(A.)Common Spear-Mint, set inSpring-Water. The Planted weighed when put in,July20. just 27 Grains; when taken forth,October5. 42 Grains: So that in this space of 77 Days, it had gained in weight 15 Grains.The whole Quantity of Water expended, during these 77 Days, amounted to 2558 Grains. Consequently the weight of the Water taken up, was 1708⁄15times as much as the Plant had got in weight.(B.)Common Spear-Mint,Rain-Water. The Mint weigh'd, when put in, Gr. 28¼; when taken out Gr. 45¾, having gain'd in 77 Days Gr. 17½.The Dispendium of the Water Gr. 3004, which was 17122⁄35times as much as the Plant had received in weight.(C.)Common Spear-Mint,Thames-water. The Plant when put in, Gr. 28, when taken forth, Gr. 54. So that in 77 Days it had gained Gr. 26.The Water expended, amounted to Gr. 2493. which was 9523⁄26times as much as the additional weight of the Mint.(D.)Common Solanum, orNight-shade:Spring-water. The Plant weigh'd, when put in, Gr. 49; when taken out, 106; having gain'd in 77 Days 57 Gr.The Water expended during the said time, was 3708 Gr. which was 653⁄57times as much as the Augment of the Plant.This Specimenhad severalBudsupon it, when first set in the Water.Thesein some Days became fairFlowers, which were at length succeeded byBerries.(E.)Lathyris seu Cataputia Gerh.Spring-Water.It weigh'd, when put in, Gr. 98. when taken forth, Gr. 101½. The additional weight for the whole 77 Days, being but Gr. 3½.The Quantity of Water spent upon it during that time, Gr. 2501. which is 7144⁄7times as much as the Plant was augmented.
(A.)Common Spear-Mint, set inSpring-Water. The Planted weighed when put in,July20. just 27 Grains; when taken forth,October5. 42 Grains: So that in this space of 77 Days, it had gained in weight 15 Grains.
The whole Quantity of Water expended, during these 77 Days, amounted to 2558 Grains. Consequently the weight of the Water taken up, was 1708⁄15times as much as the Plant had got in weight.
(B.)Common Spear-Mint,Rain-Water. The Mint weigh'd, when put in, Gr. 28¼; when taken out Gr. 45¾, having gain'd in 77 Days Gr. 17½.
The Dispendium of the Water Gr. 3004, which was 17122⁄35times as much as the Plant had received in weight.
(C.)Common Spear-Mint,Thames-water. The Plant when put in, Gr. 28, when taken forth, Gr. 54. So that in 77 Days it had gained Gr. 26.
The Water expended, amounted to Gr. 2493. which was 9523⁄26times as much as the additional weight of the Mint.
(D.)Common Solanum, orNight-shade:Spring-water. The Plant weigh'd, when put in, Gr. 49; when taken out, 106; having gain'd in 77 Days 57 Gr.
The Water expended during the said time, was 3708 Gr. which was 653⁄57times as much as the Augment of the Plant.
This Specimenhad severalBudsupon it, when first set in the Water.Thesein some Days became fairFlowers, which were at length succeeded byBerries.
(E.)Lathyris seu Cataputia Gerh.Spring-Water.It weigh'd, when put in, Gr. 98. when taken forth, Gr. 101½. The additional weight for the whole 77 Days, being but Gr. 3½.
The Quantity of Water spent upon it during that time, Gr. 2501. which is 7144⁄7times as much as the Plant was augmented.
Severalother Plantswere try'd, that didnot thriveinWater, or succeed any better than theCataputiaforegoing:But 'tis besides my purpose to give a particularAccountof them here.
(F, G.)These Two Vialswere fill'd, the former (F) withRain, the other withSpring-water, at the same time as those above-mention'd were; and stood as long as they did. But they had neither of them any Plant; my Design in these being only to inform my self, whether any Water exhaled out of the Glasses, otherwise thanthorowthe Bodies of the Plants. The Orifices of these two Glasses were cover'd with Parchment; each piece of it being perforated with an hole of the same bigness with those of the Vials above. In this I suspended a bit of Stick, about the thickness of the Stem of one of the aforesaid Plants, but not reaching down to the Surface of the included Water. I put them in thus, that the Water in these might not have more Scope to evaporate than that in the other Vials. Thus they stood the whole 77 Days in the same Window with the rest; when, upon Examination, I found none of the Water in these wasted or gone off. Tho' I observed both in these, and the rest, especially after hot Weather, small Drops of Water, not unlike Dew, adhering to the Insides of the Glasses, that Part of them, I mean, that was above the Surface of the enclosed Water.The Water in these two Glasses that had no Plants in them, at the end of the Experiment, exhibited a larger Quantity of Terrestrial Matter than that in any of those that had the Plants in them did. The Sediment at the bottom of the Vials was greater; and theNubeculæ, diffus'd through the Body of the Water, thicker. And of that which was in the others, some of it proceeded from certain small Leaves that had fallen from that part of the Stems of the Plants that was within the Water, wherein they rotted and dissolved. The Terrestrial Matter in the Rain-water was finer than that in the Spring-water.
(F, G.)These Two Vialswere fill'd, the former (F) withRain, the other withSpring-water, at the same time as those above-mention'd were; and stood as long as they did. But they had neither of them any Plant; my Design in these being only to inform my self, whether any Water exhaled out of the Glasses, otherwise thanthorowthe Bodies of the Plants. The Orifices of these two Glasses were cover'd with Parchment; each piece of it being perforated with an hole of the same bigness with those of the Vials above. In this I suspended a bit of Stick, about the thickness of the Stem of one of the aforesaid Plants, but not reaching down to the Surface of the included Water. I put them in thus, that the Water in these might not have more Scope to evaporate than that in the other Vials. Thus they stood the whole 77 Days in the same Window with the rest; when, upon Examination, I found none of the Water in these wasted or gone off. Tho' I observed both in these, and the rest, especially after hot Weather, small Drops of Water, not unlike Dew, adhering to the Insides of the Glasses, that Part of them, I mean, that was above the Surface of the enclosed Water.
The Water in these two Glasses that had no Plants in them, at the end of the Experiment, exhibited a larger Quantity of Terrestrial Matter than that in any of those that had the Plants in them did. The Sediment at the bottom of the Vials was greater; and theNubeculæ, diffus'd through the Body of the Water, thicker. And of that which was in the others, some of it proceeded from certain small Leaves that had fallen from that part of the Stems of the Plants that was within the Water, wherein they rotted and dissolved. The Terrestrial Matter in the Rain-water was finer than that in the Spring-water.
The Glasses made use of in this, were of the same sort with those in the former Experiment; and cover'd over with Parchment in like manner. The Plants here were allSpear-Mint; the most kindly, fresh, sprightly Shoots I could chuse. The Water, and the Plants were weigh'd as above; and the Vials set in a Line, in a South Window: where they stood fromJunethe 2d toJuly28. which was just 56 Days.
(H.)Hyde-Park Conduit Water, alone. TheMintweighed, when put in, 127 Gr. when taken out, 255 Gr. The whole Quantity of Water expended upon this Plant, amounted to 14190 Gr.This was all along a very kindly Plant; and had run up to above two Foot in height. It had shot but one considerable collateral Branch; but had sent forth many and long Roots, from which sprung very numerous, though small and short, lesser Fibres. These lesser Roots came out of the larger on two opposite sides, for the most part; so that eachRoot, with itsFibrillæ, appear'd not unlike a small Feather. To theseFibrillæadher'd pretty must Terrestrial Matter. In the Water, which was at last thick and turbid, was a green Substance, resembling a fine thinConserva.(I.) Thesame Water, alone. TheMintweigh'd, when put in, 110 Gr. when taken out, 249. Water expended, 13140 Gr.This Plant was as kindly as the former, but had shot no collateral Branches. Its Roots, the Water, and the green Substance, all much as in the former.(K.)Hyde-Park Conduit-water, in which was dissolved an Ounce and half ofCommon Garden-earth. TheMintweigh'd, when put in, 76 Gr. when taken out, 244 Gr. Water expended, Gr. 10731.This Plant, though it had the Misfortune to be annoy'd with many small Insects that hapn'd to fix upon it; yet had shot very considerable collateral Branches; and at least as many Roots as either that in H or I; which had a much greater Quantity of Terrestrial Matter adhering to the Extremities of them. The same green Substance here, that was in the two preceding.(L.)Hyde-Park Water, with the same Quantity ofGarden-mouldas in the former. TheMintweigh'd, when put in, 92 Gr. when taken out, 376 Gr. The Water expended 14950 Gr.This Plant was far more flourishing than any of the precedent; had several very considerable collateral Branches, and very numerous Roots, to which Terrestrial Matter adhered very copiously.The Earth in both these Glasses was very sensibly and considerably wasted, and less than when first put in. The same sort of green Substance here as in those above.(M.)Hyde-Park Water, distilled off with a gentle Still. TheMintweigh'd, when put in, 114 Gr. when taken out 155. The Water expended, 8803 Gr.This Plant was pretty kindly; had two small collateral Branches, and several Roots, though not so many as that in H or I, but as much Terrestrial Matter adhering to them as those had. The Water was pretty thick; having very numerous small Terrestrial Particles swimming in it, and some Sediment at the bottom of the Glass. This Glass had none of the green Matter above mentioned, in it.(N.) The Residue of the Water, which remain'd in theStillafter that in M, was distill'd off. It was very turbid, and as high-colour'd (reddish) as ordinary Beer. TheMintweigh'd, when put in, 81 Gr. when taken out, 175 Gr. Water expended, 4344 Gr. This Plant was very lively; and had sent out six collateral Branches, and several Roots.(O.)Hyde-Park Conduit-water, in which was dissolved a Drachm of Nitre. The Mint set in this suddenly began to wither and decay;and died in a few Days: As likewise did two more Sprigs, that were set in it, successively. In another Glass I dissolv'd an Ounce of good Garden-mould, and a Drachm of Nitre, and in a third, half an Ounce of Wood ashes, and a Drachm of Nitre; but the Plants in these succeeded no better than in the former. In other Glasses I dissolved several other sorts of Earths, Clays, Marles, and variety of Manures,&c.I set Mint in distill'd Mint-water; and other Experiments I made, of several kinds, in order to get Light and Information, what hastened or retarded, promoted or impeded Vegetation; but these do not belong to the Head I am now upon.(P.)Hyde-Park Conduit-water.In this I fix'd a Glass-Tube about ten Inches long, the Bore about one sixth of an Inch in Diameter, fill'd with very fine and white Sand, which I kept from falling down out of the Tube into the Vial, by tying a thin piece of Silk over that end of the Tube that was downwards. Upon Immersion of the lower end of it into the Water, this by little and little ascended quite to the upper Orifice of the Tube. And yet, in all the fifty six Days which it stood thus, a very inconsiderable Quantity of Water had gone off,viz.scarce twenty Grains; though the Sand continued moist up to the top till the very last. The Water had imparted a green Tincture to the Sand, quite to the very top of the Tube. And, in the Vial, it had precipitated a greenish Sediment, mix'd with black. To the bottom and sides of the Tube, as far as 'twas immers'd in the Water, adher'dpretty much of the green Substance describ'd above. Other like Tubes I fill'd with Cotton, Lint, Pith of Elder, and several other porous Vegetable Substances; setting some of them in clear Water; others in Water tinged with Saffron, Cochinele,&c.And several other Trials were made, in order to give a mechanical Representation of the motion and distribution of the Juices in Plants; and of some otherPhænomenaobservable in Vegetation, which I shall not give the Particulars of here, as being not of use to my present design.(Q, R, S,&c.) Several Plants set in Vials, ordered in like manner as those above, inOctober, and the following colder Months. These throve not near so much; nor did the Water ascend in nigh the quantity it did in the better Seasons, in which the before recited Trials were made.
(H.)Hyde-Park Conduit Water, alone. TheMintweighed, when put in, 127 Gr. when taken out, 255 Gr. The whole Quantity of Water expended upon this Plant, amounted to 14190 Gr.
This was all along a very kindly Plant; and had run up to above two Foot in height. It had shot but one considerable collateral Branch; but had sent forth many and long Roots, from which sprung very numerous, though small and short, lesser Fibres. These lesser Roots came out of the larger on two opposite sides, for the most part; so that eachRoot, with itsFibrillæ, appear'd not unlike a small Feather. To theseFibrillæadher'd pretty must Terrestrial Matter. In the Water, which was at last thick and turbid, was a green Substance, resembling a fine thinConserva.
(I.) Thesame Water, alone. TheMintweigh'd, when put in, 110 Gr. when taken out, 249. Water expended, 13140 Gr.
This Plant was as kindly as the former, but had shot no collateral Branches. Its Roots, the Water, and the green Substance, all much as in the former.
(K.)Hyde-Park Conduit-water, in which was dissolved an Ounce and half ofCommon Garden-earth. TheMintweigh'd, when put in, 76 Gr. when taken out, 244 Gr. Water expended, Gr. 10731.
This Plant, though it had the Misfortune to be annoy'd with many small Insects that hapn'd to fix upon it; yet had shot very considerable collateral Branches; and at least as many Roots as either that in H or I; which had a much greater Quantity of Terrestrial Matter adhering to the Extremities of them. The same green Substance here, that was in the two preceding.
(L.)Hyde-Park Water, with the same Quantity ofGarden-mouldas in the former. TheMintweigh'd, when put in, 92 Gr. when taken out, 376 Gr. The Water expended 14950 Gr.
This Plant was far more flourishing than any of the precedent; had several very considerable collateral Branches, and very numerous Roots, to which Terrestrial Matter adhered very copiously.
The Earth in both these Glasses was very sensibly and considerably wasted, and less than when first put in. The same sort of green Substance here as in those above.
(M.)Hyde-Park Water, distilled off with a gentle Still. TheMintweigh'd, when put in, 114 Gr. when taken out 155. The Water expended, 8803 Gr.
This Plant was pretty kindly; had two small collateral Branches, and several Roots, though not so many as that in H or I, but as much Terrestrial Matter adhering to them as those had. The Water was pretty thick; having very numerous small Terrestrial Particles swimming in it, and some Sediment at the bottom of the Glass. This Glass had none of the green Matter above mentioned, in it.
(N.) The Residue of the Water, which remain'd in theStillafter that in M, was distill'd off. It was very turbid, and as high-colour'd (reddish) as ordinary Beer. TheMintweigh'd, when put in, 81 Gr. when taken out, 175 Gr. Water expended, 4344 Gr. This Plant was very lively; and had sent out six collateral Branches, and several Roots.
(O.)Hyde-Park Conduit-water, in which was dissolved a Drachm of Nitre. The Mint set in this suddenly began to wither and decay;and died in a few Days: As likewise did two more Sprigs, that were set in it, successively. In another Glass I dissolv'd an Ounce of good Garden-mould, and a Drachm of Nitre, and in a third, half an Ounce of Wood ashes, and a Drachm of Nitre; but the Plants in these succeeded no better than in the former. In other Glasses I dissolved several other sorts of Earths, Clays, Marles, and variety of Manures,&c.I set Mint in distill'd Mint-water; and other Experiments I made, of several kinds, in order to get Light and Information, what hastened or retarded, promoted or impeded Vegetation; but these do not belong to the Head I am now upon.
(P.)Hyde-Park Conduit-water.In this I fix'd a Glass-Tube about ten Inches long, the Bore about one sixth of an Inch in Diameter, fill'd with very fine and white Sand, which I kept from falling down out of the Tube into the Vial, by tying a thin piece of Silk over that end of the Tube that was downwards. Upon Immersion of the lower end of it into the Water, this by little and little ascended quite to the upper Orifice of the Tube. And yet, in all the fifty six Days which it stood thus, a very inconsiderable Quantity of Water had gone off,viz.scarce twenty Grains; though the Sand continued moist up to the top till the very last. The Water had imparted a green Tincture to the Sand, quite to the very top of the Tube. And, in the Vial, it had precipitated a greenish Sediment, mix'd with black. To the bottom and sides of the Tube, as far as 'twas immers'd in the Water, adher'dpretty much of the green Substance describ'd above. Other like Tubes I fill'd with Cotton, Lint, Pith of Elder, and several other porous Vegetable Substances; setting some of them in clear Water; others in Water tinged with Saffron, Cochinele,&c.And several other Trials were made, in order to give a mechanical Representation of the motion and distribution of the Juices in Plants; and of some otherPhænomenaobservable in Vegetation, which I shall not give the Particulars of here, as being not of use to my present design.
(Q, R, S,&c.) Several Plants set in Vials, ordered in like manner as those above, inOctober, and the following colder Months. These throve not near so much; nor did the Water ascend in nigh the quantity it did in the better Seasons, in which the before recited Trials were made.
1.In Plants of the same kind, the less they are in Bulk, the smaller the Quantity of the fluid Mass, in which they are set, is drawn off; the Dispendium of it, where the Mass is of equal thickness, being pretty nearly proportion'd to the Bulk, of the Plant.Thus that in the Glass mark'd A, which weigh'd only 27 Grains, drew off but 2558 Grains of the Fluid; and that in B, which weigh'd only 28¼, took up but 3004 Grains; whereas that in H, whichweigh'd 127 Grains, spent 14190 Grains of the Liquid Mass.
The Water seems to ascend up theVesselsof Plants, in much the same manner as up a Filtre; and 'tis no great wonder that a larger Filtre should draw off more Water than a lesser; or that a Plant that has more and larger Vessels, should take up a greater share of the Fluid in which it is set, than one that has fewer and smaller ones can. Nor do I note this as a thing very considerable in it self, but chiefly in regard to what I am about to offer beneath; and that it may be seen that, in my other Collations of Things, I made due Allowance for this Difference.
2.The much greatest part of the fluid Mass, that is thus drawn off and convey'd into the Plants, does not settle or abide there; but passes through the pores of them, and exhales up into the Atmosphere.That the Water in these Experiments ascended only through the Vessel of the Plants, is certain. TheGlassesF and G, that had no Plants in them, though disposed of in like manner as the rest, remain'd at the End of the Experiment, as at first; and none of the Water was gone off. And that the greatest part of it flies off from the Plant into the Atmosphere, is as certain. The least Proportion of the Water expended, was to the Augment of the Plant, as 46 or 50 to 1. And in some the weight of the Water drawn off, was 100, 200, nay, in one above 700 times as much as the Plant had received of Addition.
This so continual an Emission and Detachment of Water, in so great Plenty from the Parts of Plants, affords us a manifest Reason why Countries that abound with Trees, and the larger Vegetables especially, should be very obnoxious to Damps, great Humidity in the Air, and more frequent Rains, than others that are more open and free. The great Moisture in the Air, was a mighty inconvenience and annoyance to those who first settled inAmerica; which at that time was much overgrown with Woods and Groves. But as these were burnt and destroy'd, to make way for Habitation and Culture of the Earth, the Air mended and clear'd up apace, changing into a Temper much more dry and serene than before.
Nor does this Humidity go off pure and alone; but usually bears forth with it many Parts of the same Nature with those whereof the Plant, through which it passes, consists. TheCrasserindeed are not so easily born up into the Atmosphere; but are usually deposited on the Surface of the Flowers, Leaves, and other Parts of the Plants: Hence comes our Manna's, our Honeys, and other Gummous Exsudations of Vegetables. But the finer and lighter Parts are with greater ease sent up into the Atmosphere. Thence they are conveyed to our Organs of Smell, by the Air we draw in Respiration; and are pleasant or offensive, beneficent or injurious to us, according to the Nature of the Plants from whence they arise. And since these owe their Rise to the Water, that ascends out of the Earth through the Bodies of Plants, we cannot be far to seek for the Cause why they are morenumerous in the Air, and we find a greater quantity of Odors exhaling from Vegetables, in warm, humid Seasons, than in any other whatever.
3.A great part of the Terrestrial Matter that is mix'd with the Water, ascends up into the Plant as well as the Water.There was much more Terrestrial Matter at the end of the Experiment, in the Water of the Glasses F and G, that had no Plants in them, than in those that had Plants. TheGarden-moulddissolved in the Glasses K and L, was considerably diminished, and carried off. Nay, the Terrestrial and Vegetable Matter was born up in the Tubes fill'd with Sand, Cotton,&c.in that Quantity, as to be evident even to Sense. And the Bodies in the Cavities of the other Tubes, that had their lower Ends immers'd in Water, wherein Saffron, Cochinele,&c.had been infused, were tinged with Yellow, Purple,&c.
If I may be permitted to look abroad a while, towards our Shores and Parts within the Verge of the Sea, these will present us with a large Scene of Plants, that, along with the Vegetable, take up into them meer mineral Matter also in great abundance. Such are our Sea-Purslains, the several sorts ofAlga's, of Sampires, and other marine Plants. These contain common Sea-salt, which is all one with theFossil, in such plenty, as not only to be plainly distinguish'd on the Palate, but may be drawn forth of them in considerable Quantity. Nay, there want not those who affirm, there are Plants found that will yieldNitre,and other mineral Salts; of which indeed I am not so far satisfied, that I can depend on the Thing, and therefore give this only as an hint for Enquiry.
To go on with the Vegetable Matter, how apt and how much disposed this, being so very fine and light, is to attend Water in all its Motions, and follow it into each of its Recesses, is manifest, not only from the Instances above alledg'd, but many others. Percolate it withal the Care imaginable: Filter it with never so many Filtrations, yet some Terrestrial Matter will remain. 'Tis true, the Fluid will be thinner every time than other, and more disingaged of the said Matter; but never wholly free and clear. I have filtred Water thorough several wholly free and clear Sheets of thick Paper; and, after that, through very close fine Cloth twelve times doubled. Nay, I have done this over and over; and yet a considerable quantity of this Matter discover'd it self in the Water after all. Now if it thus pass Interstices, that are so very small and fine along with the Water, 'tis the less strange it should attend it in its passage through the Ducts and Vessels of Plants. 'Tis true, filtering and distilling of Water intercepts and makes it quit some of the Earthy Matter it was before impregnated withal: But then that which continues with the Water after this, is fine and light; and such consequently, as is in a peculiar manner fit for the Growth and Nourishment of Vegetables. And this is the Case of Rain-water. The Quantity of Terrestrial Matter it bears up into the Atmosphere, is not great.But that which it does bear up, is mainly of that light kind of Vegetable Matter; and that too perfectly dissolved, and reduced to single Corpuscles, all fit to enter the Tubules and Vessels of Plants: On which Account 'tis, that this Water is so very fertile and prolifick.
The Reason, why in this Proposition, I say, only a great part of the Terrestrial Matter that is mix'd with the Water, ascends up with it into the Plant, is, because all of it cannot. The Mineral Matter is a great deal of it, not only gross and ponderous, but scabrous and inflexible; and so not disposed to enter the Pores of the Roots. And a great many of the simple Vegetable Particles by degrees unite, and form some of them small Clods orMoleculæ; such as those mention'd in H, K, and L, sticking to the Extremities of the Roots of those Plants. Others of them intangle in a looser manner; and form theNubeculæ, and green Bodies, so commonly observ'd in stagnant Water. These, when thus conjoin'd, are too big to enter the Pores, or ascend up the Vessels of Plants, which singly they might have done. They who are conversant in Agriculture, will easily subscribe to this. They are well aware that, be their Earth never so rich, so good, and so fit for the production of Corn or other Vegetables, little will come of it, unless the Parts of it be separated and loose. 'Tis on this Account they bestow the Pains they do in Culture of it, in Digging, Plowing, Harrowing, and Breaking of the Clodded Lumps of Earth. 'Tis the same way that Sea-salt, Nitre, andother Salts, promote Vegetation. I am sorry I cannot subscribe to the Opinion of those Learned Gentlemen, who imagine Nitre to be essential to Plants; and that nothing in the Vegetable Kingdom is transacted without it. By all the Trials I have been able to make, the thing is quite otherwise; and when contiguous to the Plant, it rather destroys than nourishes it. But this Nitre and other Salts certainly do; they loosen the Earth, and separate the concreted Parts of it; by that means fitting and disposing them to be assumed by the Water, and carried up into the Seed or Plant, for its Formation and Augment. There's no Man but must observe, how apt all sorts of Salts are to be wrought upon by Moisture; how easily they liquate and run with it; and when these are drawn off, and have deserted the Lumps wherewith they were incorporated, those must moulder immediately, and fall asunder of Course. The hardest Stone we meet with, if it happen, as frequently it does, to have any sort of Salt intermix'd with the Sand, of which it consists, upon being expos'd to an humid Air, in a short time dissolves and crumbles all to pieces; and much more will clodded Earth or Clay, which is not of near so compact and solid a Constitution as Stone is. The same way likewise is Lime serviceable in this Affair. The Husbandmen say of it, that it does not fatten, but only mellows the Ground: By which they mean, that it does not contain any thing in it self that is of the same Nature with the Vegetable Mould, or afford any Matter fit for the Formation of Plants; butmeerly softens and relaxes the Earth; by that means rendering it more capable of entering the Seeds and Vegetables set in it, in order to their Nourishment, than otherwise it would have been. The Properties of Lime are well known; and how apt 'tis to be put into Ferment and Commotion by Water. Nor can such Commotion ever happen when Lime is mix'd with Earth, however hard and clodded that may be, without opening and loosening of it.
4.The Plant is more or less nourish'd and augmented, in Proportion as the Water, in which it stands, contains a greater or smaller Quantity of proper terrestrial Matter in it.The Truth of this Proportion is so eminently discernable through the whole Process of these Trials, that I think no doubt can be made of it. TheMintin the Glass C, was of much the same Bulk and Weight with those in A and B. But the Water, in which that was, being River-water, which was apparently stored more copiously with terrestrial Matter, than the Spring or Rain-water, wherein they stood, were; it had thriven to almost double the Bulk that either of them had, and with a less Expence of Water too. So likewise the Mint in L, in whose Water was dissolved a small quantity of good Garden-mould, though it had the disadvantage[8]to be less, when first set, than either of the Mints in H or I, whose Water was the very same with this in L, but had none of that Earth mix'd with it; yet, in a short time the Plant not only overtook, but much out-strip'd those and at the end of the Experiment was veryconsiderably bigger and heavier than either of them. In like manner theMintin N, though less at the beginning than that in M, being set in that thick, turbid, feculent Water, that remained behind, after that wherein M was placed, was still'd off, had in fine more than double its original weight and bulk; and receiv'd above twice the additional Encrease, than that in M, which stood in the thinner distill'd Water, had done. And, which is not less considerable, had not drawn off half the Quantity of Water that that had.
Why, in the beginning of this Article, I limit the Proportion of the Augment of the Plant to the Quantity of proper Terrestrial Matter in the Water, is, because all, even the Vegetable Matter, to say nothing of the Mineral, is not proper for the Nourishment of every Plant. There may be, and doubtless are, some Parts in different Species of Plants, that may be much alike, and so owe their Supply to the same common Matter; but 'tis plain all cannot. And there are other Parts so differing, that 'tis no ways credible they should be formed all out of the same sort of Corpuscles. So far from it, that there want not good Indications, as we shall see by and by, that every kind of Vegetable requires a peculiar and specifick Matter for its Formation and Nourishment. Yea, each Part of the same Vegetable does so; and there are very many and different Ingredients go to the Composition of the same individual Plant. If therefore the Soil, wherein any Vegetable or Seed is planted, contains all or most of these ingredients, and those in due quantity, it will grow and thrive there; otherwise 'twill not.If there be not as many sorts of Corpuscles as are requisite for the Constitution of the main and more essential Parts of the Plant, 'twill not prosper at all. If there be these, and not in sufficient Plenty, 'twill starve, and never arrive to its natural Stature: Or if there be any the less necessary and essential Corpuscles wanting, there will be some failure in the Plant; 'twill be defective in Taste, in Smell, in Colour, or some other way. But though a Tract of Land may happen not to contain Matter proper for the Constitution of some one peculiar kind of Plant; yet it may for several others, and those much differing among themselves. The Vegetative Particles are commix'd and blended in the Earth, with all the diversity and variety, as well as all the uncertainty, conceivable. I have given some intimations of this elsewhere[9], and shall not repeat them here, but hope in due time to put them into a much better Light than that they there stand in.
It is not possible to imagine, how one uniform, homogeneous Matter, having its Principles or Original Parts all of the same Substance, Constitution, Magnitude, Figure, and Gravity, should ever constitute Bodies so egregiously unlike, in all those respects, as Vegetables of different kinds are; nay, even as the different Parts of the same Vegetable. That one should carry a resinous, another a milky, a third a yellow, a fourth a red Juice, in its Veins; one afford a fragrant, another an offensive Smell; one be sweet to the Taste, another bitter, acid, acerbe, austere, &c. that one should be nourishing, another poisonous, one purging, another astringent: Inbrief, that there should be that vast difference in them, in their several Constitutions, Makes, Properties, and Effects, and yet all arise from the very same sort of Matter, would be very strange. And, to note by the by, this Argument makes equally strong against those, who suppose meer Water the Matter, out of which all Bodies are form'd.
TheCataputiain the Glass E, received but very little Encrease, only three Grains and an half all the while it stood, though 2501 Grains of Water were spent upon it. I will not say the Reason was, because that Water did not contain in it Matter fit and proper for the Nourishment of that peculiar and remarkable Plant. No, it may be the Water was not a properMediumfor it to grow in; and we know there are very many Plants that will not thrive in it. Too much of that Liquor, in some Plants, may probably hurry the Terrestrial Matter thorough their Vessels too fast for them to arrest and lay hold of it. Be that as it will, 'tis most certain there are peculiar Soils that suit particular Plants. InEngland, Cherries are observ'd to succeed best inKent; Apples inHerefordshire; Saffron inCambridgeshire; Wood in two or three of ourMidland Counties; and Teazles inSomersetshire. This is an Observation that hath held in all Parts, and indeed in all Ages of the World. The most ancient Writers of Husbandry[10]took notice of it; and are not wanting in their Rules for making choice of Soils suited to the Nature of each kind of Vegetable they thought valuable, or worth propagating.
But, which is a further Proof of what I am here endeavouring to advance, that Soil that is once proper and fit for the Production of some one sort of Vegetable, does not ever continue to be so. No, in Tract of time it loses that Property; but sooner in some Lands, and later in others: This is what all who are conversant in these things know very well. If Wheat, for Example, be sown upon a Tract of Land that is proper for that Grain, the first Crop will succeed very well; and perhaps the second, and the third, as long as the Ground is in Heart, as the Farmers speak; but in a few Years 'twill produce no more, if sowed with that Corn: Some other Grain indeed it may, as Barley. And after this has been sown so often, that the Land can bring forth no more of the same, it may afterwards yield good Oats; and, perhaps, Pease after them. At length 'twill become barren; the Vegetative Matter, that at first it abounded withal, being educed forth of it by those successive Crops, and most of it born off. Each sort of Grain takes forth that peculiar Matter that is proper for its own Nourishment. First, the Wheat draws off those Particles that suit the Body of that Plant; the rest lying all quiet and undisturbed the while. And when the Earth has yielded up all them, those that are proper for Barley, a different Grain, remain still behind, till the successive Crops of that Corn fetch them forth too. And so the Oats and Pease, in their Turn; till in fine all is carried off, and the Earth in great measure drain'd of that sort of Matter.
After all which, that very Tract of Land may be brought to produce another Series of the same Vegetables; but never till 'tis supplied with a new Fund of Matter, of like sort with that it at first contain'd. This Supply is made several ways: By the Grounds lying fallow for some time, till the Rain has pour'd down a fresh Stock upon it:Or, by the Tiller's Care in manuring of it. And for farther Evidence that this Supply is in reality of like sort, we need only reflect a while upon those Manures that are found by constant Experience best to promote Vegetation, and the Fruitfulness of the Earth. These are chiefly either parts of Vegetables, or of Animals; which indeed either derive their own Nourishment immediately from Vegetable Bodies, or from other Animals that do so. In particular, the Blood, Urine, and Excrements of Animals; Shavings of Horns, and of Hoofs; Hair, Wool, Feathers; calcin'd Shells; Lees of Wine, and of Beer; Ashes of all sorts of Vegetable Bodies; Leaves, Straw, Roots, and Stubble, turn'd into the Earth by Plowing or otherwise to rot and dissolve there: These, I say, are our best Manures; and, being Vegetable Substances, when refunded back again into the Earth, serve for the Formation of other like Bodies.
Not wholly to confine our Thoughts to the Fields, let us look a while into our Gardens; where we shall meet with still further Confirmations of the same thing. The Trees, Shrubs, and Herbs cultivated in these, after they have continued in one Station, till they have derived thence the greater part of the Matter fit for their Augment, will decay and degenerate,unless either fresh Earth, or some fit Manure, be applied unto them. 'Tis true, they may maintain themselves there for some time, by sending forth Roots further and further to a great Extent all round, to fetch in more remote Provision; but at last all will fail; and they must either have a fresh Supply brought to them, or they themselves be removed and transplanted to some Place better furnished with Matter for their Subsistence. And accordinglyGardinersobserve, that Plants that have stood a great while in a Place, have longer Roots than usual; part of which they cut off, when they transplant them to a fresh Soil, as now not of any further use to them. All these Instances, to pass over a great many others that might be alledg'd, point forth a particular Terrestrial Matter, and not Water, for the Subject to which Plants owe their Increase. Were it Water only, there would be no need of Manures; or of transplanting them from place to place. The Rain falls in all Places alike; in this Field and in that indifferently; in one side of an Orchard or Garden, as well as another. Nor could there be any Reason, why a Tract of Land should yield Wheat one Year, and not the next; since the Rain showers down alike in each. But I am sensible I have carried on this Article to too great a length; which yet on so ample and extensive a Subject, 'twas not easie to avoid.
5.Vegetables are not form'd of Water; but of a certain peculiar Terrestrial Matter.It hath been shewn, that there is a considerable Quantity of this Matter contain'd both in Rain,Spring, and River-water: That the much greatest part of the fluid Mass that ascends up into Plants, does not settle or abide there, but passes through the Pores of them, andexhalesup into the Atmosphere; That a great part of the Terrestrial Matter, mix'd with the Water, passes up into the Plant along with it; and that the Plant is more or less augmented in proportion, as the Water contains a greater or smaller Quantity of that Matter. From all which we may very reasonably infer, thatEarth, and not Water, is the Matter that constitutes Vegetables. The Plant in E, drew up into it 2501 Grains of the fluid Mass; and yet had received but Grains 3 and a half of Increase from all that. The Mint in L, though it had at first the disadvantage to be much less than that in I; yet being set in Water wherewith Earth was plentifully mix'd, andthatin I,only in Waterwithout any such additional Earth, it had vastly outgrown the other, weighing at last 145 Grains more than that did, and so having gain'd about twice as much as that had. In like manner that in K, though 'twas a great deal less when put in than that in I, and also was impair'd and offended by Insects; yet being planted in Water wherein Earth was dissolved, whereas the Water in which it stood had none, it not only over-took, but considerably surpass'd the other; weighing at last 29 Grains more than that in I, and yet had not expended so much Water as that, by above 2400 Grains. The Plant in N, tho' at first a great deal less than that in M; yet being set in the foul crass Water that was left in the Still, after that, in which M was set, was drawn off, in Conclusion had gain'd in weightabove double what that in the finer and thinner Water had. The Proportion of the Augment of that Plant that throve most was, to the fluid Mass spent upon it, but as 1 to 46. In others, 'twas but as 1 to 60, 100, 200; nay, in theCataputia, 'twas but as 1 to 714. The Mint in B took up 39 Grains of Water a-day, one day with another; which was much more than the whole weight of the Plant originally; and yet, with all this, it gain'd not one fourth of a Grain a-day in weight. Nay, that in H took up 253 Grains a day of the Fluid: Which was near twice as much as its original Weight, it weighing, when first set in the Water, but 127 Grains. And, after all, the daily Encrease of the Plant was no more than Grains 215⁄56.
6.Spring, and Rain-water, contain pretty near an equal Charge of Vegetable Matter;River-water more than either of them.The Plants in the Glasses A, B, and C, were at first of much the same size and weight. At the End of the Experiment, the Mint in A had gain'd 15 Grains out of 2558 Grains of Spring-water; that in B, Grains 17 and an half, out of 3004 Grains of Rain-water; but that in C had got 26 Grains out of only 2493 Grains of River-water. I do not found this Proposition solely upon these Trials; having made some more, which I do not relate here, that agree well enough with these. So that the Proportions here deliver'd, will hold for the main; but a strict and just Comparison is hardly to be expected. So far from it, that I make no doubt, but the Water that falls in Rain, at some times, contains a greater share of Terrestrial Matter than that which falls at others.A more powerful and intense Heat must needs hurry up a larger quantity of that Matter along with the humid Vapours that form Rain, than one more feeble and remiss ever possibly can. The Water of one Spring may flow forth with an higher Charge of this Matter, than that of another; this depending partly upon the quickness of the Ebullition of the Water, and partly upon the Quantity of that Matter latent in theStrata, through which the Fluid passes, and the greater or less laxity of thoseStrata. For the same Reason, the Water of one River may abound with it more than that of another. Nay, the same River, when much agitated, and in commotion, must bear up more of it, than when it moves with less rapidity and violence. That there is a great Quantity of this Matter in Rivers; and that it contributes vastly to the ordinary Fertility of the Earth, we have an illustrious Instance in theNile, theGanges, and other Rivers that yearly overflow the neighbouring Plains. Their Banks shew the fairest and largest Crops of any in the whole World. They are even loaded with the multitude of their Productions; and those who have not seen them, will hardly be induced to believe the mighty Returns those Tracts make in comparison of others, that have not the Benefit of like Inundations.
7.Water serves only for a Vehicle to the Terrestrial Matter, which forms Vegetables; and does not it self make any addition unto them.Where the proper Terrestrial Matter is wanting, the Plant is not augmented, though never so much Water ascend into it. TheCataputiain E, tookup more Water than the Mint in C, and yet had grown but very little, having received only three Grains and an half of additional weight; whereas the other had received no less than twenty six Grains. The Mint in I, was planted in the same sort of Water as that in K, was; only the latter had Earth dissolved in the Water; and yet that drew off 13140 Grains of the Water, gaining it self no more than 139 Grains in weight; whereas the other took up but 10731 Grains of the Water, and was augmented 168 Grains in weight. Consequently that spent 2409 Grains more of the Water than this in K, did, and yet was not so much encreased in weight as this by 29 Grains. The Mint in M, stood in the very same kind of Water as that in N, did. But the Water in M, having much less Terrestrial Matter in it than that in N had, the Plant bore up 8803 Grains of it, gaining it self only 41 Grains the while; whereas that in N drew off no more than 4344 Grains, and yet was augmented 94 Grains. So that it spent 4459 Grains of Water more than that did; and yet was not it self so much increased in weight, as that was, by 53 Grains. This is both a very fair, and a very conclusive Instance; on which Account 'tis that I make oftner use of it. Indeed they are all so; and to add any thing further on this Head, will not be needful.
'Tis evident therefore Water is not the Matter that composes Vegetable Bodies. 'Tis only the Agent that conveys that Matter to them; that introduces and distributes it to their several Parts for their Nourishment. That Matter is sluggish and unactive, and would lie eternallyconfin'd to its Beds of Earth, without ever advancing up into Plants, did not Water, or some like Instrument, fetch it forth and carry it unto them. That therefore there is that plentiful Provision, and vast Abundance of it supplied to all Parts of the Earth, is a mark of a natural Providence superintending over the Globe we inhabit; and ordaining a due Dispensation of that Fluid, without the Ministry of which the Noble Succession of Bodies we behold,Animals,Vegetables, andMinerals, would be all at a stand[11]. But to keep to Plants, 'tis manifest Water, as well on this, as upon the other Hypothesis, is absolutely necessary in the Affair of Vegetation; and it will not succeed without it: Which indeed gave occasion to the Opinion, that Water it self nourished, and was changed into Vegetable Bodies. They saw, though these were planted in a Soil never so rich, so happy, so advantageous, nothing came of it unless there was Water too in a considerable quantity. And it must be allow'd Vegetables will not come on or prosper where that is wanting: But yet what those Gentlemen inferr'd thence, was not, we see, well grounded.
This Fluid is capacitated for the Office here assign'd it several ways: By the Figure of its Parts, which, as appears from many Experiments, is exactly and mathematically Spherical; their Surfaces being perfectly polite, and without any the least Inequalities. 'Tis evident, Corpuscles of such a Figure are easily susceptible of Motion, yea, far above any others whatever;and consequently the most capable of moving and conveying other Matter, that is not so active and voluble. Then the Intervals of Bodies of that Figure are, with respect to their Bulk, of all others the largest; and so the most fitted to receive and entertain foreign Matter in them. Besides, as far as the Trials hitherto made inform us, the constituent Corpuscles of Water are, each singly consider'd, absolutely solid; and do not yield to the greatest External Force. This secures their Figure against any Alteration; and the Intervals of the Corpuscles must be always alike. By the latter, 'twill be ever disposed to receive Matter into it; and by the former, when once received, to bear it on along with it. Water is further capacitated to be a Vehicle to this Matter, by the tenuity and fineness of the Corpuscles of which it consists. We hardly know any Fluid in all Nature, except Fire, whose constituent Parts are so exceeding subtle and small as those of Water are. They'll pass Pores and Interstices, that neither Air nor any other Fluid will. This enables them to enter the finest Tubes and Vessels of Plants, and to introduce the Terrestrial Matter, conveying it to all Parts of them; whilst each, by means of Organs 'tis endowed with for the Purpose, intercepts and assumes into it self such Particles as are suitable to its own Nature, letting the rest pass on through the common Ducts. Nay, we have almost every where Mechanical Instances of much the same Tenor. 'Tis obvious to every one, how easily and suddenly Humidity, or the Corpuscles of Water sustained in the Air, pervade and insinuatethemselves into Cords, however tightly twisted, into Leather, Parchment, Vegetable Bodies, Wood, and the like. This it is that fits them forHygrometers; and to measure and determine the different quantities of Moisture in the Air, in different Places and Seasons. How freely Water passes and carries with it Terrestrial Matter, through Filtres, Colatures, Distillations,&c.hath been intimated already.
8.Water is not capable of performing this Office to Plants, unless assisted by a due Quantity of Heat; and this must concur, or Vegetation will not succeed.The Plants that were set in the Glasses Q, R, S,&c.inOctober, and the following colder Months, had not near the quantity of Water sent up into them, or so great an additional Encrease by much, as those that were set inJune,July, and the hotter. 'Tis plain Water has no power of moving it self; or rising to the vast height it does in the more tall and lofty Plants. So far from this, that it does not appear from any Discovery yet made, that even its own Fluidity consists in the intestine Motion of its Parts; whatever some, otherwise very learned and knowing, Persons may have thought. There is no need of any thing more, for solving all thePhænomenaof Fluidity, than such a Figure and Disposition of the Parts, as Water has. Corpuscles of that make, and that are all absolutely Spherical, must stand so very tickle and nicely upon each other, as to be susceptible of every Impression; and though not perpetually in Motion, yet must be ever ready and liable to be putinto it, by any the slightest Force imaginable. It is true, the Parts of Fire or Heat are not capable of moving themselves any more than those of Water; but they are more subtil, light, and active, than those are, and so more easily put into Motion. In fine, 'tis evident and matter of Fact, that Heat does operate upon, and move the Water, in order to its carrying on the Work of Vegetation: But how 'tis agitated it self, and where the Motion first begins, this is no fit Place to enquire.
That the Concourse of Heat in this Work is really necessary, appears, not only from the Experiments before us, but from all Nature; from our Fields and Forests, our Gardens and our Orchards. We see inAutumn, as the Sun's Power grows gradually less and less, so its Effects on Plants is remitted, and their Vegetation slackens by little and little. Its Failure is first discernible in Trees. These are raised highest above the Earth; and require a more intense Heat to elevate the Water, charged with their Nourishment, to the Tops and Extremities of them. So that for want of fresh Support and Nutriment, they shed their Leaves, unless secur'd by a very firm and hardy Constitution indeed, as ourever-Greensare. Next the Shrubs part with theirs; and then the Herbs and lower Tribes; the Heat being at length not sufficient to supply even these, though so near the Earth, the Fund of their Nourishment. As the Heat returns the succeeding Spring, they all recruit again; and are furnish'd with fresh Supplies and Verdure: But first, those which are lowest and nearest the Earth, Herbs, and they that require a lesserdegree of Heat to raise the Water with its Earthy Charge into them: Then the Shrubs and higher Vegetables in their Turns; and lastly, the Trees. As the Heat increases, it grows too powerful, and hurries the Matter with too great Rapidity thorough the finer and more tender Plants: These therefore go off, and decay; and others that are more hardy and vigorous, and require a greater share of Heat, succeed in their Order. By which Mechanism, provident Nature furnishes us with a very various and differing Entertainment; and what is best suited to each Season, all the Year round.
As the Heat of the several Seasons affords us a different Face of Things; so the several distant Climates shew different Scenes of Nature, and Productions of the Earth[12]. The Hotter Countries yield ordinarily the largest and tallest Trees; and those in too much greater variety than the colder ever do. Even those Plants which are common to both, attain to a much greater Bulk in the Southern than in the Northern Climes. Nay, there are some Regions so bleak and chill, that they raise no Vegetables at all to any considerable Size. This we learn fromGreenland, fromIseland, and other Places of like cold Site and Condition. In these no Tree ever appears; and the very Shrubs they afford, are few, little, and low.
Again, in the warmer Climates, and such as do furnish forth Trees and the larger Vegetables, if there happen a remission or diminution of the usual Heat, their Productions will be impeded and diminished in proportion. Our late ColderSummers have given us proof enough of this. For though the Heat we have had, was sufficient to raise the Vegetative Matter into the lower Plants, into our Corns, our Wheat, Barley, Pease and the like; and we have had plenty of Straw-berries, Ras-berries, Currans, Goosberries, and the Fruits of such other Vegetables as are low and near the Earth: Yea, and a moderate store of Cherries, Mulberries, Plumbs, Filberts, and some others that grow somewhat at a greater Height; yet our Apples, our Pears, Walnuts, and the Productions of the taller[13]Trees have been fewer, and those not so kindly, so thoroughly ripen'd, and brought to that Perfection they were in the former more benign and their warm Seasons. Nay, even the lower Fruits and Grains have had some share in the common Calamity; and fallen short both in Number and Goodness of what the hotter and kinder Seasons were wont to shew us. As to our Grapes, Abricots, Peaches, Nectarens, and Figs, being transplanted hither out of hotter Climes, 'tis the less wonder we have of late had so general a Failure of them.
Nor is it the Sun, or the ordinary emission of the Subterranean Heat only, that promotes Vegetation; but any other indifferently, according to its Power and Degree: This we are taught by our Stoves, hot Beds, and the like. AllHeat is of like kind; and where-ever is the same Cause, there will be constantly the same Effect. There's a Procedure in every part of Nature, that is perfectly regular and geometrical, if we can but find it out; and the further our Searches carry us, the more shall we have occasion to admire this, and the better 'twill compensate our Industry.