Thou hast my guess at daily weatherHere present in thy view.My credit shall not lie thereonThat every word is true:Yet some to please I thought it bestTo shew my mynde among the reste.
Thou hast my guess at daily weatherHere present in thy view.My credit shall not lie thereonThat every word is true:Yet some to please I thought it bestTo shew my mynde among the reste.
Thou hast my guess at daily weatherHere present in thy view.My credit shall not lie thereonThat every word is true:Yet some to please I thought it bestTo shew my mynde among the reste.
Twofarmers are grumbling about the weather. The scene is Ohio, the time July, and the prevalent crop corn (i. e., maize).
Farmers have grumbled about the weather from time immemorial. The point of interest in this particular case is that the two grumblers do not agree about what is wrong. Farmer A thinks the corn needs rain. Farmer B declares that at this stage rain would do more harm than good. Plenty of warm sunshine is, he thinks, the right prescription to insure a “bumper” crop. Of course Providence will do as it pleases, and whatever weather comes, since it cannot be cured, must be endured; but it is a matter of practical as well as academic interest to get some inkling betimes as to how your crop is going to turn out, and the weather is likely to be the decisive factor. Moreover, it is a very significant fact that our two farmers are not of the same mind about which atmospheric blessing is in default. It is painful to reflect that an enormous amount of grumbling about the weather on the part of the rustic community must, at one time or another, have been misapplied. It is a plausible assumption that farmers have sometimes worried themselves to death over meteorological events that were either harmless or actually beneficial to their crops.
How can we arrive at the facts? Admitting, as everybody does, that the weather has a preeminentinfluence upon plant life, is this influence susceptible of analysis? Is there anything definite about it? Are not the effects of various atmospheric conditions so entangled with one another, and with the effects of soil and methods of cultivation—to say nothing of insects and plant diseases—as to baffle all attempts to gauge them separately?
There is a new branch of applied science that teaches farmers how to grumble right about the weather. It is called Agricultural Meteorology. As a coherent branch of knowledge, this subject is so new that the first formal textbook about it in the English language was published in the year 1920. It happens that the author of this book, Professor J. Warren Smith, of the United States Weather Bureau, began his investigations in the new field by making a careful study of the relation of weather to the yield of corn in Ohio. Let us see what light his studies shed upon the question at issue between our friends A and B.
Day after day, and year after year, the principal atmospheric conditions are observed and measured at a great number of points scattered over the State of Ohio, as they are elsewhere throughout the Union, and the records thus obtained are carefully compiled, summed up, averaged and otherwise discussed by officials of the Weather Bureau. Thus a great fund of detailed statistical information about the weather is available for comparison with the statistics gathered by other agencies concerning the yield of crops and their condition at different stages of growth.
Professor Smith’s analysis of the Ohio records revealed a fact of so much practical importance that this discovery alone suffices to place agriculturalmeteorology among the most fruitful branches of knowledge cultivated by mankind. He discovered that the success of the Ohio corn crop depends chiefly upon the amount of rain that falls during the month of July. The normal rainfall of that month for the State is 4 inches, while the average yield of corn during the past sixty years has been 34.5 bushels per acre. Comparing the values for individual years, it is found that the yield is strikingly sensitive to variations from the normal July rainfall, and especially so when the rainfall is a little more or less than 3 inches. Near this critical rainfall point, a variation ofone-fourth inchof rain in July means a variation in the value of the corn crop of Ohio of nearly $3,000,000, and a variation of one-half inch makes an average variation in the value of the crop of more than $7,500,000. When the rainfall for July averages over 5 inches the probable yield of corn will be more than 27,000,000 bushels greater than it will be if the rainfall averages less than 3 inches. In other words, this difference of 2 inches in the rainfall for the month of July adds $13,650,000 to the income derived by Ohio farmers from corn alone.
Variations of the temperature in July, in Ohio, have been compared with variations in the yield of corn, with the result that the temperature of the month appears to have little effect upon the crop. Thus we find Farmer A to have been right and Farmer B wrong; but both were merely expressing personal opinions based upon an insignificant sum-total of experience. Science rests upon a surer foundation.
Although the case of the Ohio corn crop is probably simpler than most of those that agriculturalmeteorology has to deal with, for the reason that a single meteorological element is, in this case, of decisive importance, it illustrates a rule of quite general application that has recently come to light; viz., that in the growth of any particular crop there is usually a rather brief “critical period,” when it is most sensitive to the influence of weather. For corn, in a considerable area of the northern United States, this period is July, or more specifically, in Ohio, the interval from July 11 to August 10. The rainfall and temperature of other months have, however, definite though minor influences, which can be evaluated for the same regions.
With respect to the American “corn belt” in general, it is not certain how far the rules deduced for Ohio are applicable. Professor Smith has been inclined to look upon July rainfall as the dominating factor for the whole of that region; so that, for example, a difference of 1 inch in the rainfall (viz., a total for July of 4.4 inches or more, as compared with 3.4 inches or less) has been held responsible for an increase of 500,000,000 bushels of corn in the eight principal corn-growing States. It has also been stated that in the four States of Indiana, Illinois, Iowa and Missouri an increase of half an inch of rain in July meant an increase of $150,000,000 in the value of the crop. These figures have, however, been challenged, and the subject is still under discussion.
The study of the critical periods of different crops, and the determination of the amounts of heat and moisture most favorable to the success of the crop at such periods, may be regarded as the leading task of the agricultural meteorologist. The most elaborate researches of this character havebeen made in Russia by Professor P. Brounov, who founded in 1896 a meteorological bureau, attached to the Ministry of Agriculture, with an extensive network of stations scattered over the Russian Empire. This bureau was quite distinct from the ordinary meteorological service, under the direction of the Central Physical Observatory in St. Petersburg. Just before the war Professor Brounov had 150 stations in operation; most of them for observing the effects of weather on the leading cereal crops, though some studied the corresponding relations of horticulture or the animal industries. Each agricultural station comprised a small plot of land, on which a certain sequence of crops was grown year after year under conditions of cultivation as nearly uniform as possible, the only variable factor being the weather. Meteorological instruments were installed in the immediate proximity of the plants under investigation. Prior to 1914 Brounov had determined the critical periods of most of the crops grown in Russia, and had published a great deal of information on this subject that could be turned to practical account by Russian farmers.
It will perhaps not be immediately apparent to the reader just how such information can be utilized. Its practical applications vary, in fact, according to circumstances. First of all, a knowledge of critical periods and of the weather requirements of crops at these periods enables the farmer to select his crops and time his farming operations on the basis of climatic statistics. Brounov published a series of charts showing the probability of dry weather, as deduced from many years of observations, for each ten-day period throughout the agricultural year for every part of EuropeanRussia. With such charts at our disposal, and knowing how long after planting each crop arrives at its critical period with respect to moisture, we can readily estimate the probable success of a given crop planted at a given time and place; at least, so far as this is determined by rainfall. If temperature or other meteorological conditions are of special importance at the critical periods, we shall need additional climatic charts. Of course, the weather in any particular year may differ widely from the climatic averages; but in the long run crops will prosper in proportion as their critical periods coincide with the occurrence of favorable weather as shown by the climatic record. It will be seen that this is quite a different idea from the traditional one that a certain crop needs a “moist climate,” another a “hot climate,” etc. The agriculturist now asks the man of science to tell himwhen, between planting and harvesting, heat or moisture is of vital importance to the crop, andhow muchof each will produce the biggest yield.
In regions where irrigation is practiced it is obviously advantageous to the farmer to know at what stage of its growth a crop becomes sensitive to the amount of moisture received. During the greater part of its life the plant may be quite indifferent to moisture, and at such times irrigation would be wasteful. The farmer needs to know not only when the critical period has arrived, but also what the water requirements are at that period. Too much water may be as bad as too little.
Even when agricultural practice ignores the rules laid down by the agricultural meteorologist, a knowledge of these rules may be applied with great advantage to the prediction of crop yields. It ishardly necessary to tell any farmer or business man that accurate crop forecasts are an economic desideratum of the utmost importance. The United States Government maintains an army of more than 200,000 volunteer crop reporters, supervised by a staff of experts, for the purpose of determining month by month the condition of every agricultural crop and its prospective yield. With regard to the monthly announcements of the Bureau of Crop Estimates, Professor H. L. Moore, of Columbia University, says:
“The commodity markets are in a state of nervous expectancy as the time approaches for the official forecasts, because great values are at stake. It has been estimated that in the case of the cotton crop alone an error in the forecasts which should lead to a depression of one cent a pound in the price of cotton-lint would—assuming a crop equal to that of 1914—entail a loss of eighty million dollars to the farmers. The vast values at stake and the dangers when no official estimate is available of the manipulation of the markets in the interest of speculators are held to justify the large recurrent annual cost of the employment of the numerous correspondents, clerks, and experts.”
Professor Moore is one of those who have pointed out that the forecasts based upon the actual condition of the growing crops can be vastly improved by a mathematical analysis of the weather reports from the various regions in which the crops are grown. In fact, he goes so far as to assert that much better forecasts can be made from the weather reports alone than from reports on the condition of the crops. Whether or not this view is unduly optimistic, it goes without saying thatthe precise data which agricultural meteorology is now acquiring cannot fail to enhance greatly the accuracy of crop forecasts.
Of course, the weather has always been watched with keen interest by everybody concerned with the purchase or sale of agricultural products and has been one of the chief factors determining the rise and fall of prices. At produce exchanges throughout the United States daily weather bulletins are received from the agricultural districts, and at many of them a large weather map is drawn every morning by an employee of the Weather Bureau detailed for this purpose. The Bureau has made various other arrangements for supplying the information that is so eagerly desired concerning the weather as it affects crops, as well as the animal industries. During the “growing season” in the cotton, corn, wheat, sugar, rice, broom-corn and cattle-producing areas, designated centers receive telegraphic reports of rainfall and the daily extremes of temperature from substations in the regions concerned, and these are distributed in bulletin form. Each local center, besides publishing detailed reports from its own area, issues condensed reports from all the others. The Bureau also issues every week during the agricultural season a “National Weather and Crop Bulletin,” with text and charts setting forth the current conditions of moisture, temperature, etc., and the state of the crops in all parts of the country.
The use which dealers and farmers make of these weather reports is, however, very far from having been reduced to science. Some of these persons, it is true, are frequently able, by a purely instinctive process of deduction, to make successful forecastsof crop yields from a close study of the weather, and others have worked out crude rules of their own for the same purpose; but the agricultural meteorologist approaches the problem in a different way. Immense progress has been made in the past decade in applying the mathematical theory ofcorrelationto this problem. This branch of mathematics, originally developed chiefly for statistical studies in biology by Galton, Pearson, and others, is now extensively used by meteorologists not only for studying the effects of weather on crops, but also for finding out what correspondences or relationships exist between variations of weather in different parts of the world, as well as between weather and sun spots, weather and vital statistics, etc.
Sometimes, when the farmers do not disagree on the subject of favorable and unfavorable weather for the crops, they hold opinions in common that agricultural meteorology is unable to substantiate. An illustration is found in the idea that a good covering of snow during the winter is favorable to the yield of winter wheat. Apparently this is one of the host of popular ideas that are based merely on the delusive foundation of “everybody says so.” Smith has investigated the statistics of wheat for Ohio and C. J. Root those for Illinois. In both cases their results negative the prevailing opinion. Professor Smith finds “some evidence to indicate that wheat has a better prospect if it is not covered by snow during the month of January,” while Mr. Root states that, in general, “the winters of light snowfall are followed by good wheat yields and the winters of heavy snowfall by light yields.”
The study of the relations between weather and crops is really a branch of a science of broaderscope, known asphenology. This science is devoted to the investigation of all periodic phenomena of plant and animal life that are controlled by the weather. There are, in some parts of the world, large corps of phenological observers, who maintain records year after year of the leafing, flowering, and fruiting of both wild and cultivated plants, the migrations and first songs of birds, and various other events of a biological character that recur with the seasons. In the course of time it becomes possible to compute from such records the normal dates of these events; and then, in any particular year, a comparison between the actual dates and the normal shows whether the season is early or late, and by how many days. Phenological observations on plants also make it possible to draw charts showing the normal march of the seasons over a country, expressed in terms of plant life, and such charts are often more valuable to the agriculturist or horticulturist as a guide in selecting varieties for cultivation and in timing his operations, than any charts that can be compiled from ordinary climatic data. Some admirable charts of this kind have been drawn for parts of Europe.
There are many practical applications of phenology to agriculture, and there would be more if phenological observations had been made more extensively throughout the world. Good phenological charts of different regions would, for example, greatly facilitate the work of foreign plant introduction carried on by the United States Bureau of Plant Industry. In the United States phenological observations were made systematically between 1850 and 1863, but only desultory work has been done in this line subsequently. The most comprehensiveindividual record is that maintained by Thomas Mikesell from 1873 to 1912, at Wauseon, Ohio, and published in full by the Weather Bureau in 1915.
The old rule of American farmers, inherited from the Indians, that the time to plant corn is when the leaf of the white oak is “the size of a mouse’s ear,” illustrates the use that can be made of so-called “index plants” of the native flora as guides for farming operations. Professor A. D. Hopkins writes on this subject:
“If such guide plants do not occur on the farm, they can be found among the ornamental trees and shrubs and hardy flowering plants of other localities or countries and transplanted. The periodical event of the falling of the flower catkins of the Carolina poplar has been found to be one of the best guides to the general early or late character of one season as compared with the average, while the opening of the leaf buds and unfolding of the leaves serve as reliable guides to the progress of spring. The various magnolias in their succession of flowering events serve as excellent guides to the rate of progress of spring and the time to do various kinds of work. The ornamental Spiræas, Deutzias, Diervillas, climbing roses, and Clematis among the ornamentals, and the dogwood, service tree, redbud, and oaks among the native trees of the middle and eastern regions of the United States are more or less constant in their response to prevailing local influences which are indicative of the time to plant certain field and garden crops. The opening of the leaf and flower buds and the flowering of the common fruit trees and shrubs of almost every farm serve as more or less reliable guides tothe time to spray for certain insect and plant diseases.”
Dr. Hopkins has worked out an interesting rule known as the “bioclimatic law,” according to which the periodical events of plant and animal life advance over the United States at the rate of 1 degree of latitude, 5 degrees of longitude, and 400 feet of altitude every four days—northward, eastward, and upward in spring, and southward, westward, and downward in autumn. Thus, when the date of any phenological occurrence is known for one locality, it may be approximately determined for any other. This law has enabled the Department of Agriculture to publish rules of general application concerning the best time to plant winter wheat in order to escape the ravages of the Hessian fly, thus saving many millions of dollars to American farmers. The same law is susceptible of various other profitable uses.
Orchard Heaters in Operation.The economical use of this method of frost protection depends upon accurate forecasts of the right time to “fire” the orchard. (Courtesy of Hamilton Orchard Heater Co.)
Orchard Heaters in Operation.The economical use of this method of frost protection depends upon accurate forecasts of the right time to “fire” the orchard. (Courtesy of Hamilton Orchard Heater Co.)
The United States Weather Bureau has been a branch of the Department of Agriculture since 1890, and a very large share of its routine work is devoted to the agricultural interests of the country. The climatological statistics that it has assembled are indispensable in many departments of agricultural research, besides furnishing varied information of practical value to farmers. The Bureau has developed a number of special types of forecasts for the rural industries; such as predictions, three or four days in advance, of favorable weather for cutting alfalfa; forecasts of weather unfavorable for sheep-shearing; notices to fruit growers of dry-weather periods in which fruit trees should be sprayed; and warnings of the occasional summer showers that would do so much damage to the greatraisin-drying industry of California but for the vigilance of the forecasters and the efficient arrangements made by the industry itself for disseminating and acting upon the warnings. Of course, the ordinary daily weather forecasts, storm warnings, and cold-wave warnings are valuable in many ways to agriculturists, and the Bureau has made great efforts to give such information prompt and general distribution in the rural districts. The forecasts are generally displayed in post offices, and in many cases the rural telephone exchanges are pressed into service to distribute weather information regularly to all their subscribers. Some exchanges sound a signal every morning when the forecast is ready for distribution. Lastly, the wireless telegraph and the wireless telephone, which, in the immediate future, will form part of the equipment of every up-to-date farm, afford ideal channels for the dissemination of weather news and are already extensively used for this purpose.
A Snow Surveyor at Work.Note the cylindrical snow sampler, with its serrated cutting edge, and spring balance for weighing the sample of snow (Photographed by J. C. Aller.)
A Snow Surveyor at Work.Note the cylindrical snow sampler, with its serrated cutting edge, and spring balance for weighing the sample of snow (Photographed by J. C. Aller.)
Snow Rollers, or Wind-Blown Snowballs on a Lawn at Potsdam, N. Y.(Photographed by T. J. Moon.)
Snow Rollers, or Wind-Blown Snowballs on a Lawn at Potsdam, N. Y.(Photographed by T. J. Moon.)
There remain to be mentioned the various steps the Weather Bureau has taken to protect the rural industries from the night frosts of spring and autumn, in the shape of special forecasting arrangements, the publication of frost charts, and a wide range of scientific investigations. The Bureau’s undertakings in this line are merely a part, though a leading one, of a great campaign of frost protection that is being carried on by scientific and official agencies in this country on a larger scale than anywhere else in the world.
Frosts, classified according to their severity as “light,” “heavy,” and “killing,” are most likely to occur in spring and autumn, when an extensive area of high barometric pressure brings its usualaccompaniment of clear skies and calm nights. They are predicted on a general scale from the weather map, and locally from indications of temperature and humidity and a knowledge of important topographic influences, such as those due to hills and valleys and neighboring bodies of water.
In agricultural usage the term “frost” is applied to the occurrence of a temperature low enough to kill or injure tender vegetation, such as growing vegetables or the buds, blossoms, and fruit of fruit trees. The occurrence of a frost, in this sense, is not necessarily identical with the deposit of ice crystals known as “hoarfrost.” Different species and varieties of plants are, of course, susceptible in very different degrees to the effects of low temperature; i. e., they differ greatly in “hardiness.” In the case of fruits and vegetables the danger point generally lies a little below the freezing point of water (32 degrees F.).
The occurrence of frost is favored by the rapid cooling, by radiation, of the earth and its plant covering, which goes on at night under a clear sky and in still air. Under these conditions a layer of stagnant, cold air forms close to the ground, with warmer air lying above it. The difference in temperature at different levels is often so pronounced that fruit on the lower branches of a tree is killed while that growing on the higher branches remains uninjured. Similarly, frost will occur in the bottom of an inclosed valley but not on the surrounding slopes. In the case of a valley the layer of cold air that forms at the bottom is commonly deepened by additional cold air draining down from the hills.
Many large orchards have their “warm spots” and their “cold islands” or “north poles,” wellknown to the orchardist; due in some cases to the nature of the soil rather than to topography. Certain mountain regions in North Carolina are famous for their “thermal belts” or “verdant zones”; i. e., areas part way up the slopes that escape the frosts occurring both above and below them. These frostless belts, which have been the subject of numerous investigations for three-quarters of a century, seem to mark the upper level of the pool of cold air that collects in the valley by drainage from the mountainsides. A detailed temperature survey of the thermal belt region of North Carolina was made during the years 1912–1916 by the United States Weather Bureau and the North Carolina State Board of Agriculture. In some places the minimum temperature at night was found to be 15 or 20 degrees higher in the thermal belt than at the bottom of the valley, a few hundred feet below.
Clouds, by checking radiation from the earth, and wind, by mixing the colder and warmer layers of air together, both prevent frosts that would otherwise occur. Artificial methods of protection include covering plants with screens of wood, paper, or cloth, building smudge fires to provide a blanket of smoke (a method of doubtful value), and, above all, heating by means of wood fires or various types of “orchard heater,” burning either oil or coal. An elaborate technique of orchard heating has been developed, having in view especially the most economical use of fuel and labor consistent with the object to be attained. In many cases orchards are provided with alarm thermometers, which ring a bell when the temperature approaches the danger point in the orchard.
The local prediction of frost from the readings of meteorological instruments is a problem that has not been fully solved. The idea formerly prevailed that the temperature of the dew point, as determined from readings of the dry-bulb and wet-bulb thermometers in the early evening, was a safe guide to the fall of temperature to be expected during the night, but this belief has not stood the test of accurate observations. At the present writing certain formulas involving data of both temperature and humidity are being used experimentally by Weather Bureau specialists for predicting the lowest temperature of the night when the general conditions indicate that frost is possible. A comprehensive discussion of this subject has been published by the Bureau as Supplement No. 16 of the “Monthly Weather Review.” (Washington, 1920.)
Itis a significant fact that the American Meteorological Society, which was organized in 1919, has a Committee on Commercial Meteorology. The appointment of this committee was one of the earliest tokens of the fact that the applications of meteorology to business, always recognized to be important and far-reaching, had at last been segregated as a distinct field of inquiry. The time is near at hand when this field will have its corps of specialists and its textbooks. Courses in commercial meteorology will be given in business colleges, and meteorologists will be attached to the staffs of large business enterprises. The chamber of commerce of a wide-awake western city already maintains a Department of Meteorology, with a former Weather Bureau official at its head, and “consulting meteorologists,” now practicing their novel profession in other parts of the country, find their principal clientele among business concerns.
Weather not only influences most kinds of business, but is the foundation of many of them. Plenty of illustrations of the latter fact will be found in every large department store. Umbrellas, rubbers, and mackintoshes are made and sold because of rain; their best market is in countries with rainy climates, and their sale from day to day fluctuates with the state of the sky. Electric and palm-leaf fans are adrug on the market or the reverse, according to the readings of the thermometer. Sleds and ice skates are sold where and when the weather is cold. This list may be prolongedad lib. If we leave the department store and walk along any business thoroughfare, we shall discover other striking examples of commercial undertakings that owe their existence chiefly or entirely to the weather. Abolish cold weather and you abolish the dealer in furnaces and heating stoves, besides reducing the rank of the coal-dealer considerably below the “baronial” level. Eliminate hot weather from the meteorological program and the ice dealer will likewise tumble from his high estate.
All this is so obvious that it seems hardly worth while setting down; and yet the paradox must somehow be explained that business men have not, in general, paid much attention to meteorology, and that they have made only fragmentary use of the official meteorological establishments that were created, in part, for their benefit. Probably this paradoxical situation is merely a case of mental inertia. During the long ages of traffic before there were any weather maps, scientific weather forecasts, or climatic statistics, the weather was necessarily an unknown quantity in the mathematics of buying and selling. That it is not so to-day is a fact to which the business mind has been very slow in adjusting itself.
We have mentioned some of the obvious relations of weather to commerce, but there are others that are not so obvious. Many of these are indirect. Thus the effects of the weather on agriculture are nearly always reflected in the commercial world. It is not the farmer alone who suffers from a prolongeddrought, for example. It has been asserted that every severe financial panic in our history has been closely associated with a protracted period of deficient rainfall, and that there has been no period of protracted drought without a severe financial panic except one that occurred during the Civil War. Mr. H. H. Clayton, who published this assertion in 1901, has cited the case of the wheat crop as illustrating the magnitude of the effect that rainfall exercises on economic conditions in general through its effects on agriculture.
“If,” he says, “the amount of wheat raised in the United States were reduced one-half or even one-third by a year of deficient rainfall, it is easy to imagine an enormous strain on the business of the country, and with a succession of such years the effect might mean disaster. Such a deficiency in the wheat supply, with wheat at 80 cents a bushel, would mean for a single year a direct loss in wealth of more than $100,000,000; it would mean that nearly all the wheat which is usually shipped abroad would be needed at home; it would mean that thousands of railroad cars and ships which ordinarily transport this grain would lie idle, that thousands of men who usually handle this grain in transport would be out of employment, that farmers in large numbers would be unable to meet their obligations, and consequently that banks and business of all kinds would suffer.” Recent prices of wheat give added force to these statements.
In contrast to such broad relations of the weather to business, it may be interesting to point out certain relations which are of so special a character that, although familiar to hosts of business men, they have generally escaped the attention of writers oneconomics. On this subject Mr. John Allen Murphy says:
“Retail sales are influenced tremendously by the weather. This is one factor that makes it impossible for a retailer to equalize the peaks and valleys in his sales chart. Favorable weather will bring him a rush of business. A bad day will keep patrons from his store. There is nothing he can do to prevent it. Many merchants have tried the plan of offering ‘stormy day specials,’ but at best such a scheme is only a makeshift that seldom works. The weather also affects the buying moods of people. A dark, dreary day in summer seems to influence humans to take on the same cast as the atmosphere. They are grouchy and hard to please. On the other hand, a cold day in winter has the opposite effect. The warmth and cheer of the store is such a pleasant contrast to the out-of-doors that shoppers like to linger over the wares and indulge themselves more readily in the luxury of buying.
“A stormy day or a series of them always helps the mail-order business. In such weather people are inclined to stay at home. In passing the time, they are likely to thumb the pages of such catalogues as they have and thus see in them articles that they want. On the farm, especially in the bleak days of winter, it is often the custom to order garden seeds, incubators, tools, and many other things that will be needed as soon as spring opens up. On a bad day traveling salesmen find it easier to get the ear of a merchant. Not being busy with customers, he is prone to be more lenient toward the ‘boys with the grips.’”
Another writer on this subject, Mr. F. C. Kelly, says:
“In a large city, the business of a department store is seriously hurt by rain in the forenoon, but rain in the early afternoon is usually a big help. Most customers of a big-city department store are women, and nearly all of them live some distance from the store—at the edge of the city or in the suburbs. If it rains along about eight or nine o’clock in the morning, the woman who had planned to go shopping that day is quite likely to change her mind, even though she did not intend to go until afternoon. The rain not only suggests discomfort in getting about, but diminishes her desire or immediate need for certain articles, and drives the shopping idea out of her head. On the other hand, if it is bright and clear in the morning, but clouds up about noon for a heavy downpour which lasts most of the afternoon, it is the best thing that could happen for the department store, because shoppers get in and cannot comfortably get out. They shop all over the store, buy luncheon there, and shop some more. While the rain is thus helping the department stores, it may hurt the smaller shops, because many customers who would otherwise look around are obliged to do their buying all under one roof.”
No aspect of business more faithfully reflects the weather, or, in a somewhat less degree, the weather forecasts, than advertising. So important is it, in many lines of business, to make advertising fit the weather that one might expect merchants to be, as a class, as weather-wise as sailors and farmers. A page of advertising in a great metropolitan newspaper is a costly investment. If, for example, it invites the public to pay a Sunday visit of inspection to some haven for homeseekers in the suburbs and Sunday turns out to be the kind of day that convertsbuilding-lots into bogs, the advertiser will perhaps be led to inquire whether there is not some means of avoiding another such fiasco; and he may thus make the surprising discovery that meteorology is not entirely a theoretical science. The conjunction of a conspicuously advertised sale of rubbers and a soppy week-day morning may be either a lucky accident or the result of studying the weather map. In the former case, supposing the business to be conducted in the northeastern United States, where dry weather is about twice as common as wet, the odds would be two to one against the occurrence even of light showers on the day the advertisement appeared, and three or four to one against the occurrence of such weather as would make the advertisement decidedlyà propos.
These remarks about newspaper advertising are, to a great extent, applicable also to the dressing of windows and the display of goods inside the shop. In both cases a moderate amount of foresight in the matter of weather will result in placing before the customer the right goods at the right time. One of the minor ways in which the merchant can turn the science of meteorology to advantage consists of using meteorological instruments and the official weather forecasts and bulletins for the purpose of attracting attention to his windows or to his stock-in-trade. The drug-store thermometer is the illustration of this process that comes first to one’s mind. There is no reason why, with the progress of civilization, this celebrated instrument should not be made a trustworthy index of temperature as well as an effective advertisement. In continental Europe weather instruments are displayed along with miscellaneous advertising matter in many of the street“weather columns” (Wettersäulen), which furnished the idea of the meteorological kiosks installed by the Weather Bureau in American cities.
One of the most important branches of commercial meteorology relates to the effects of weather upon transportation. This is a many-sided subject. In the first place, the railway and steamship companies, and other concerns engaged in the transport of goods and passengers have their manifold weather problems, among which one may mention, at random, that of dealing with the snow blockades of railways, precautions against the skidding of taxicabs in wet weather, the avoidance of iceberg-infested routes at sea, and the selection of climatically favorable sites for aerodromes. The shipper has a somewhat different, but overlapping set of weather problems.
“In the building of railroads,” says Mr. E. L. Wells, “many phases of climate are to be considered, including the probability of floods, deep snows, high winds, sand storms, etc. It is not long since a considerable length of railroad line in one of the Western States was found to be practically worthless because of having been built too near the bed of a stream and therefore being too much subject to damage from floods, so it was replaced by a line built higher up. The writer remembers two railroads entering the same town in one of the northern plains States, one of which is seldom blockaded, while the other is sometimes closed by snow for months at a time. In the former case the cuts are parallel to the wind, while in the latter the wind blows directly across the cuts. In operating railroads a knowledge of the climate is essential. This is particularly true in the shipment of perishable products, which may require icing or ventilation as a protection againsthigh temperature, or insulation against cold. Not only is a knowledge of climatic conditions essential in taking precaution against loss in transportation, but weather records are playing an increasingly large part in the settlement of claims for products and property damaged in transit. The claim agents of the leading transportation companies and the traffic managers of the commission houses and producers’ associations keep complete files of climatological data, and a large percentage of claims for damaged goods, whether they be for a trainload of chilled bananas or for a traveling man’s samples ruined by rain, are now settled out of court on the basis of the weather records. Claims for car demurrage are often settled on the basis of the weather reports.”
Detailed information concerning the effects of temperature on all sorts of food products, both in transportation and in storage, was collected by the Weather Bureau some years ago and published as the Bureau’s Bulletin No. 13.
While the domestic shipper can easily obtain from the Weather Bureau detailed climatic statistics for all parts of the United States, as well as the current weather reports for this country, and can profit greatly by regulating his operations in accordance therewith, it is not quite so easy for the shipper to foreign markets to obtain the corresponding data of foreign countries. With the expansion of our foreign trade, the demand for such data has grown to large proportions. The Weather Bureau, which has an unrivaled meteorological and climatological library in Washington, is naturally the place where such data are most frequently sought, but the labor entailed in extracting and digesting the information in response to individual requests is often too greatto be undertaken by a Government office, where the time of the employees is absorbed in routine duties. There is, therefore, a promising field here for the private commercial meteorologist. Unofficial work in this line is already carried on to some extent. Thus a great steel company in New York has a salaried “consulting geographer” on its staff, who advises on meteorological questions. One of the problems he has been called upon to solve was to determine the proper dates for shipping steel from Atlantic and Pacific ports of the United States to various places in India, so that it would never arrive during the monsoon rains. Records of current and very recent weather in distant countries are, in a great majority of cases, unobtainable anywhere in the United States. The interchange of detailed weather reports between the different meteorological services of the world involves in the first place, with few exceptions, a painfully slow process of publication, and then distribution by mail; so that, for example, records of observations at some places in South Africa or Australia, or even many parts of Europe, do not reach the Weather Bureau Library, in Washington, until two or three years after the observations are made. Undoubtedly the time will come—and probably in the near future—when there will be a world-wide exchange of weather news by wireless telegraphy.
One kind of business wholly dependent upon the weather, which we have not yet mentioned, is weather insurance. There are several kinds, but hail insurance and tornado insurance are those extensively practiced; the former much more widely and systematically in the Old World than in the New, while the latter is confined to America. Insuranceagainst frost is said to have been practiced in Germany, and there appears to be an excellent field for it in the United States. The insurance of outdoor events, such as games, shows, andal frescoparties, against rain has been carried on for a good many years by speculative underwriters at Lloyd’s, in England, and has more recently been undertaken in this country. Of course the weather element enters to a considerable degree into other kinds of insurance. Ordinary marine insurance is, to a large extent, insurance against storms; fire insurance is partly insurance against lightning; window and plate glass insurance involves the risk of breakage by wind and hail; and even life insurance is greatly concerned with the effects of weather and climate.
Thatit behooves a sailor to be weather-wise has always been admitted, but there was a time, almost within the memory of men now living, when neither seamen nor landsmen had the remotest conception of the benefits that a systematic study of the meteorology of the sea was capable of conferring upon the maritime world. The man who first grasped the importance of such a study and translated his ideas into facts was the American naval officer, Lieutenant Matthew Fontaine Maury.
During his brief career at sea Maury became impressed with the meagerness of the information then available concerning the winds and currents that aid or hinder the voyages of sailing ships. When, in consequence of an accident that incapacitated him for shipboard duties, he was assigned to service in Washington, he began to explore the old logs of naval vessels, filed in the Navy Department, for notes on meteorological conditions, and eventually developed a plan of securing regular observations from both the Navy and the merchant marine. The result of this undertaking was the publication of the famous Wind and Current Charts, which revolutionized navigation throughout the world.
The practical value of these charts, of which 200,000 copies were distributed to the masters of merchant vessels of all nationalities, was promptlyrecognized. By taking advantage of the favorable winds and currents shown on the charts, and avoiding those that were unfavorable, mariners were able to reduce the average time of a sailing voyage between the Atlantic and Pacific ports of the United States by forty days. The money value of the charts to vessels sailing from the United States to South America and the Far East was estimated at $2,250,000 per annum. British shipping on all seas is said to have benefited to the extent of $10,000,000 per annum. Neither was the utility of the charts limited to the saving of money. The following episode is cited in Maury’s biography:
“When theSan Francisco, with hundreds of United States troops on board, foundered in an Atlantic hurricane, and the rumor reached port that she was in need of help, everyone looked to Maury as the only man in the country who could tell where to find the drifting wreck. To him the Secretary of the Navy sent for information. He at once set to work and showed how the wind and currents acting upon a helpless wreck would combine to drift her ‘just here’, pointing to a spot on the chart, and making a cross mark with the blue pencil he had in his hand. Just there the relief was sent, and just there the survivors of the wreck were picked up. This was an incidental result of his study of winds and currents.”
A further outcome of Maury’s enterprise was the holding, at his suggestion, and by invitation of the United States Government, of an International Maritime Conference, which met in Brussels in 1853, and worked out a world-wide plan for meteorological observations at sea. The work thus begun has since been carried on by the leading maritime nations ofthe world. In the United States the duty of gathering weather reports on a uniform plan from vessel masters has been intrusted, at different times, to the Hydrographic Office, the Signal Service, and the Weather Bureau. It is now performed by the last-named institution, through its Marine Division, but the Pilot Charts and books of sailing directions (“Pilots”) in which the compiled information is published, are issued by the Hydrographic Office of the Navy.
The modern successors of Maury’s Wind and Current Charts are, especially, the Pilot Charts for the different oceans issued monthly in Washington, and the monthly charts of similar character published by the British and German governments. Apart from these periodical publications, valuable collections of meteorological charts for oceans or smaller marine areas have been published by the British, German, Dutch, Indian, Japanese and other authorities.
The value of such publications has not been lessened by the gradual substitution of steam for sails on ocean-going vessels. While wind is no longer all-important, it is a factor in determining the speed, and hence the earning capacity, of all classes of ocean shipping, and the same is true of marine currents. Fog and drifting ice are, in general, more serious obstacles to steamers than to sailing ships. A glance at one of the Hydrographic Office Pilot Charts will suffice to show that these publications are indispensable to the mariner. On these charts we find, first of all, in the center of each five-degree square of latitude and longitude a “wind rose” showing the frequency of the winds that have been observed in that region from each of the cardinalpoints, and their average force from each direction. On the charts will also be found the routes recommended for full-power and low-power steamers and sailing vessels, lines of magnetic variation, tracks of storms in past years for the month in question, location and force of currents, average limits and prevalence of fog for the month, recent information about drifting ice and derelicts, descriptions of storm signals, and an abundance of other information of vital importance to the seaman.