Fig. 71.
Fig. 71.
It is evident, from the well-known influence which “still-slops” and other exceedingly succulent food have in increasing the amount of water in the milk, that adulteration may be effected by means of the food, as well as by addition of water to the milk itself. It is evident, too, on a moment’s reflection, that the specific gravity of pure milk must vary exceedingly, as it comes from different cows, or from the same cow at different times. This variation reached to the extent of twenty-three degrees in the milk of forty-two different cows, or from one thousand and eight to one thousand and thirty-one; but so great a variation is very rare, and not to be expected.
No reliable conclusion, as to whether a particular specimen of milk has been adulterated or not, can therefore be drawn from the differences in specific gravity alone. A radical difficulty attending this test arises from the fact that the specific gravity both of water and cream is less than that of pure milk. If, therefore, the hydrometer sinks deeper into the fluid than would be expected in ordinary pure milk, how is it possible, unless the variation is very large, to tell whether it is due to the richness of the milk in cream, or to the water? I have, for instance, two instruments, each labelled “Lactometer,” but both of which are simple hydrometers (Fig. 71), or specific gravity testers, one of which is graduated with the water-mark 0 and that of pure milk 20°; the water-mark of the other being 0, like the first, and that of pure milk 100°. Both are the same in principle, the only difference being in the graduation. On the former, graduated for pure milk at 20°, it is difficult to tell with accuracy the small variations inthe percentage of water or cream, the divisions on the scale are so minute, while the latter marks them so that they can be read off with greater ease and precision.
For the purpose of showing the difference in the specific gravity in different specimens of pure milk, taken from the cows in the morning, and allowed to cool down to about 60°, I used the latter instrument with the following results: The first pint drawn from a native cow stood at 101°, the scale being graduated at 100° for pure milk. The last pint of the same milking, being the strippings of the same cow, stood at 86°. The mixture of the two pints stood at about 931⁄2°. The milk of a pure-bred Jersey stood at 95°, that of an Ayrshire at 100°, that of a Hereford at 106°, that of a Devon at 111°, while a thin cream stood at 66°. All these specimens of milk were pure, and milked at the same time in the morning, carefully labelled in separate vessels, and set upon the same shelf to cool off; and yet the variations of specific gravity amounted to 25°, or, taking the average quality of the native cows’ milk at 931⁄2°, the variations amounted to 171⁄2°.
But, knowing the specific gravity, at the outset, of any specimen of milk, the hydrometer would show the amount of water added. This cheap and simple instrument is therefore of frequent service.
The lactometer is a very different instrument, and measures the comparative richness of different specimens of milk. It is of very great service both in the butter and cheese dairy, for testing the comparative value of different cows for the purposes for which they are kept. This instrument is very simple and cheap and the practical dairyman can tell by it what cows he can best part with without detriment to his business.No cow should be admitted to a herd kept for butter-making without knowing her qualities in this respect.
Many would find, on examination, that some of their cows, though giving a good quantity, were comparatively worthless to them. Such was the experience of John Holbert, of Chemung, New York, who, in his statement to the state agricultural society, says: “I find, by churning the milk of each cow separately, that one of my best cows will make as much butter as three of my poorest,giving the same quantityof milk. I have kept a dairy for twenty years, but I never until the past season knew that there was so much difference in cows.”
Fig. 72. Lactometer.
Fig. 72. Lactometer.
The simplest form of the lactometer is a series of graduated glass tubes (Fig. 72), or vials, of equal diameter; generally a third of an inch inside, and about eleven inches long. The tubes are filled to an equal height, each one with the milk of a different cow, and allowed to stand for the cream to rise. The difference in thickness of the column of cream will be very perceptible, and it will be greater than most people imagine. The effect of different kinds of food for the production of butter may be studied in the same way.This form of the lactometer was invented by Sir Joseph Banks.
Various means are used for the preservation of milk. One of these is by concentrating it by boiling. Where this is followed, as it is by some dairymen, as a regular business, the milk is poured, as it comes from the dairy, into long, shallow, copper pans, and heated to a temperature of a hundred and ten degrees, Fahrenheit. A little sugar is then mixed in, and the whole body of milk is kept in motion by stirring for some three or four hours. The water is evaporated, leaving the milk about one fourth of its original bulk. It is now put into tin cans, the covers of which are soldered on, when the cans are lowered into boiling water. After remaining a while, they are taken out and hermetically sealed, in which condition the milk will keep for months. Concentrated milk may thus be taken to sea or elsewhere. Another form is that of solidified milk, in which state it is easily and perfectly soluble in water; and when so dissolved with a proper proportion of water, it assumes its original form of milk, and may be made into butter. A statement by Dr. Dorémus, in the New YorkMedical Journal, explains the process, as follows:
“To one hundred and twelve pounds of milk twenty eight pounds of Stuart’s white sugar were added, and a trivial portion of bicarbonate of soda,—a teaspoonful,—merely enough to insure the neutralizing of any acidity, which, in the summer season, is exhibited even a few minutes after milking, although inappreciable to the organs of taste. The sweet milk was poured into evaporating pans of enamelled iron, imbedded in warm water heated by steam. A thermometer was immersed in each of these water-baths, that, by frequent inspection, the temperature might not rise above the point which years of experience have shown advisable. Tofacilitate the evaporation, by means of blowers and other ingenious apparatus a current of air is established between the covers of the pans and the solidifying milk. Connected with the steam-engine is an arrangement of stirrers, for agitating the milk slightly, while evaporating, and so gently as not tochurnit. In about three hours the milk and sugar assumed a pasty consistency, and delighted the palates of all present. By constant manipulation and warming, it was reduced to a rich, creamy-looking powder, then exposed to the air to cool, weighed into parcels of a pound each, and by a press, with the force of a ton or two, made to assume the compact form of a tablet (the size of a small brick), in which shape, covered with tin-foil, it is presented to the public.
“Some of the solidified milk which had been grated and dissolved in water the previous evening was found covered with a rich cream; this, skimmed off, was soon converted into excellent butter. Another solution was speedily converted into wine-whey by a treatment precisely similar to that employed in using ordinary milk. It fully equalled the expectations of all; so that solidified milk will hereafter rank among the necessary appendages to the sick room. In fine, this article makes paps, custards, puddings, and cakes, equal to the best milk; and one may be sure it is an unadulterated article, obtained from well-pastured cattle, and not the produce of distillery slops; neither can it bewatered. For our steamships, our packets, for those travelling by land or by sea, for hotel purposes, or use in private families, for young or old, we recommend it cordially as a substitute for fresh milk.”
A pound of this solidified milk, it is said, will make five pints when dissolved in water.
Another favorite form in which milk is used is thatknown as ice-cream, a cheap and healthy luxury during the summer months. It is frozen in a simple machine made for the purpose, in the best form of which the time of the operation is from six to ten minutes. The richest quality of ice-cream is made from cream, in the following manner: To one quart of cream use the yolks of three eggs. Put the cream over the fire till it boils, during which time the eggs are beaten up with half a pound of white sugar, powdered fine; and when the cream boils stir it upon the eggs and sugar, then let it stand till quite cold, then add the juice of three or four lemons. It is then ready to put into the freezer. The heat of the cream partially cooks the eggs, and the stirring must be continued to prevent their cooking too much.
A somewhat simpler receipt, given by the confectioners, is the following: To half a pound of powdered sugar add the juice of three lemons. Mix the sugar and lemon together, and then add one quart of cream. This is less rich and delicate than the preceding, but is quite rich enough for common use, and some trouble is saved.
The following receipt makes a very good ice-cream.
Two quarts of goodrichmilk; four fresh eggs; three quarters of a pound of white sugar; six teaspoons of Bermuda arrow-root. Rub the arrow-root smooth in a little cold milk, beat the eggs and sugar together, bring the milk to the boiling point, then stir in the arrow-root; remove it then from the fire, and immediately add the eggs and sugar, stirring briskly, to keep the eggs from cooking, then set aside to cool. If flavored with extracts, let it be donejust beforeputting it in the freezer. If the vanilla bean is used, it must be boiled in the milk. The preparation must bethoroughly cooledbefore the freezing is proceeded with.
The ice-cream by this receipt may be produced at acost not exceeding twenty-five cents a quart, calling the milk five cents a quart, and the eggs a cent apiece, and including the cost of labor. It is quite equal to that commonly furnished by the confectioners at seventy-five cents a quart. The arrow-root may be dispensed with. The freezer is a cheap and simple machine.
After the cream has frozen in the machine, it should stand an hour or two to harden before it is used.
To secure a more uniform flow and a richer quality of milk, cows are sometimes spayed, or castrated. The milk of spayed cows is pretty uniform in quantity, and this quantity will be, on an average, a little more than before the operation was performed. But few instances have come under my observation, and those few have resulted satisfactorily, the quality of the milk having been greatly improved, the yield becoming regular for some years, and varying only by the difference in the succulence of the food. The proper time for spaying is about five or six weeks after calving, or at the time when the largest quantity of milk is given. There seem to be some advantages in spaying for milk and butter dairies, where the raising of stock is not attended to. The cows are more quiet, never being liable to returns of seasons of heat, which always more or less affect the milk both in quantity and quality. They give milk nearly uniform in these respects, for several years, provided the food is uniformly succulent and nutritious. Their milk is influenced like that of other cows, though to less extent, by the quality and quantity of food; so that in winter, unless the animal is properly attended to, the yield will decrease somewhat, but will rise again as good feed returns. This uniformity for the milk-dairy is of immense advantage. Besides, the cow, when old, and inclined to dry up, takes on fatwith greater rapidity, and produces a juicy and tender beef, superior, at the same age, to that of the ox. The operation of spaying is simple, and may be performed by any veterinary surgeon, without much risk of injury.
The milk of the cow has often been analyzed. It was found by Haidlen to consist of
But its composition, as already intimated, varies exceedingly with the food of the animal, and is influenced by an infinite variety of circumstances.
Skim-milk is much more watery than whole milk. It was found by one analysis to contain about 97 per cent. of water and 3 per cent. of caseine.
Swill-milk, or milk from cows fed on “still-slops,” in New York, was found by analysis to contain less than 1.5 per cent. of butter, some specimens having even less than one per cent.
The colostrum, or milk of the cow just after calving, contains a large proportion of cheesy matter. Its amount of caseine was found by careful analysis to be 15.1 per cent., of butter 2.6, mucous matter 2, and water 80.3, there being only a trace of sugar of milk.
The measures for milk in common use in this country are those used for wine and beer. The wine quart is about one fifth less than the beer quart, and is that most commonly used in England. It is to be regretted that no uniform standard has been adopted throughout the country.
“Slow rolls the churn—its load of clogging creamAt once foregoes its quality and name.From knotty particles first floating wide,Congealing butter’s dashed from side to side.”
“Slow rolls the churn—its load of clogging creamAt once foregoes its quality and name.From knotty particles first floating wide,Congealing butter’s dashed from side to side.”
“Slow rolls the churn—its load of clogging creamAt once foregoes its quality and name.From knotty particles first floating wide,Congealing butter’s dashed from side to side.”
Butter, as we have seen, is the oily or fatty constituent of all good milk, mechanically united or held in suspension by the solution of caseine or cheesy matter in water. It is already formed in the udder of the cow, and the operations required after it leaves the udder, to produce it, effect merely the separation, more or less complete, of the butter from the cheese and the whey.
This being the case, it is natural to suppose that butter was known at an early date. The wandering tribes, accustomed to take on their journeys a supply of milk in skins, would find it formed by the agitation of travelling, and thus would be suggested the first rude and simple process of churning.
But it is not probable that the Jews possessed a knowledge of it; and it is pretty well settled, at the present time, that the passages in our English version of the Old Testament in which it is used are erroneously translated, and that wherever the word butter occurs the word milk, or sour, thick milk, or cream, should be substituted. And so in Isaiah, “Milk and honey shall he eat,” instead of “butter;” and in Job (29: 6), “When I washed my feet in milk,” instead of“butter.” And the expression in Prov. (30: 33), “Surely the churning of milk bringeth forth butter,” would be better translated, according to the best critics, “the pressing of the milker bringeth forth milk,” or the “pressing of milk bringeth forth cheese.”
In the oldest Greek writers milk and cheese are spoken of, but there is no evidence that butter was known to them. The Greeks obtained their knowledge of it from the Scythians or the Thracians, and the Romans obtained theirs from the Germans.
In the time of Christ it was used chiefly as an ointment in the baths, and as a medicine. In warm latitudes, as in the southern part of Europe, even at the present day, its use is comparatively limited, the delicious oil of the olive supplying its place.
I have already stated that all good milk of the cow contained butter enclosed in little round globules held in suspension, or floating in the other substances. As soon as the milk comes to rest after leaving the udder, these round particles, being lighter than the mass of cheesy and watery materials by which they are surrounded, begin to rise and work their way to the surface. The largest globules, being comparatively the lightest, rise first, and form the first layer of cream, which is the best, since it is less filled with caseine. The next smaller, rising a little slower, are more entangled with other substances, and bring more of them to the surface; and the smallest rise the slowest and the last, and come up loaded with foreign substances, and produce an inferior quality of cream and butter. The most delicate cream, as well as the sweetest and most fragrant butter, is that obtained by a first skimming, only a few hours after the milk is set. Of three skimmings, at six, twelve, and eighteen hours after the milk is strained into the pan, that first obtainedwill make more and richer butter than the second, and that next obtained richer than the third, and so on.
The last quart of milk drawn at a milking, for reasons already stated, will make a more delicious and savory butter than the first; and if the last quart or two of a milking is set by itself, and the first cream that rises taken from it after standing only five or six hours, it will produce the richest and highest-flavored butter the cow is capable of giving, under like circumstances as to season and feed.
The separation of the butter particles from the others is slower and more difficult in proportion to the thickness and richness of the milk. Hence in winter, on dry feeding, the milk being richer and more buttery, the cream or particles of butter are slower and longer in rising. But, as heat liquefies milk, the difficulty is overcome in part by elevating the temperature. The same effect is produced by mixing a little water into the milk when it is set. It aids the separation, and consequently more cream will rise in the same space of time, from the same amount of rich milk, with a little water in it, than without. Water slightly warm, if in cold weather, will produce the most perceptible effect. The quantity of butter will be greater from milk treated in this way; the quality, slightly deteriorated.
It must be apparent, from what has been said, that butter may be produced by agitating the whole body of the milk, and thus breaking up the filmy coatings of the globules, as well as by letting it stand for the cream to rise. This course is preferred by many practical dairymen, and is the general practice in some of the countries most celebrated for superior butter.
The general treatment of milk and the management of cream have been already alluded to in a former chapter. It has been seen that the first requisites to successfuldairy husbandry are good cows, and abundant and good feeding, adapted to the special object of the dairy, whether it be milk, butter, or cheese; and that, with both these conditions, an absolute cleanliness in every process, from the milking of the cow to bringing the butter upon the table, is indispensably necessary.
Cleanliness may, indeed, with propriety be regarded as the chief requisite in the manufacture of good butter; for the least suspicion of a want of it turns the appetite at once, while both milk and cream are so exceedingly sensitive to the slightest taint in the air, in everything with which they come in contact, as to impart the unmistakable evidence of any negligence, in the taste and flavor of the butter.
It is safe to say, therefore, that good butter depends more upon the manufacture than upon any other one thing, and perhaps than all others put together. So important is this point, that a judicious writer remarks that “in every district where good butter is made it is universally attributed to the richness of the pastures, though it is a well-known fact that, take a skilful dairymaid from that district into another, where good butter is not usually made, and where, of course, the pastures are deemed very unfavorable, she will make butter as good as she used to do. And bring one from this last district into the other, and she will find that she cannot make better butter there than she did before, unless she takes lessons from the servants, or others whom she finds there;” and a French writer very justly observes that “the particular nature of Bretagne butter, whose color, flavor, and consistence, are so much prized, depends neither on the pasture nor on the particular species of cow, but on the mode of making;” and this will hold, to a considerable extent, in every country where butter is made.
Many things, indeed, concur to produce the best results, and it would be useless to underrate the importance of any; but, with the best of cows to impart the proper color and consistency to butter, the sweetest feed and the purest water to secure a delicate flavor, the utmost care must still be bestowed by the dairymaid upon every process of manufacture, or else the best of milk and cream will be spoiled, or produce an article which will bring only a low price in the market, when, with greater skill, it might have obtained the highest.
From what has been said of the care requisite to preserve the milk from taint, it may be inferred that attention to the milk and dairy room is of no small importance. In very large butter-dairies, a building is devoted exclusively to this department. This should be at a short distance from the yard, or place of milking, but no further than is necessary to be removed from all impurities in the air arising from it, and from all low, damp places, subject to disagreeable exhalations. This is of the utmost importance. It should be well ventilated, and kept constantly clean and sweet, by the use of pure water; and especially, if milk is spilled, it should be washed up immediately, with fresh water. No matter if it is but a single drop; if allowed to soak into the floor and sour, it cannot easily be removed, and it is sufficient to taint the air and the milk in the room, though it may not be perceptible to the senses.
In smaller dairies, economy dictates the use of a room in the house; and this, in warm climates, should be on the north side, and used exclusively for this purpose. I have known many to use a room in the cellar as a milk-room; but very few cellars are at all suitable. Most are filled with a great variety of articles which never fail to infect the air.
But, if a house-cellar is so built as to make it a suitableplace to set the milk, as where a large dry and airy room, sufficiently isolated from the rest, can be used, a greater uniformity of temperature can usually be secured than on the floor above. The room, in this case, should have a gravel or loamy bottom, uncemented, but dry and porous. The soil is a powerful absorbent of the noxious gases which are apt to infect the atmosphere near the bottom of the cellar.
Milk should never be set on the bottom of a cellar, if the object is to raise the cream. The cream will rise in time, but rarely or never so quickly or so completely as on shelves from five to eight feet from the bottom, around which a free circulation of pure air can be had from the latticed windows. It is, perhaps, safe to say that as great an amount of better cream will rise from the same milk in twelve hours on suitable shelves, six feet from the bottom, as would be obtained directly on the bottom of the same cellar in twenty-four hours.
Fig. 73. Milk-stand.
Fig. 73. Milk-stand.
One of the most convenient forms for shelves in a dairy-room designed for butter-making is represented inFig. 73, made of light and seasoned wood, in an octagonal form, and capable of holding one hundred and seventy-six pans of the ordinary form and size. It is so simple and easily constructed, and so economizes space, that it may readily be adapted to other and smaller rooms for a similar purpose. If the dairy-house is near a spring of pure and running water, a small stream can be led in by one channel and taken out by another, and thus keep a constant circulation under the milk-stand, which may be so constructed as to turn easily on the central post, so as often to save many footsteps.
The pans designed for milk are generally made of tin. That is found, after long experience, to be, on the whole, the best and most economical, and subject to fewer objections than most other materials. Glazed earthen ware is often used, the chief objection to it being its liability to break, and its weight. It is easily kept clean, however, and is next in value to tin, if not, indeed, equal to it. A tin skimmer is commonly used, somewhat in the form of the bowl of a spoon, and pierced with holes, to remove the cream. In some sections of the country, a large white clam-shell is very commonly used instead of a skimmer made for the purpose, the chief objection to it being that the cream is not quite so carefully separated from the milk.
A mode of avoiding the necessity of skimming has long been used to some extent in England, by which the milk is drawn off through a hole in the bottom of the pan. This plan is recommended by Unwerth, a German agriculturist, who proposes a pan represented inFig. 74, made of block tin, oblong in shape, and having the inside corners carefully rounded. The pan is only two inches in depth, and is made large enough tohold six or eight quarts of milk at the depth of one and a half inches. This shallowness greatly facilitates the rapid separation of the cream, especially at a temperature somewhat elevated. A strainer is shown inFig. 75, pierced with holes, the centre half an inch lower than the rim, to which hooks are fixed to hold it to the top of the pan. On this a coarse linen cloth is laid, the milk being strained through both the cloth and the strainer, thus serving to separate all foreign substances in a thorough manner.
Fig. 74. Milk-pan.
Fig. 74. Milk-pan.
Fig. 75.Fig. 76.
Fig. 75.
Fig. 75.
Fig. 75.
Fig. 76.
Fig. 76.
Fig. 76.
Fig. 77.
Fig. 77.
In the bottom of the milk-pan, near one end, is an opening,a, through which the milk is drawn, after the cream is all risen or separated from it, by raising a brass pin,b. The opening is lined with brass, and is three fourths of an inch in diameter.Fig. 76represents the tin cylinder magnified. This is pierced, to the height of an inch, with many small holes, diminishing in size towards the top. The cream is all risen in twenty-fourhours. The pin is then drawn from the cylinder, and the milk flows out, leaving the thick cream, which is prevented from flowing out by the smallness of the holes in the cylinder.
With the form of pans in most common use in this country, which are circular, three or four inches deep, this shallow depth of milk causes a little more trouble in skimming; but, if the principle is correct, the form and depth of the pan will be easily adapted to it.
After the cream is removed, it is put into stone or earthen jars, and kept in a cool place till a sufficient quantity is accumulated to make it convenient to churn. If a sufficient number of cows is kept, it is far better to churn every day; but in ordinary circumstances that may be oftener than is practicable. The more frequently the better; and the advantages of frequent churning are so great that cream should never be kept longer than three or four days, where it is possible to churn so often.
The mode of churning in one of the many good dairies in Pennsylvania,—that of Mr. J. Comfort, of Montgomery county,—is as follows: He uses a large barrel-shaped churn, of the size of about two hogsheads, hung on journals supported by a framework in an adjoining building. It is worked by machinery in a rotatory motion, by a horse travelling around in a circle. The churning commences about four o’clock in the morning in summer, the cream being poured into the churn and the horse started. When the butter has come, a part of the butter-milk is removed by a vent-hole in the churn. Then, without beating the mass together, as is usual, a portion of the butter and its butter-milk is taken out by the spatula and placed in the bottom of a tub covered with fine salt, and spread out equally to a proper depth; then the surface of this butter is coveredwith salt, and another portion of butter and butter-milk taken from the churn and spread over the salted surface in the same manner, and salted as before, thus making a succession of layers, till the tub is full. The whole is then covered with a white cloth, and allowed to stand a while. A part of this butter, say eight or ten pounds, is then taken from the tub and laid on a marble table (Fig. 80), grooved around the edges, and slightly inclined, with a place in the groove for the buttermilk and whey to escape. It is then worked by a butter-worker or brake, turning on a swivel-joint, which perfectly and completely removes the butter-milk, and flattens out the butter into a thin mass; then the surface is wiped by a cloth laid over it, and the working and wiping repeated till the cloth adheres to the butter, which indicates that the butter is dry enough, when it is separated into pound lumps, weighed and stamped, ready for market. The rest of the butter in the tub is treated in the same way.
It will be seen that this method avoids the ordinary washing with water, not a drop of water being used, from beginning to the end. It avoids also the working by hand, which in warm weather has a tendency to soften the butter. In the space of about an hour a hundred pounds are thus made, and its beautiful color and fragrance preserved. If it happens to come from the churn soft, it hardens by standing a little longer in the brine.
The most common form of the churn in small dairies is the upright or dash-churn,Fig. 77; but many other formsare in extensive use, each possessing, doubtless, more or less merit peculiar to itself. The cylinder churn,Fig. 78, is very simply constructed, and capable of being easily cleaned. Some prefer the thermometer churn,Fig. 79, having an attachment for indicating the temperature of the cream.
Fig. 78.Fig. 79.
Fig. 78.
Fig. 78.
Fig. 78.
Fig. 79.
Fig. 79.
Fig. 79.
As already stated, there are two modes of practice with regard to the process of churning, each of which has its advantages. The milk itself may be churned, or it may be set in the milk-room for the cream to rise, which is to be churned by itself. The former is the practice of a successful dairyman of New York, who, in his statement, says: “I take care to have my cellar thoroughly cleansed and whitewashed early every spring. I keepmilk in one cellar, and butter in another. Too much care cannot be taken by dairymen to observe the time of churning. I usually churn from one hour to one hour and a half, putting from one to two pails of cold water in each churn. When the butter has come, I take it out, wash it through one water, set it in the cellar and salt it, then work it from three to five times before packing. Butter should not be made quite salt enough until the last working. Then add a little salt, which makes a brine that keeps the butter sweet. One ounce of salt to a pound of butter is about the quantity I use. I pack the first day, if the weather is cool; if warm, the second. If the milk is too warm when churned, the quantity of butter will be less, and the quality and flavor not so good as when it is at a a proper temperature, which, for churning milk, is from 60° to 65°.”
But, whichever course it is thought best to adopt, whether the milk or cream is churned, it is the concussion, rather than the motion, which serves to bring the butter. This may be produced in the simple square box as well as by the dasher churn; and it is the opinion of a scientific gentleman with whom I have conversed on the subject, that the perfect square is the best form of the churn ever invented. The cream or milk in this churn has a peculiar compound motion, and the concussion on the corners and right-angled sides is very great, and causes the butter to come as rapidly as it is judicious to have it. This churn consists of a simple square box, which any one who can handle a saw and plane can make, hung on axles turned by a crank somewhat like the barrel churn. No dasher is required. If any one is inclined to doubt the superiority of this form over all others, he can easily try it and satisfy himself. It costs but little.
In some sections the milk is churned soon after milking; in others, the night’s and morning’s milk are mixed together, and churned at noon; in others, the cream is allowed to rise, when the milk is curdled, and cream, curd, and whey, are all churned together.
A successful instance of churning only the cream is found in the statement of Mr. Lincoln, who received the first dairy premium of the Massachusetts Society for the Promotion of Agriculture. He says: “The cream, as it is skimmed, is poured into stone pots, which in warm weather are kept in a refrigerator, and during the winter stand in the milk-room. The times of churning depend upon the quantity of cream.
“The time usually occupied in churning is from fifty minutes upwards. This is deemed a matter of importance. We consider it much better to bring the cream to the degree of temperature necessary to the formation of butter by a steady, moderate agitation, than to use artificial heat to take it to that point before commencing to churn. By such moderate, long-continued agitations, we think the butter has a firmer, more waxy consistence than it can have by more rapid churning. The churn used is ‘Galt’s.’ Numerous trials have been made with many of the other kinds of churns in comparison with this, and the result has been uniformly favorable to this patent.
“When the butter hascome, the butter-milk is drawn off, and the butter, after being thoroughly worked, is salted with from one half to three fourths ounces of salt to the pound. It is now set away for twenty-four hours, when it is again worked over thoroughly, and made into pound lumps with wooden ‘spatters.’ After standing another twenty-four hours, it is sent into market. In ‘working’ butter we use a table over which a fluted roller is made to pass (Fig. 80), rollingout the butter into a thin sheet, and completely and entirely depriving it of butter-milk.
“From many years’ experience, the observation is warranted, that by no other process of manufacture can the butter-milk be so completely extracted. I am aware of the truth of the objection made that the shrinkage occasioned by its use is too great; yet there is, in fact, a difference in the worth of the butter made upon it, over that manufactured in the ordinary way, quite equal to the loss in weight occasioned by it.”
The high reputation of Philadelphia butter being so well known, I was desirous of ascertaining the opinions of practical men as to what this was due,—whether to any peculiar richness of the pasturage, or to the careful mode of manufacture. In reply to my inquiries, I have received satisfactory statements from several sources, and among them the following communication from one of the most successful of the butter-makers who supply that market. “The high reputation of Philadelphia butter,” he says, “is owing to the manner of its manufacture, though I would not say that the sweet-scented vernal and other natural grasses do not add to the fine quality of well-made butter.
“In proof of what I say, I would refer to the experience of my brother, who is the owner of two farms. His tenant, an excellent butter-maker, lived on one farm, and made a very fine article, which brought the highest prices. He moved to the other farm, where the former tenant had never made good butter, and had ascribed his want of success to the spring-house. On this farm he succeeded in establishing a higher reputation than he ever had before. The tenant who followed him on the first farm never succeeded in gaining a reputation for good butter, his inability arising from his ignorance of the proper mode of manufacture, andhis unwillingness to improve by the experience of others.
“Only a part of the information as to the best mode of manufacture can be given, so much depends on thejudgmentand experience of the operator. The first thing required is to provide a suitable place. This should be, for the summer months, a well-ventilated house, over a good spring of water. The second requisite will be proper vessels to hold the milk and cream, and for churning. A table is needed which shall not be used for any other purpose than for working and printing the butter on. I have always used a lever in connection with the table (Fig. 80). A large sponge, with a linen cloth to cover it, with which the milk can be removed from the butter, is another important article; and then a skimmer, either of wood or tin, or both, as may be necessary in the different states of the milk; a thermometer, and a boiler convenient for heating water for cleansing the vessels. No person can expect to make good butter without the greatest attention to the cleanliness of the vessels used for the milk and cream, and care in exposing them to the sun and air.
“After the milk has been brought from the yard or stable, strain it immediately into the pans, in which has been put a little sour milk from which the cream has been removed, the quantity varying from a tablespoonful to half a common teacupful, according to the state of the weather. In very warm weather the smaller quantity is sufficient. But the rule for warm weather will not always hold good; for, from the electrical state of the atmosphere, the milk may sour either too slow or too fast.
“The pans containing the milk should then be set into the water, if the weather be hot: and here is a point where the operator should exercise his or her judgment; foreven in warm weather it may be necessary to draw off the water from the milk, if the spring be cold. The milk should remain there, under no circumstances, longer than the fourth meal, or forty-eight hours; but thirty-six hours is much to be preferred, if the milk has become thick, or the cream sufficiently raised, when it should be taken off carefully, so as not to take any sour milk with it, and put in the cream-pot. When the cream-pot is full, sprinkle a small handful of fine salt over the top of the cream, and let it remain. Our custom has been, when making butter but once a week, to pour the cream into a clean vessel at the end of three days, keeping back any milk that might have been taken up with the cream, which is found at the bottom of the jar.
“I would mention that it is essential, in making a fine article, to keep the cream clear of milk. The next operation will he preparatory to churning, by straining the cream, and reducing the temperature of the churn by the use of the cold spring-water. The operation of churning should neither be protracted nor hastened too much. After the butter has made its appearance of the size of a small pea, draw off the milk, and throw in a small amount of cold water, and gather it. After the butter has been taken from the churn, it is placed upon the table, worked over by the lever, and salted; then worked again with the lever, in connection with the sponge and cloth, a pan of cold water being at hand, with a piece of ice in it in summer, into which you throw the cloth and sponge frequently, and wring out dry before again using it. These, as well as every other article which will come into contact with the butter, must be scalded, and afterward, as well as the hands, placed in cold water. I would here add that the use of the sponge is one of the important points in makingbutter to keep well; for by it you can remove almost every particle of butter-milk, which is the great agent in the destruction of its sweetness and solidity. For the winter dairy a room in which is placed a stove should be provided, which can be made warm, and also well ventilated. I prefer the use of coal, on account of keeping the fire through the night. My dairy-room is adjoining the spring-house, and connects with it, which I consider important. This room should be used for no other purpose, as cream and butter are the greatest absorbents of effluvia with which I am acquainted. I have known good butter to be spoiled by being placed over night in a close closet.
“The thermometer should always accompany the winter dairy. There is one thing very important in the winter dairy, which, perhaps, I should have placed first, and that is the food of the cows; for, without something else than hay, you will not make very fine butter. Mill-feed and corn-meal I consider about the best for yield and quality, although there are many other articles of food which will be useful, and contribute to the appetite and health of the cattle.
“The process for the winter dairy is similar to that of the summer, with the exception of the regulation as to the temperature of room, etc., which is as follows:
“Particular care should be taken not to let the milk get cold before placing it in the dairy-room; for, should it be completely chilled, the cream will not rise well. Add about a gill of warm water to the sour milk for each pan, before straining into it, which will greatly facilitate the rising of the cream. Keep the temperature of the room as near fifty-eight degrees, Fahrenheit, as possible, and guard against the air being dry by having a small vessel of water upon the stove, or else a dry coat will form on the surface of the cream. Thecream should be kept in a colder place than the dairy-room until the night before churning, when it might be placed in the warm room, so that its temperature shall be about 58°.
“The churn may be prepared by scalding it, and then reduced to the same temperature as the cream by cold water, using the thermometer as a test.
“This regulation of temperature is of the greatest importance: for, should it be too low, you will be a long time churning, and have poor, tasteless butter; if too high, the butter will be soft and white.”
What is especially noticeable in the above statement is the use of the sponge, and the thorough and complete removal of all the butter-milk. Here is probably the secret of success, after all. I have given the statement in full, notwithstanding its length, on account of the well-known excellence of the butter produced by the process, as well as for the suggestions with regard to the dairy-rooms, and not because I can recommend all its details for the imitation of others. The use of sour milk in the pans is based, I suppose, on the idea that the cream does not begin to rise till acidity commences in the milk,—an idea which was once pretty generally entertained; but the process of souring undoubtedly commences, though imperceptible to the senses, very soon after the milk comes to rest in the pan. At any rate, there is no doubt that the separation of the butter from the other substances commences at once, and without the addition of any foreign substance to the milk.
Nor do I believe there is any necessity for the milk to stand over twenty-four hours in any case; for I have no doubt that all the best of the cream rises within the first twelve hours, under favorable circumstances, and I am inclined to think that whatever is added to thequantity of cream after twenty-four hours, detracts from the quality of the butter to an extent which more than counterbalances the whole of the quantity.
Many good dairy-women make an exceedingly fine article, in spite of the defects of some parts of the process of manufacture. This does not show that they would not make still better butter if they remedied these defects.
The more we can retard the development of acidity in the milk, within certain limits, the more cream may we expect to get; and hence some use artificial means for this purpose, mixing in the milk a little crystallized soda, dissolved in twice its volume of water, which corrects the acidity as soon as it forms. It is a perfectly harmless addition, and increases the product of the butter, and improves its quality. But under ordinarily favorable circumstances, from twelve to eighteen hours will be sufficient to raise all the cream in summer, and from twenty to thirty hours in winter.