7. IRRATIONALITY AND TRANSCENDENCE OF CERTAIN NUMBERS.
Hermite's arithmetical theorems on the exponential function and their extension by Lindemann are certain of the admiration of all generations of mathematicians. Thus the task at once presents itself to penetrate further along the path here entered, as A. Hurwitz has already done in two interesting papers,[20]"Ueber arithmetische Eigenschaften gewisser transzendenter Funktionen." I should like, therefore, to sketch a class of problems which, in my opinion, should be attacked as here next in order. That certain special transcendental functions, important in analysis, take algebraic values for certain algebraic arguments, seemsto us particularly remarkable and worthy of thorough investigation. Indeed, we expect transcendental functions to assume, in general, transcendental values for even algebraic arguments; and, although it is well known that there exist integral transcendental functions which even have rational values for all algebraic arguments, we shall still consider it highly probable that the exponential function,for example, which evidently has algebraic values for all rational arguments,will on the other hand always take transcendental values for irrational algebraic values of the argument.We can also give this statement a geometrical form, as follows:
If, in an isosceles triangle, the ratio of the base angle to the angle at the vertex be algebraic but not rational, the ratio between base and side is always transcendental.
In spite of the simplicity of this statement and of its similarity to the problems solved by Hermite and Lindemann, I consider the proof of this theorem very difficult; as also the proof that
The expression,for an algebraic baseand an irrational algebraic exponent,e. g., the numberor,always represents a transcendental or at least an irrational number.
It is certain that the solution of these and similar problems must lead us to entirely new methods and to a new insight into the nature of special irrational and transcendental numbers.
[20]Math. Annalen, vol. 32, 1888.
[20]Math. Annalen, vol. 32, 1888.