CHAPTER7THIRTEEN MILLION WORDS

The task of receiving, relaying, processing, and interpreting the data coming in simultaneously on a twenty-four-hour basis for several months from the several scientific and many engineering sources of the Mariner spacecraft was of truly monumental proportions.

This activity involved five DSIF tracking stations scattered around the world, a communication network, two computing stations and auxiliary facilities, and some 400 personnel over a four-month period.

Although the Mariner scientific information could be stored and subsequently processed at a later (non-real) time, it was necessary to make tracking and position data available almost as soon as it was received (in real time) so that the midcourse maneuver might be computed and transmitted to the spacecraft, and to further perfect the predicted trajectory and arrival time at Venus.

The engineering performance of the many spacecraft subsystems was also of vital concern. Inaccurate operation in any of several areas could endanger the success of the entire mission. The performance of the attitude control system, the Earth and Sun sensors, the power system, and communications were all of critical importance. Corrective action was possible in certain subsystems where trouble could be predicted from the data or where limited breakdown had occurred.

To integrate all the varied activities necessary to accomplish the mission objectives, an organization was formed within JPL to coordinate the DSIF, the communication network, the work of engineering and scientific advisory panels, and the computer facilities required to evaluate the data.

This organization was known as the Space Flight Operations Complex. For operational purposes only, it included the Space Flight Operations Center, a Communication Center, and a Central Computing Facility (CCF). The DSIF was responsive to the requirements of the organization, but was not an integral part of it.

A space flight operations director was responsible for integrating these many functions into a world-wide Mariner space-flight organization. It was an exhausting 109-day task, one that would severely tax all the resources of JPL in terms of know-how, qualified personnel, time, and equipment before Mariner completed its encounter with Venus.

The Communication Center at JPL in Pasadena was one of the most active areas during the many days and nights of the Mariner II mission. All of the teletype and radio lines from the Cape, South Africa, Australia, and Goldstone terminated in this Center. A high-speed data line bypassed the Communication Center, linking Goldstone directly with the Central Computing Facility for quick, real-time computer processing of vital flight information.

From the Communication Center, the teletype data and voice circuits were connected to the several areas within JPL where the mission-control activities were centered, and where the data output was being studied.

The Communication Center was equipped with teletype paper-page printers and paper-tape hole reperforators, which received and transmitted data-word and number groups. The teletype lines terminating at the Center included circuits from Goldstone, South Africa, Australia, and Cape Canaveral.

There were three lines to Goldstone for full-time, one-way data transmission. Duplex (simultaneous two-way) transmission was available to Woomera and South Africa on a full-time basis. In each case, a secondary circuit was provided to the overseas sites for use during critical periods and in case the primary radio-teletype circuits had transmission difficulties. These secondary circuits used different radio transmission paths in order to reduce the chance of complete loss of contact for any extended period of time.

Radio signals from Mariner are received on 85-ft. antenna.

Radio signals from Mariner are received on 85-ft. antenna.

The highly sensitive receiver (shown under test) is located in the control room of the station.

The highly sensitive receiver (shown under test) is located in the control room of the station.

In Goldstone control room, DSIF personnel await confirmation that spacecraft has begun to scan the planet Venus.

In Goldstone control room, DSIF personnel await confirmation that spacecraft has begun to scan the planet Venus.

From DSIF stations, the data are teletyped in coded format to Pasadena.

From DSIF stations, the data are teletyped in coded format to Pasadena.

Messages are received and routed at the JPL Communications Center.

Messages are received and routed at the JPL Communications Center.

Data are routed to the digital computer at JPL.

Data are routed to the digital computer at JPL.

Printout data are made available to experimenters.

Printout data are made available to experimenters.

Spacecraft status is posted in Operations Center.

Spacecraft status is posted in Operations Center.

The Mobile Tracking Station in South Africa used the Johannesburg communication facilities.

Two one-way circuits for testing and control purposes were open to Cape Canaveral from a month before until after the spacecraft was launched. Lines from the Communication Center to the Space Flight Operations Center at JPL terminated in page printers and reperforators in several locations.

Voice circuits connected all of the stations with Operations Center through the Communication Center. Long-distance radio telephone calls were placed to South Africa to establish contact before the launch sequence was started. Woomera used the Project Mercury voice circuits to the United States during launch and for three days after.

The actual nerve center of the Mariner operation was the Space Flight Operations Center (SFOC) at Pasadena. Here, technical and scientific advisory panels reported to the Project Manager and the Mariner Test Director on the performance of the spacecraft in flight, analyzed trajectories, calculated the commands for the midcourse trajectory correction, and studied the scientific aspects of the mission.

These panels were a Spacecraft Data Analysis Team, a Scientific Data Group, an Orbit Determination Group, a Tracking Data Analysis Group, and a Midcourse Command Group.

The Spacecraft Data Analysis Team analyzed the engineering data transmitted from the spacecraft to evaluate the performance of the subsystems in flight. The Team was composed of one or more of the engineers responsible for each of the spacecraft subsystems, and a chairman.

The Science Data Group was composed of the project scientist and certain other scientists associated with the experiments on board the spacecraft. This Group evaluated the data from the scientific experiments while Mariner was in flight and advised the Test Director on the scientific status of the mission.

The Science Data Group was on continuous duty until 48 hours after launch, and at other times during the mission. During encounter with Venus, the Group was also in contact with the scientific experimenters from other participating organizations who were working with JPL.

Closed circuit television monitors are used for instant surveillance of the internal activities of the Operations Center.

Closed circuit television monitors are used for instant surveillance of the internal activities of the Operations Center.

A Tracking Data Analysis Group analyzed the tracking data to be used in orbit determination. They also assessed the performance of the DSIF facilities and equipment used to obtain the data.

The Orbit Determination Group used the tracking data to produce estimates of the actual spacecraft trajectory, and to compute the spacecraft path with respect to the Earth, Venus, and the Sun. These calculations were made once each day before the midcourse maneuver, once a week during the cruise phase, and daily during and immediately after the planet encounter.

The Operations Center was equipped with lighted boards on which the progress of the mission was displayed. This information included trajectory data, spacecraft performance, temperature and pressure readings, and other data telemetered from the spacecraft subsystems.

Closed-circuit television was used for coordinating the activities of the SFOC. Operating personnel could use television monitors in four consoles which were linked to six fixed cameras viewing teletype page printers. The entire Operations Room could be kept under surveillance by the Project Manager, the Test Director, or the DSIF Operations Manager, using cameras controlled in “pan,” “tilt,” and “zoom.”

During the Mariner II mission, the JPL Central Computing Facility (CCF) processed approximately 13.1 million data words, or over 90 million binary bits of computer data. (Binary bit = a discrete unit of information intelligible to a digital computer. One data word = 7 binary bits.)

In the four-month operation, about 100,000 tracking and telemetering data cards were received and processed, yielding over 1.2 million computer pages of tabulated, processed, and analyzed data for evaluation by the engineers and scientists. Approximately 1,000 miles of magnetic tape were used in the 1,056 rolls recorded by the DSIF.

The Central Computing Facility processed and reduced tracking and telemetry data from the spacecraft, as recorded and relayed by the stations of the DSIF. The tracking information was the basis for orbital calculations and command decisions. After delivery of telemetry data on magnetic tapes by the DSIF, the CCF stored the data for later reduction and analysis. Where telemetry data were being processed in real or near-real time, certain critical engineering and scientific functions were programmed to print-out an “alarm” reading when selected measurements in the data were outside specified limits.

The CCF consists of three stations at JPL: Station C, the primary computing facility; Station D, the secondary installation; and the Telemetry Processing Station (TPS).

Station C was the principal installation for processing both tracking and telemetry data received from the DSIF tracking stations, both in real and non-real time. The Station was equipped with a high-speed, general-purpose digital computer with a 32,168-word memory and two input-output channels, each able to handle 6 tape units. The associated card-handling equipment was also available.

Tape translators or converters were provided for converting teletype data and other digital information into magnetic tape format for computer input. The teletype-to-tape unit operated at a rate of 300 characters per second.

A smaller computer acted as a satellite of the larger unit, performing bookkeeping and such related functions as card punching, card reading, and listing.

A high-speed unit microfilmed magnetic-tape printout was received from the large computer. It provided “quick-look” copy within 30 minutes of processing the raw data. Various paper-tape-to-card and card-to-paper-tapeconverters were used to eliminate human error in converting teletype data tape to computer cards.

Station C also utilized another computer as a real-time monitor and to prepare a magnetic tape file of all telemetered measurements for input to the large computer.

Station D was the secondary or backup computational facility, primarily intended for use in case of equipment failure in Station C. During certain critical phases of the Mariner mission—launch, orbit determination, midcourse maneuver—this facility paralleled the operations in Station C.

Station D is equipped with three computers and various card-to-tape converters and teletype equipment.

The Telemetry Processing Station received and processed all demodulated data (that recovered from the radio carrier) on magnetic tapes recorded at the DSIF stations. The TPS output was digital magnetic tapes suitable for computer entry.

The TPS equipment included FM discriminators, a code translator, a device for converting data from analog to digital form, and magnetic-tape recorders. Basically, the equipment accepted the digital outputs from the tape units, the analog-to-digital converter, and the code translator and put them in digital tape format for the computer input.

As the launch operation started on August 27, the powered-flight portion of the space trajectories program was run at launch minus 5 minutes (L minus 5) and was repeated several times because of holds at AMR. The orbit determination program was run at lift-off to calculate the first orbit predictions used for aiding the DSIF in finding the spacecraft in flight.

During the 12 hours following launch, both C and D Stations performed parallel computations on tracking data. Station D discontinued space flight operations at L plus 12 hours and resumed at the beginning of the midcourse maneuver phase.

Tracking data processing and midcourse maneuver studies were conducted daily until the midcourse maneuver was performed at L plus eight days. For the following 97 days, tracking data were processed once each week for orbit determination. Starting three days before the encounter, tracking data were processed daily until the beginning of the encounter phase.

Tracking data processing was conducted in near-real time throughout encounter day, and daily for two days thereafter. For these three days,tracking data were handled in Station D in order to permit exclusive use of Station C for telemetry data processing and analysis. After this three-day period, including the encounter, Station C processed the tracking data every sixth day until the mission terminated on L plus 129 days.

Telemetry data were processed in a different manner. Following the launch, DSIF Station 5 at South Africa received the telemetry signal first, demodulated it, and put it in the proper format for teletype transmission to JPL. The other DSIF stations followed in sequence as the spacecraft was heard in other parts of the world. For two days after launch, the computers processed telemetry data as required by the Spacecraft Data Analysis Team.

During those periods when the large computer was processing tracking data, a secondary unit supplied quick-look data in near-real time. When Goldstone was listening to the spacecraft, quick-look data were processed in real time, using the high-speed data line direct to the Central Computing Facility.

For the 106 days that Mariner was actually in Mode II (cruise), the telemetry data were processed twenty-four hours a day, seven days a week. Data were presented to the engineering and science analysis teams in quick-look format every three hours, except for short maintenance interruptions, one computer failure, and a major modification requiring three days, when a back-up data process mode of operation was used. The large computer performed full processing and analysis of engineering and science data seven days a week from launch until the Venus encounter.

On encounter day, the secondary Station C computer processed telemetry data from the high-speed Goldstone line. Data on magnetic tapes produced by the computer were processed and analyzed by the large unit in near-real time every 30 minutes. The computer processing and delivery time during this operation varied from 4½ to 7 minutes.

After a year of concentrated effort, in which the resources of NASA, the Jet Propulsion Laboratory, and American science and industry had been marshalled, Mariner II had probed secrets of the solar system some billions of years old.

Scientists and engineers had studied the miles of data processed in California from the tapes recorded at the five DSIF tracking stations around the world. Two and a half months of careful analysis and evaluation yielded a revised estimate of Venus and of the phenomena of space. As a result, the dynamics of the solar system were revealed in better perspective and the shrouded planet stood partially unmasked. When the Mariner data were correlated with the data gathered by JPL radar experiments at Goldstone in 1961 and 1962, the relationships between the Earth, Venus, and the Sun became far clearer than ever before.

Two experiments were carried on the spacecraft for a close-up investigation of Venus’ atmosphere and temperature characteristics—a microwave radiometer and an infrared radiometer. They were designed to operate during the approximate 35-minute encounter period and at a distance varying from about 10,200 miles to 49,200 miles from the center of the planet.[2]

Cosmic dust detector.

Cosmic dust detector.

Solar plasma spectrometer.

Solar plasma spectrometer.

Magnetometer.

Magnetometer.

High-energy particle detector.

High-energy particle detector.

Microwave and infrared radiometers.

Microwave and infrared radiometers.

Four experiments for investigation of interplanetary space and the regions near Venus employed: a magnetometer; high-energy charged particle detectors, including an ionization chamber and Geiger-Mueller radiation counters; a cosmic dust detector; and a solar plasma detector.

These six scientific experiments represented the cooperative efforts of scientists at nine institutions: The Army Ordnance Missile Command, the Ewen-Knight Corp., the California Institute of Technology, the Goddard Space Flight Center of NASA, Harvard College Observatory, the Jet Propulsion Laboratory, the Massachusetts Institute of Technology, the State Universities of Iowa and Nevada, and the University of California at Berkeley.Table 2lists the experiments, the experimenters, and their affiliations.

At the Jet Propulsion Laboratory, the integration of the scientific experiments and the generation of a number of them were carried out under the direction of Dr. Manfred Eimer. R. C. Wyckoff was the project scientist and J. S. Martin was responsible for the engineering of the scientific experiments.

Mariner’s scientific experiments were controlled and their outputs processed by a data conditioning system which gathered the information from the instruments and prepared it for transmission to the Earth by telemetry. In this function, the data system acted as a buffer between the science systems and the spacecraft data encoder.

The pulse output of certain of the science instruments was counted and the voltage amplitude representations of other instruments were converted from analog form to a binary digital equivalent of the information signals. The data conditioning system also included circuits to permit time-sharing of the telemetry channels with the spacecraft engineering data, generation of periodic calibration signals for the radiometer and magnetometer, and control of the direction and speed of the radiometer scanning cycle.

During Mariner’s cruise mode, the data conditioning system was used for processing both engineering and science data. If the spacecraft lost lock on the Sun or the Earth during the cruise mode, no scientific data would be telemetered during the reorientation period. Engineering data were sampled and transmitted for about 17 seconds during every 37-second interval. The planetary encounter mode involved only science andno engineering data transmission. In this mode, the science data were sampled during 20-second intervals.

The cosmic dust detector on Mariner II was designed to measure the flux density, direction, and momentum of interplanetary dust particles between the Earth and Venus. These measurements were concerned with the particles’ direction and distance from the Sun, the momentum with respect to the spacecraft, the nature of any concentrations of the dust in streams, variations in cosmic dust flux with distance from the Earth and Venus, and the possible effects on manned flight.

Mariner’s cosmic dust instrument could detect a particle as small as something like a billionth of a gram, or about five-trillionths of a pound. This type of sensor had been used on rockets even before Explorer I. It had yielded good results on Pioneer I in the region between the Earth and the Moon. The instrument was a 55-square-inch acoustical detector plate, or sounding board, made of magnesium. A crystal microphone was attached to the center of the plate. The instrument could detect both low- and high-momentum particles and also provide a rough idea of their direction of travel.

The dust particle counters were read once each 37 seconds during the cruise mode. This rate was increased to once each 20 seconds during the encounter with Venus.

The instrument was attached to the top of the basic hexagonal structure; it weighed 1.85 pounds, and consumed only 0.8 watt of power.

In order to investigate the phenomena associated with the movement of plasma (charged particles of low energy and density streaming out from the Sun to form the so-called “solar wind”) in interplanetary space, Mariner carried a solar plasma spectrometer that measured the flux and energy spectrum of positively charged plasma components with energies in the range 240 to 8400 volts. The extremely sensitive plasma detector unit was open to space, consumed 1 watt of power, and consisted of four basic elements: curved electrostatic deflection plates and collector cup, electrometer, a sweep amplifier, and a programmer.

The curved deflector plates formed a tunnel that projected from the chassis on the spacecraft hexagon in which the instrument was housed.Pointed toward the Sun, the gold-plated magnesium deflector plates gathered particles from space. Since the walls of the tunnel each carried different electrical charges, only particles with just the correct energy and speed could pass through and be detected by the collector cup without striking the charged walls. A sensitive electrometer circuit then measured the current generated by the flow of the charged particles reaching the cup.

The deflection plates were supplied by amplifier-generated voltages which were varied in 10 steps, each lasting about 18 seconds, allowing the instrument to measure protons with energies in the 240 to 8,400 electron volt range. The programmer switched in the proper voltage and resistances.

Mariner carried an experiment to measure high-energy radiation in space and near Venus. The charged particles measured by Mariner were primarily cosmic rays (protons or the nuclei of hydrogen atoms), alpha particles (nuclei of helium atoms), the nuclei of other heavier atoms, and electrons. The study of these particles in space and those which might be trapped near Venus was undertaken in the hope of a better understanding of the dynamics of the solar system and the potential hazards to manned flight.

The high-energy radiation experiment consisted of an ionization chamber and detectors measuring particle flux (velocity times density), all mounted in a box measuring 6 × 6 × 2 inches and weighing just under 3 pounds. The box was attached halfway up the spacecraft superstructure in order to isolate the instruments as much as possible from secondary emission particles produced when the spacecraft was struck by cosmic rays, and to prevent the spacecraft from blocking high-energy radiation from space.

The ionization chamber had a stainless steel shell 5 inches in diameter, with walls only 1/100-inch thick. The chamber was filled with argon gas into which was projected a quartz fibre next to a quartz rod.

A charged particle entering the chamber would leave a wake of ions in the argon gas. Negative ions accumulated on the rod, reducing the potential between the rod and the spherical shell, eventually causing the quartz fibre to touch the rod. This action discharged the rod, producingan electrical pulse which was amplified and transmitted to the Earth. The rod was then recharged and the fibre returned to its original position.

In order to penetrate the walls of the chamber, protons required an energy of 10 million electron volts (Mev), electrons needed 0.5 Mev, and alpha particles 40 Mev.

The particle flux detector incorporated three Geiger-Mueller tubes, two of which formed a companion experiment to the ionization chamber; each generated a current pulse whenever a charged particle was detected. One tube was shielded by an 8/1,000-inch-thick stainless steel sleeve, the other by a 24/1,000-inch-thick electron-stopping beryllium shield. Thus, the proportion of particles could be determined.

The third Geiger-Mueller tube was an end-window Anton-type sensor with a mica window that admitted protons with energies greater than 0.5 Mev and electrons, 40,000 electron volts. A magnesium shield around the rest of the tube enabled the instrument to determine the direction of particles penetrating only the window.

The three Geiger-Mueller tubes protruded from the box on the superstructure of the spacecraft. The end-window tube was inclined 20 degrees from the others and 70 degrees from the spacecraft-Sun line since it had to be shielded from direct solar exposure.

Mariner carried a magnetometer to measure the magnetic field in interplanetary space and in the vicinity of Venus. Lower sensitivity limit of the instrument was about 5 gamma. A gamma is a unit of magnetic measurement and is equal to 10⁻⁵ or 1/100,000 oersted, or 1/30,000 of the Earth’s magnetic field at the equator. The nails in one of your shoes would probably produce a field of about 1 gamma at a distance of approximately 4 feet.

Housed in a 6- × 3-inch metal cylinder, the instrument consisted of three magnetic core sensors, each aligned on a different axis to read the three magnetic field components and having primary and secondary windings. The presence of a magnetic field altered the current in the secondary winding in proportion to the strength of the field encountered.

The magnetometer was attached near the top of the superstructure, just below the omni-antenna, in order to remove it as far as possible from any spacecraft components having magnetic fields of their own.

An auxiliary coil was wound around each of the instrument’s magnetic sensor cores to compensate for permanent magnetic fields existing in the spacecraft itself. These spacecraft fields were measured at the magnetometer before launch and, in flight, the auxiliary coils carried currents of sufficient strength to cancel out the spacecraft’s magnetic fields.

The magnetometer reported almost continuously on its journey and for 20 days after encounter. During the encounter, observations were made each 20 seconds on each of the three components of the magnetic field.

A microwave radiometer on board Mariner II was designed to scan Venus during encounter at two wavelengths: 13.5 and 19 millimeters. The radiometer was intended to help settle some of the controversies about the origin of the apparently high surface temperature emanating from Venus, and the value of the surface temperature.

The equipment included a 19-inch-diameter parabolic antenna mounted above the basic hexagonal structure on a swivel driven in a 120-degree scanning motion by a motor. The radiometer electronics circuits were housed behind the antenna dish. The antenna was equipped with a diplexer, which allowed it to receive both wavelengths at once without interference, and to compare the signals emanating from the two reference horns with those from the planet. The reference horns were pointed away from the main antenna beam so they would look into deep space as Mariner passed Venus. This feature allowed the antenna to “bring in” a reference temperature of approximately absolute zero during encounter.

The microwave radiometer was to be turned on 10 hours before the encounter began. An electric motor was then to start a scanning or “nodding” motion of 120 degrees at the rate of 1 degree per second. Upon radiometer contact with the planet, this scanning rate would be reduced to 1/10 degree per second as long as the planetary disk was scanned. A special command system in the data conditioning system would reverse or normalize the direction of scan as the radiometer reached the edge or limb of the planet.

The signals from the antenna and the reference horns were to be processed and the data handled in a receiver, located behind the antenna, which measured the difference between the signals from Venus and the reference signals from space. The information was then to be telemetered to the Earth.

The microwave radiometer was automatically calibrated twenty-three times during the mission by a sequence originating in the data conditioning system, so that the correct functioning of the instrument could be determined before the encounter with Venus.

The infrared radiometer was a companion experiment to the microwave instrument and was rigidly mounted to the microwave antenna so that both radiometers would look at the same area of Venus with the same scanning rate. The instrument detected radiation in the 8 to 9 and 10 to 10.8 micron regions of the infrared spectrum.

The infrared radiometer had two optical sensors. As the energy entered the system, it was “chopped” by a rotating disk, alternately passing or comparing emissions from Venus and from empty space. The beam was then split by a filter into the two wavelength regions. The output was then detected, processed, and transmitted to the Earth.

The infrared radiometer measured 6 inches by 2 inches, weighed 2.7 pounds, and consumed 2 watts of power. The instrument was equipped with a calibration plate which was mounted on a superstructure truss adjacent to the radiometer.

Equipped with these instruments and with the mechanism for getting the measurements back to Earth, Mariner II was prepared to look for the answers to some of the questions inherent in its over-all mission objectives:

If intelligent life had existed on Venus on the afternoon of the Earth’s December 14, 1962, and if it could have seen through the clouds, it might have observed Mariner II approach from the night side, drift down closer, cross over to the daylight face, and move away toward the Sun to the right. The time was the equivalent of 12:34 p.m. along the Pacific Coast of the United States, where the spacecraft was being tracked.

Mariner II had reached the climax of its 180-million-mile, 109-day trip through space. The 35-minute encounter with Venus would tell Earth scientists more about our sister planet than they had been able to learn during all the preceding centuries.

Before Mariner, scientists theorized about the existence of clouds of cosmic dust around the Sun. A knowledge of the composition, origin, and the dynamics of these minute particles is necessary for study of the origins and evolution of the solar system.

Tiny particles of cosmic dust (some with masses as low as 1.3 × 10⁻¹⁰ gram or about one-trillionth of a pound) were thought to be present in the solar system and have been recorded by satellites in the near-Earth regions.

These microcosmic particles could be either the residue left over after our solar system was formed some 5 billion years ago, possibly by condensation of huge masses of gas and dust clouds; or, the debris deposited within our system by the far-flung and decaying tails of passing comets; or, the dust trapped from galactic space by the magnetic fields of the Sun and the planets.

Analysis of the more than 1,700 hours of cosmic dust detector data recovered from the flight of Mariner II seems to indicate that in the region between the Earth and Venus the concentration of tiny cosmic dust particles is some ten-thousand times less than that observed near the Earth.

During the 129 days (including the post-encounter period) of Mariner’s mission, the data showed only one dust particle impact which occurred in deep space and not near Venus. Equivalent experiments near Earth (on board Earth satellites) have yielded over 3,700 such impacts within periods of approximately 500 hours. The cause of this heavy near-Earth concentration, the exact types of particles, and their source are still unknown.

The cosmic dust experiment performed well during the Mariner mission. Although some calibration difficulty was observed about two weeks before the Venus encounter, possibly caused by overheating of the sensor crystal, there was no apparent effect in the electronic circuits.

For some time prior to Mariner, scientists postulated the existence of a so-called plasma flow or “solar wind” streaming out from the Sun, to explain the motion of comet tails (which always point away from the Sun, perhaps repelled by the plasma), geomagnetic storms, aurorae, and other such disturbances. (Plasma is defined as a gas in which the atoms are dissociated into atomic nuclei and electrons, but which, as a whole, is electrically neutral.)

The solar wind was thought to drastically alter the configuration of the Sun’s external magnetic field. Plasma moving at extreme velocities is able to carry with it the lines of magnetic force originating in the Sun’s corona and to distort any fields it encounters as it moves out from the Sun.

It was believed that these moving plasma currents are also capable of altering the size of a planet’s field of magnetic flux. When this happens,the field on the sunlit face of the planet is compressed and the dark side has an elongated expansion of the field. For example, the outer boundary of the Earth’s magnetic field is pushed in by the solar wind to about 40,000 miles from the Earth on the sunward side. On the dark side, the field extends out much farther.

The solar wind was also known to have an apparent effect on the movement of cosmic rays. As the Sun spots increase in the regular 11-year cycle, the number of cosmic rays reaching the Earth from outside our solar system will decrease.

Mariner II found that streams of plasma are constantly flowing out from the Sun. This fluctuating, extremely tenuous solar wind seems to dominate interplanetary space in our region of the solar system. The wind moves at velocities varying from about 200 to 500 miles per second (about 720,000 to 1,800,000 miles per hour), and measures up to perhaps a million degrees Fahrenheit (within the subatomic structure).

With the solar plasma spectrometer working at ten different energy levels, Mariner required 3.7 minutes to run through a complete energy spectrum. During the 123 days, when readings were made, a total of 40,000 such spectra were recorded. Plasma was monitored on 104 of those 123 days, and on every one of the spectra, the plasma was always present.

Mariner showed that the energies of the particles in the solar winds are very low, on the order of a few hundred or few thousand electron volts, as compared with the billions and trillions of electron volts measured in cosmic radiation.

The extreme tenuousity or low density of the solar wind is difficult to comprehend: about 10 to 20 protons (hydrogen nuclei) and electrons per cubic inch. But despite the low energy and density, solar wind particles in our region of the solar system are billions of times more numerous than cosmic rays and, therefore, the total energy content of the winds is much greater than that of the cosmic rays.

Mariner found that when the surface of the Sun was relatively inactive, the velocity of the wind was a little less than 250 miles per second and the temperature a few hundred thousand degrees. The plasma was always present, but the density and the velocity varied. Flare activity on the Sun seemed to eject clouds of plasma, greatly increasing the velocity and density of the winds. Where the particles were protons, their energies ranged from 750 to 2,500 electron volts.

The experiment also showed that the velocity of the plasma apparently undergoes frequent fluctuations of this type. On approximately twenty occasions, the velocity increased within a day or two by 20 to 100%. These disturbances seemed to correlate well with magnetic storms observed on the Earth. In several cases, the sudden increase in the solar plasma flux preceded various geomagnetic effects observed on the Earth by only a short time.

The Mariner solar plasma experiment was the first extensive measurement of the intensity and velocity spectrum of solar plasma taken far enough from the Earth’s field so that the Earth would have no effect on the results.

Speculation has long existed as to the amount of high-energy radiation (from cosmic rays and particles from the Sun with energies in the millions of electron volts) present within our solar system and as to whether exposure would be fatal to a human space traveler.

This high-energy type of ionizing radiation is thought to consist of the nuclei of such atoms as hydrogen and helium, and of electrons, all moving very rapidly. The individual particles are energetic enough to penetrate considerable amounts of matter. The concentration of these particles is apparently much lower than that of low-energy plasma.

The experiments were designed to detect three types of high-energy radiation particles: the cosmic rays coming from outside the solar system, solar flare particles, and radiation trapped around Venus (as that which is found in the Earth’s Van Allen Belt).

These high-energy radiation particles (also thought to affect aurorae and radio blackouts on the Earth) measure from about one hundred thousand electron volts up to billions of volts. The distribution of this energy is thought to be uniform outside the solar system and is assumed to move in all directions in a pattern remaining essentially constant over thousands of years.

Inside the solar system, the amount of such radiation reaching the Earth is apparently controlled by the magnetic fields found in interplanetary space and near the Earth.

The number of cosmic rays changes by a large amount over the course of an 11-year Sun-spot cycle, and below a certain energy level (5,000Mev) few cosmic rays are present in the solar system. They are probably deflected by plasma currents or magnetic fields.

Mariner’s charged particles experiment indicated that cosmic radiation (bombardment by cosmic rays), both from galactic space and those particles originating in the Sun, would not have been fatal to an astronaut, at least during the four-month period of Mariner’s mission.

The accumulated radiation inside the counters was only 3 roentgens, and during the one solar storm recorded on October 23 and 24, the dosage measured only about ¼ roentgen. In other words, the dosage amounts to about one-thousandth of the usually accepted “half-lethal” dosage, or that level at which half of the persons exposed would die. An astronaut might accept many times the dosage detected by Mariner II without serious effects.

The experiment also showed little variation in density of charged particles during the trip, even with a 30% decrease in distance from the Sun, and no apparent increase due to magnetically trapped particles or radiation belts near Venus as compared with interplanetary space. However, these measurements were made during a period when the Sun was slowly decreasing in activity at the end of an 11-year cycle. The Sun spots will be at a minimum in 1964-1965, when galactic cosmic rays will sharply increase. Further experiments are needed to sample the charged particles in space under all conditions.

The lack of change measured by the ionization chamber during the mission was significant; the cosmic-ray flux of approximately 3 particles per square centimeter per second throughout the flight was an unusually constant value. A clear increase in high-energy particles (10 Mev to about 800 Mev) emitted by the Sun was noted only once: a flare-up between 7:42 and 8:45 a.m., PST, October 23. The ionization chamber reading began to increase before the flare disappeared. From a background reading of 670 ion pairs per cubic centimeter per second per standard atmosphere, it went to a peak value of 18,000, varied a bit, and remained above 10,000 for 6 hours before gradually decreasing over a period of several days. Meanwhile, the flux of the particles detected by the Geiger counter rose from the background count of 3 to a peak of 16 per square centimeter per second. Ionization thus increased much more than the number of particles, indicating to the scientists that the high-energy particles coming from the Sun might have had much lower average energies than the galactic cosmic rays.


Back to IndexNext