, the mixed nævus partakes of the characters of the other two varieties; that is, it is a subcutaneous nævus with involvement of the skin.

It is frequently met with on the face and head, but may occur on any part of the body. It also affects parts covered by mucous membrane, such as the cheek, tongue, and soft palate. The swelling is rounded or lobulated, and projects beyond the level of its surroundings. Sometimes the skin isinvaded by the nævoid tissue over the whole extent of the tumour, sometimes only over a limited area. Frequently the margin only is of a bright-red colour, while the skin in the centre resembles a cicatrix. The swelling is reduced by steady pressure, and increases in size and becomes tense when the child cries.

Fig. 68.—Mixed Nævus of Nose which was subsequently cured by Electrolysis.Fig. 68.—Mixed Nævus of Nose which was subsequently cured by Electrolysis.

Fig. 68.—Mixed Nævus of Nose which was subsequently cured by Electrolysis.

Prognosis.—The rate of growth of the subcutaneous and mixed forms of nævi varies greatly. They sometimes increase rapidly, especially during the first few months of life; after this they usually grow at the same rate as the child, or more slowly. There is a decided tendency to disappearance of these varieties, fully 50 per cent. undergoing natural cure by aprocess of obliteration, similar to the obliteration of vessels in cicatricial tissue. This usually begins about the period of the first dentition, sometimes at the second dentition, and sometimes at puberty. On the other hand, an increased activity of growth may be shown at these periods. The onset of natural cure is recognised by the tumour becoming firmer and less compressible, and, in the mixed variety, by the colour becoming less bright. Injury, infection, or ulceration of the overlying skin may initiate the curative process.

Towards adult life the spaces in a subcutaneous nævus may become greatly enlarged, leading to the formation of a cavernous angioma.

Treatment.—In view of the frequency with which subcutaneous and mixed nævi disappear spontaneously, interference is only called for when the growth of the tumour is out of proportion to that of the child, or when, from its situation—for example in the vicinity of the eye—any marked increase in its size would render it less amenable to treatment.

The methods of treatment most generally applicable are the use of radium and carbon dioxide snow, igni-puncture, electrolysis, and excision.

For nævi situated on exposed parts, where it is desirable to avoid a scar, the use ofradiumis to be preferred. The tube of radium is applied at intervals to different parts of the nævus, the duration and frequency of the applications varying with the strength of the emanations and the reaction produced. The object aimed at is to induce obliteration of the nævoid tissue by cicatricial contraction without destroying the overlying skin.Carbon-dioxide snowmay be employed in the same manner, but the results are inferior to those obtained by radium.

Igni-punctureconsists in making a number of punctures at different parts of the nævus with a fine-pointed thermo-cautery, with the object of starting at each point a process of cicatrisation which extends throughout the nævoid tissue and so obliterates the vessels.

Electrolysisacts by decomposing the blood and tissues into their constituent elements—oxygen and acids appearing at the positive, hydrogen and bases at the negative electrode. These substances and gases being given off in a nascent condition, at once enter into new combinations with anything in the vicinity with which they have a chemical affinity. In the nævus the practical result of this reaction is that at the positive pole nitric acid, and at the negative pole caustic potash, both in a state of minute subdivision, make their appearance. The effecton the tissues around the positive pole, therefore, is equivalent to that of an acid cauterisation, and on those round the negative pole, to an alkaline cauterisation.

As the process is painful, a general anæsthetic is necessary. The current used should be from 20 to 80 milliampères, gradually increasing from zero, without shock; three to six large Bunsen cells give a sufficient current, and no galvanometer is required. Steel needles, insulated with vulcanite to within an eighth of an inch of their points, are the best. Both poles are introduced into the nævus, the positive being kept fixed at one spot, while the negative is moved about so as to produce a number of different tracks of cauterisation. On no account must either pole be allowed to come in contact with the skin, lest a slough be formed. The duration of the sitting is determined by the effect produced, as indicated by the hardening of the tumour, the average duration being from fifteen to twenty minutes. If pallor of the skin appears, it indicates that the needles are too near the surface, or that the blood supply to the integument is being cut off, and is an indication to stop. To cauterise the track and so prevent bleeding, the needles should be slowly withdrawn while the current is flowing. When the skin is reached the current is turned off. The punctures are covered with collodion. Six or eight weeks should be allowed to elapse before repeating the procedure. From two to eight or ten sittings may be necessary, according to the size and character of the nævus.

Excisionis to be preferred for nævi of moderate size situated on covered parts of the body, where a scar is of no importance. Its chief advantages over electrolysis are that a single operation is sufficient, and that the cure is speedy and certain. The operation is attended with much less hæmorrhage than might be expected.

Cavernous Angioma.—This form of angioma consists of a series of large blood spaces which are usually derived from the dilatation of the capillaries of a subcutaneous nævus. The spaces come to communicate freely with one another by the disappearance of adjacent capillary walls. While the most common situation is in the subcutaneous tissue, a cavernous angioma is sometimes met with in internal organs. It may appear at any age from early youth to middle life, and is of slow growth and may become stationary. The swelling is rounded or oval, there is no pulsation or bruit, and the tumour is but slightly compressible. The treatment consists in dissecting it out.

Aneurysm by Anastomosisis the name applied to a vascular tumour in which the arteries, veins, and capillaries are allinvolved. It is met with chiefly on the upper part of the trunk, the neck, and the scalp. It tends gradually to increase in size, and may, after many years, attain an enormous size. The tumour is ill-defined, and varies in consistence. It is pulsatile, and a systolic bruit or a “thrilling” murmur may be heard over it. The chief risk is hæmorrhage from injury or ulceration.

Fig. 69.—Cirsoid Aneurysm of Forehead in a boy æt. 10. (Mr. J.W. Dowden's case.)Fig. 69.—Cirsoid Aneurysm of Forehead in a boy æt. 10.(Mr. J. W. Dowden's case.)

Fig. 69.—Cirsoid Aneurysm of Forehead in a boy æt. 10.

(Mr. J. W. Dowden's case.)

Thetreatmentis conducted on the same lines as for nævus. When electrolysis is employed, it should be directed towards the afferent vessels; and if it fails to arrest the flow through these, it is useless to persist with it. In some cases ligation of the afferent vessels has been successful.

Fig. 70.—Cirsoid Aneurysm of Orbit and Face, which developed after a blow on the Orbit with a cricket ball. (From a photograph lent by Sir Montagu Cotterill.)Fig. 70.—Cirsoid Aneurysm of Orbit and Face, which developed after a blow on the Orbit with a cricket ball.(From a photograph lent by Sir Montagu Cotterill.)

Fig. 70.—Cirsoid Aneurysm of Orbit and Face, which developed after a blow on the Orbit with a cricket ball.

(From a photograph lent by Sir Montagu Cotterill.)

Arterial AngiomaorCirsoid Aneurysm.—This is composed of the enlarged branches of an arterial trunk. It originates inthe smaller branches of an artery—usually the temporal—and may spread to the main trunk, and may even involve branches of other trunks with which the affected artery anastomoses.

The condition is probably congenital in origin, though its appearance is frequently preceded by an injury. It almost invariably occurs in the scalp, and is usually met with in adolescent young adults.

The affected vessels slowly increase in size, and become tortuous, with narrowings and dilatations here and there. Grooves and gutters are frequently found in the bone underlying the dilated vessels.

There is a constant loud bruit in the tumour, which greatly troubles the patient and may interfere with sleep. There is no tendency either to natural cure or to rupture, but severe and even fatal hæmorrhage may follow a wound of the dilated vessels.

The condition may be treated by excision or by electrolysis. In excision the hæmorrhage is controlled by an elastic tourniquet applied horizontally round the head, or by ligation of the feeding trunks. In large tumours the bleeding is formidable. In many cases electrolysis is to be preferred, and is performed in the same way as for nævus. The positive pole is placed in the centre of the tumour, while the negative is introduced into the main affluents one after another.

An aneurysm is a sac communicating with an artery, and containing fluid or coagulated blood.

Two types are met with—the pathological and the traumatic.It is convenient to describe in this section also certain conditions in which there is an abnormal communication between an artery and a vein—arterio-venous aneurysm.

In this class are included such dilatations as result from weakening of the arterial coats, combined, in most cases, with a loss of elasticity in the walls and increase in the arterial tension due to arterio-sclerosis. In some cases the vessel wall is softened by arteritis—especially the embolic form—so that it yields before the pressure of the blood.

Repeated and sudden raising of the arterial tension, as a result, for example, of violent muscular efforts or of excessive indulgence in alcohol, plays an important part in the causation of aneurysm. These factors probably explain the comparative frequency of aneurysm in those who follow such arduous occupations as soldiers, sailors, dock-labourers, and navvies. In these classes the condition usually manifests itself between the ages of thirty and fifty—that is, when the vessels are beginning to degenerate, although the heart is still vigorous and the men are hard at work. The comparative immunity of women may also be explained by the less severe muscular strain involved by their occupations and recreations.

Syphilis plays an important part in the production of aneurysm, probably by predisposing the patient to arterio-sclerosis and atheroma, and inducing an increase in the vascular tension in the peripheral vessels, from loss of elasticity of the vessel wall and narrowing of the lumen as a result of syphilitic arteritis. It is a striking fact that aneurysm is seldom met with in women who have not suffered from syphilis.

Varieties—Fusiform Aneurysm.—When thewhole circumferenceof an artery has been weakened, the tension of the blood causes the walls to dilate uniformly, so that a fusiform or tubular aneurysm results. All the coats of the vessel are stretched and form the sac of the aneurysm, and the affected portion is not only dilated but is also increased in length. This form is chiefly met with in the arch of the aorta, but may occur in any of the main arterial trunks. As the sac of the aneurysm includes all three coats, and as the inner and outer coats are usually thickened by the deposit in them of connective tissue, this variety increases in size slowly and seldom gives rise to urgent symptoms.

As a rule a fusiform aneurysm contains fluid blood, butwhen the intima is roughened by disease, especially in the form of calcareous plates, shreds of clot may adhere to it.

It has little tendency to natural cure, although this is occasionally effected by the emerging artery becoming occluded by a clot; it has also little tendency to rupture.

Sacculated Aneurysm.—When alimited areaof the vessel wall is weakened—for example by atheroma or by other form of arteritis—this portion yields before the pressure of the blood, and a sacculated aneurysm results. The internal and middle coats being already damaged, or, it may be, destroyed, by the primary disease, the stress falls on the external coat, which in the majority of cases constitutes the sac. To withstand the pressure the external coat becomes thickened, and as the aneurysm increases in size it forms adhesions to surrounding tissues, so that fasciæ, tendons, nerves, and other structures may be found matted together in its wall. The wall is further strengthened by the deposit on its inner aspect of blood-clot, which may eventually become organised.

The contents of the sac consist of fluid blood and a varying amount of clot which is deposited in concentric layers on the inner aspect of the sac, where it forms a pale, striated, firm mass, which constitutes a laminated clot. Near the blood-current the clot is soft, red, and friable (Fig. 72). The laminated clot not only strengthens the sac, enabling it to resist the blood-pressure and so prevent rupture, but, if it increases sufficiently to fill the cavity, may bring about cure. The principle upon which all methods of treatment are based is to imitate nature in producing such a clot.

Sacculated aneurysm, as compared with the fusiform variety, tends to rupture and also to cure by the formation of laminated clot; natural cure is sometimes all but complete when extension and rupture occur and cause death.

An aneurysm is said to bediffusedwhen the sac ruptures and the blood escapes into the cellular tissue.

Clinical Features of Aneurysm.—Surgically, the sacculated is by far the most important variety. The outstanding feature is the existence in the line of an artery of a globular swelling, which pulsates. The pulsation is of an expansile character, which is detected by observing that when both hands are placed over the swelling they are separated with each beat of the heart. If the main artery be compressed on the cardiac side of the swelling, the pulsation is arrested and the tumour becomes smaller and less tense, and it may be still further reduced in size by gentle pressure being made over it so as to empty it of fluidblood. On allowing the blood again to flow through the artery, the pulsation returns at once, but several beats are required before the sac regains its former size. In most cases a distinct thrill is felt on placing the hand over the swelling, and a blowing, systolic murmur may be heard with the stethoscope. It is to be borne in mind that occasionally, when the interchange of blood between an aneurysm and the artery from which it arises is small, pulsation and bruit may be slight or even absent. This isalso the case when the sac contains a considerable quantity of clot. When it becomes filled with clot—consolidated aneurysm—these signs disappear, and the clinical features are those of a solid tumour lying in contact with an artery, and transmitting its pulsation.

A comparison of the pulse in the artery beyond the seat of the aneurysm with that in the corresponding artery on the healthy side, shows that on the affected side the wave is smaller in volume, and delayed in time. A pulse tracing shows that the normal impulse and dicrotic waves are lost, and that the force and rapidity of the tidal wave are diminished.

Fig. 71.—Radiogram of Aneurysm of Aorta, showing laminated clot and erosion of bodies of vertebræ. The intervertebral discs are intact.Fig. 71.—Radiogram of Aneurysm of Aorta, showing laminated clot and erosion of bodies of vertebræ. The intervertebral discs are intact.

Fig. 71.—Radiogram of Aneurysm of Aorta, showing laminated clot and erosion of bodies of vertebræ. The intervertebral discs are intact.

An aneurysm exerts pressure on the surrounding structures, which are usually thickened and adherent to it and to one another. Adjacent veins may be so compressed that congestion and œdema of the parts beyond are produced. Pain, disturbances of sensation, and muscular paralyses may result from pressure on nerves. Such bones as the sternum and vertebræ undergo erosion and are absorbed by the gradually increasing pressure of the aneurysm. Cartilage, on the other hand, being elastic, yields before the pressure, so that the intervertebral discs or the costal cartilages may escape while the adjacent bones are destroyed (Fig. 71).The skin over the tumour becomes thinned and stretched, until finally a slough forms, and when it separates hæmorrhage takes place.


Back to IndexNext