Chapter 103

[41]Trepresents the tension on the tight part, andton the sag part of the belt.

[41]Trepresents the tension on the tight part, andton the sag part of the belt.

An interesting feature of these and subsequent experiments is the progressive increase in the sum of the belt tensions during an increase in load. This is contrary to the generally accepted theory that the sum of the tensions is constant, but it may be accounted for to a large extent by the horizontal position of the belt, which permitted the tension on the slack side to be kept up by the sag. That this is only a partial explanation of the phenomenon, and that the sum of the tensions actually increases as their difference increases for even a vertical position of the belt, will be shown by a special set of experiments. If a belt be suspended vertically, and stretched by uniformly increasing weights, it will also be found that the extension is not uniform, but diminishes as the load is increased, or, as already stated, the stress increases faster than the extension. A little reflection will show that when this is the case the tensions must necessarily increase with the load transmitted.

A piece of belting 1 sq. in. in section and 92 ins. long was found by experiment to elongate1⁄4in. when the load was increased from 100 to 150 lbs., and only1⁄8in. when the load was increased from 450 to 500 lbs. The total elongation from 50 to 500 lbs. was 111⁄16′′, but this would vary with the time of suspension, and the measurements here given were taken as soon as possible after applying the loads. In a running belt the load is applied and removed alternately for short intervals of time, depending upon the length and speed of the belt, and the time for stretching would seldom be as great as that consumed in making the experiments just mentioned.

The differences between the initial and final tensions unloaded, as given in the tables, show the effect of extension or contraction during the course of the experiments made at a fixed position of the pulleys. The percentage of elongation which a belt undergoes in passing from its loose to its tight side, is the measure of the slip which must necessarily take place in the transmission of power. This is a direct loss, and within the assumed working strength of 500 lbs. per sq. in. for cemented belts without lacings, experiment indicates that it should not exceed 11⁄2or 2 per cent. When, therefore, an experiment shows less than 2 per cent. of slip, the amount may be considered as allowable and proper, and the belt may be relied upon to work continuously at the figures given.

Table III.gives the results of experiments upon a soft and pliable rawhide belt made by the Springfield Glue and Emery Co. This belt had been used by the Midvale Steel Co. for a period of seven months, at its full capacity, and was sent in its usual working condition to be tested. It had been cleaned and dressed withcastor oil at intervals of three months, and was received three weeks after the last dressing. Commencing with the light initial tension of 50 lbs. on a side, it was found impossible with the power at command to reach a limit to the pulling power of the belt, and in order to do so the experiment was made of supporting the slack side of the belt upon a board to prevent sagging.


Back to IndexNext