Chapter 93

[34]From Bourne’s “Handbook of the Steam Engine.”

[34]From Bourne’s “Handbook of the Steam Engine.”

In the following table are given some of the results obtained from Morin’s experiments with unguents interposed.

Morin’s experiments demonstrated that friction is always proportional to the pressure and independent of the area pressed in contact, providing that the pressure is not so great as to cause the surfaces to abrade in the manner or to the degree commonly known as cutting, which occurs when the area of bearing surface in proportion to the pressure is so small as to press out the lubricating material.

Now, between the degree of abrasion that is sufficient to cause a bearing to heat and the minimum, possibly lies a wide range that is very difficult of classification, and that influences the friction of the bearing and journal. Under any given dimensions of journal area and any given pressure of the same to its bearing, the abrasion, and, therefore, the friction, will be less in proportion as the fit of the journal to its bearing extends over its whole area and with an equal pressure of contact. Under these conditions, and with a bearing area ample for the given pressure, the surfaces of a journal and bearing have a smooth, glossy appearance, with a surface as glossy as plate-glass.

This degree of perfection, however, is only occasionally reached in practice, because of imperfections in the fitting and lubrication.

Now, between this condition of glossy smoothness and the degree of abrasion known to practical men ascuttinglies, as already stated, a wide range of degrees of abrasion, and each of these has its own coefficient of friction. This may be readily proved by freely lubricating the bearings of a number of journals working under the usual conditions of practice and smearing the oil just as it passes through the bearings upon a sheet of white note paper, when it will be found to contain fine particles of metal, the number and size of particles in a given quantity of the oil decreasing as the surfaces of the bearings are glossy, and increasing as those surfaces appear dull.

The order of value to resist wear is generally considered in practice to be asfollows:—

1st in value, hardened steel running on hardened steel.

2nd (and by some considered equal to the first when the pressure per square inch of area is light), cast iron either upon cast iron, hardened wrought iron, or hardened steel.

3rd, under light duty cast iron upon wrought iron or steel not hardened.

4th, wrought iron upon hard composition or brass.

5th, wrought iron upon some anti-friction metal, as Babbitt metal.

Cast iron appears to be an exception to the general rule, that the harder the metal the greater the resistance to wear, because cast iron is softer in its texture and easier to cut with steel tools than steel or wrought iron, but in some situations it is far more durable than hardened steel; thus when surrounded by steam it will wear better than will any other metal. Thus, for instance, experience has demonstrated that piston-rings of cast iron will wear smoother, better, and equally as long as those of steel, and longer than those of either wrought iron or brass, whether the cylinder in which it works be composed of brass, steel, wrought iron, or cast iron—the latter being the more noteworthy, since two surfaces of the same metal do not, as a rule, wear or work well together. So also slide-valves of brass are not found to wear so long or so smoothly as those of cast iron, let the metal of which the seating is composed be whatever it may; while, on the other hand, a cast-iron slide-valve will wear longer of itself, and cause less wear to its seat, if the latter is of cast iron, than if of steel, wrought iron, or brass. The duty in each of these cases is light; the pressure on the cast iron, in the first instance cited, probablynever exceeding a pressure of ten pounds per inch, while in the latter case two hundred pounds per square inch of area is probably the extreme limit under which slide-valves work; and what the result under much heavier pressures would be is entirely problematical.

Cast iron in bearings or boxes is found to work exceedingly smoothly and well under light duty, provided the lubrication is perfect and the surfaces can be kept practically free from grit and dust. The reason of this is that cast iron forms a hard surface skin when rubbed under a light pressure, and so long as the pressure is not sufficient to abrade this hard skin, it will wear bright and very smooth, becoming so hard that a sharp file or a scraper made as hard as fire and water will make it will scarcely cut the skin referred to. Thus in making cast-iron and wrought-iron surface plates or planometers, we may rub two such plates of cast iron together under moderate pressure for an indefinite length of time, and the tops of the scraper marks will become bright and smooth, but will not wear off; while if we rub one of cast iron and one of wrought iron, or two of wrought iron, well together, the wrought-iron surfaces will abrade so that the protruding scraper marks will entirely disappear, while the slight amount of lubrication placed between such surfaces to prevent them from cutting will become, in consequence of the presence of the wrought iron, thick and of a dark blue color, and will cling to the surfaces, so that after a time it becomes difficult to move the one surface upon the other. If, however, the surfaces are pressed together sufficiently to abrade the hard skin from the cast iron, a rapid cutting immediately takes place, which is very difficult to remove.

To obtain the best results from cast-iron bearings the bedding of the journal to the bearing must be full and perfect, and the surfaces bright and smooth, in which case it will wear better than hardened steel, unless it be very heavily loaded.

Again, a cast-iron surface will hold the lubricating oil better than either steel, wrought iron, or brass of any kind. Indeed, if a cast-iron surface be made very true and smooth so that it is polished and no marks are visible upon its surface, it will takemuch patientrubbing and cleaning with adry clean ragto remove the oil entirely, whereas other metals will clean comparatively easy. In testing this matter upon surface plates the author has found that the only safe method, and by far the quickest, of removing the oil from cast iron is an application of alcohol or spirits of turpentine, because the oil will enter and to some extent soak into the pores of cast iron and gradually work out again as it is continuously wiped, so that if apparently quite clean (after having been oiled and wiped) a short period of rest will cause oil to again be present to some extent upon the surface.

As a general rule motion in a continuous direction causes more wear under equal conditions than does a reciprocating one, because when a revolving surface commences to abrade, the particles of metal being cut are forced into and add themselves, in a great measure, to the particles performing the cutting, increasing its size and the strain of contact of the surfaces, causing them to cut deeper and deeper until at least an entire revolution has been made, when the severed particles of metal release themselves, and are for the most part forced into the grooves made by the cutting.

In reciprocating surfaces, when any part commences to cut, the edge of the protruding cutting part is abraded by the return stroke; which fact is clearly demonstrated in either fitting or grinding in the plugs of cocks, in which operation it is found absolutely necessary to revolve the plugs back and forth, to prevent the cutting which inevitably and invariably takes place if the plug is revolved in a continuous direction. Furthermore, when a surface revolves in a continuous direction, any grit that may lodge in a speck, hollow spot, or soft place in the metal, will cut a groove and not easily work its way out, as is demonstrated in polishing work in a lathe; for be the polishing material as fine as it may, it will not polish so smoothly unless kept in rapid motion back and forth. Grain emery used upon a side face, such as the radial face of a cylinder cover, will lodge in any small hollow spots in the metal and cut grooves, unless the polishing stick be moved rapidly back and forth between the centre and the outer diameter. If a revolving surface abrades so much as to seize and come to a standstill, it will be found very difficult to force it forward, while it will be comparatively easy to move it backward, which will not only release the particles of metal already severed from the main body, and permit them to lodge in the grooves due to the cutting, but will also dislodge the projecting particles which are performing the cutting, so that a few reciprocating movements and ample lubrication will, in most cases, stop the cutting and wash out the particles already cut from the surfaces of the metal.

In determining the metals to be used for a journal and bearing it is preferable to use the softer metal, or that which will wear the most, in the position in which it can be the most easily and cheaply replaced, which is usually in the bearing rather than in the journal; and since two metals of a different kind run better together than two of the same kind, the bearing is usually of a different kind of metal from that composing the journal. It may be stated, however, that underlight dutycast iron will wear upon cast iron better than wrought iron or brass upon cast iron (for reasons which have already been stated), especially if the bearing area be broad and the lubrication ample and perfect.

To facilitate the removal of the bearings, brasses or boxes are provided, but in the case of small journals, as, say, of about 3 inches and less in diameter, the duty being light, the lubrication ample and equally distributed, and the journals an easy working fit when new, it is found that solid cast-iron boxes will last for a great length of time without sensible wear.

In some cases cast-iron boxes are cast with a receptacle for some soft metal, such as the various compound metals known under the general name of Babbitt metal.

Babbitt metal is composed of tin, antimony, and copper, mixed in varying proportions. A good mixture for general use where the duty is light is composed of 50 parts tin, 5 parts antimony, and 1 part copper. A harder composition, sometimes termed white metal, is composed of tin 96 parts, copper 4 parts, and antimony 8 parts. This mixture is especially suitable for journal boxes or bearings. It is mixed as follows: Twelve parts of copper are first melted, and then 36 parts of tin are added; 24 parts of antimony are put in, and then 36 parts of tin, the temperature being lowered as soon as the copper is melted in order not to oxidize the tin and antimony; the surface of the bath being protected from contact with the air. The alloy thus made is subsequently remelted in the proportion of 50 parts of alloy to 100 tin.

For brass bearings or boxes a mixture of 64 parts copper, 8 parts tin, and 1 part zinc is found to answer well; but for bearings not requiring so hard a metal, the quantity of zinc is increased, and that of the tin diminished.

Fig. 2503Fig. 2503.

Fig. 2503.

Bearings or boxes that are to be babbitted are usually cast as inFig. 2503, there being a rib ata,b, andc, forming a cavity atd, into which the melted metal is poured. The ribs (in new boxes) are sometimes bored out, or for rougher work may be chipped and filed out to fit the shaft, and hold it in line; and to prevent the ribsa,b, &c., from bearing and cutting the shaft, a piece of pasteboard is laid on ribsaandb, thus confining the journal bearing to the babbitt. The best method is to pour the bearing and then rivet the babbitt well into the cavityd, which is made wider at the bottom, to prevent the babbitt from coming loose, and then bore out the bearing in the usual manner.

The principal advantage of a babbitted bearing is the ease with which it can be renewed, and the fact that the metal will soon bed itself to the journal. This is of great advantage in the case of solid bearings in the framing of fast-running machines, and in situations where it would be awkward or difficult to take brasses or bushes out to fit them, or align them to the shaft, which in many cases would also require to be taken out to remove the brasses. On the other hand, any particles of grit that may find ingress to babbitted boxes are apt to become bedded into the babbitt metal and cut or grind away the journal.

Since the babbitt metal in a bearing is apt to close across the bore when cooling after being poured, a mandrel of slightly larger diameter than the diameter of the journal should be used in place of the working journal to run the bearing on. Some effect the same purpose by wrapping writing paper around the journal; but it is wrong to use the journal, for the following reasons: To get a good, sound, well-fitting babbitt metal box, the metal should be poured as cool as possible, for if made red hot it contracts so much in cooling that it does not fit well in the box or frame of the machine. On the other hand unless the metal be well hot it is apt to cool and set too soon and be unsound. To remedy this the journal, or whatever represents it, must be heated. The heating is very apt to bend it. It is obvious then that instead of the journal a temporary bar of iron of slightly larger diameter than the working journal should be used, heating it to a good black hot heat, so that the babbitt metal may be poured less hot than would otherwise be permissible, and the contraction of the babbitt in the box reduced to a minimum. A little powdered resin sprinkled in the box will help the babbitt to flow easily and make a sound casting.

The temporary spindle, or journal, should also be oiled, and as soon as the metal has well set, the temporary journal should be revolved to free it. Babbitt bearings cast in two halves should be fitted to the journal as already described for brasses, which will well repay the cost and trouble.

To prevent the metal from running out of the bearing, its ends are closed by means of either clay or putty closely packed against the bearing ends and the shaft, and in pouring in the melted metal it is best to pour it on the top of the shaft, and let it run down its sides into the cavity of the bearing. This heats the shaft equally, and prevents it bending from unequal expansion, as it would do if it met the heated metal on its lower half only, it being obvious that if the shaft bends the bore of the bearing will not be cast in line; hence, the shaft will bear at the end only, and will require to wear the babbitt down to a bearing.

Babbitting is sometimes employed to refit parts that have worn loose, or to bush the bores of work. Suppose, for example, that in a case of emergency a pulley of a certain diameter is required, and that the only one at hand has too large a bore, then we may take a mandrel or arbor of the diameter of the shaft the pulley is required for, and drive on it two thin washers and turn them to fit the bore of the pulley, and cut a recess in each to enable the metal to be poured through. We may then put the arbor and washers in the pulley (the washers serving to hold the arbor true), and fill in the bore with babbitt metal, leaving the pulley set-screw in place and set to just touch the arbor, so as to cast the thread in the babbitt bushing, and thus save drilling and tapping.

Proportions of Journals.—It follows from what has been already said that under a given amount of duty the friction will be less and the durability greater in proportion as the bearing area of a journal is increased. But it is an important consideration whether such area shall be obtained in the diameter or in the length of the journal, or, in other words, what shall be the proportions between the diameter and length of a journal. It is found in practice that a journal wears better in proportion as its length exceeds its diameter, providing that the stress is not sufficient to cause sensible flexure, because in that case the pressure is reduced at that part of the journal where the most flexure occurs, and increased where the journal is most rigid. As a result, the abrasion increasing with the pressure becomes locally excessive, the glossy smoothness is lost and increased friction ensues.

If, however, the length of a journal is limited by the exigencies of its location or the design of the machine, the diameter of journal must be increased if necessary in order to obtain sufficient bearing area to withstand the stress without causing undue abrasion.

Referring to the bearing area in proportion to the load, Prof. R. H. Thurston writes, in an article in theRailroad Gazetteof January 18th, 1878, asfollows:—

“A pressure of 800 pounds to the square inch can rarely be attained on wrought iron at even low speeds, while 1,200 pounds is not infrequently adopted on the steel crank-pins of steamboat engines. I have known of several thousand pounds pressure per inch being reached on the slow-working and rarely moved pivots of swing bridges. In my own practice, I never, if I can avoid it, use higher pressures than 600 and 1,000 on iron and on steel, and, for general practice, make the pressure less as the speed is greater.”

W. Sellers and Co. state that under a pressure of 50 lbs. per square inch, and with oil well distributed over the surface of the box, the metal of the journal will not touch that of the bearing box bore.

In practice bearings are made with a length varying from that equal to the diameter of the journal to about four times that diameter, and but few cases occur in which these limits are exceeded in either direction. It is to be observed, however, that diminishing the length is apt to increase the abrasion unless the duty is very light indeed, while increasing it increases the durability while not affecting the friction, unless the shaft bends.

There are special cases in which within certain limits the proportions of journals are nearly uniform in practice; thus the length of engine crank-pin bearings rarely exceeds once and a half times the diameter, while the main shaft bearings are often similarly limited in width from the exigencies of designing the engine so that the eccentric shall come in line with the slide-valve spindle. In the case of crank-pins the pin cannot be held sufficiently rigidly to prevent spring or flexure; hence it is desirable to limit its length so that its pressure shall be as short a leverage as possible to the crank. The solid bearings in the framing of machines usually admit of room enough to make their lengths three or four times the diameter. Again, in the case of line shafting, boxes having a length equal to three or four times the diameter may be employed, providing that the alignment be made correct, or that the boxes are self-adjusting. But in all cases the longer the bearings the greater the necessity for correct alignment, so that the axis of the bearing bore may be in line with the axis of the shaft, the error manifestly increasing with the length of the bearing.

Fig. 2504Fig. 2504.

Fig. 2504.

Fig. 2505Fig. 2505.

Fig. 2505.

Placing two Cranks on a Shaft so that their Centre Lines shall stand at a Right Angle.—It is obvious that the keyways in both the crank and the shaft must be cut accurately in their proper positions, because it is a tedious operation to file out the sides of the keyways when the cranks are placed upon the shaft. To mark the keyways in the absence of any tools or appliances specially designed for the purpose we proceed as follows: Placing the shaft upon a marking-off table, we plug up the centres upon which the shaft has been turned by driving a piece of lead in them, leaving the surface level with those of the shaft; and then from the perimeter of the shaft we carefully mark, upon the lead plugs, the centres of the shaft. From this centre we describe a circle whose diameter will be equal to the required widths of the keyway, and then taking a square we place its stock upon the face of the marking-table, and bringing the edge of the blade even with the edge of the circle, we mark a perpendicular line upwards from the circle to the perimeter of the shaft, and then draw a similar line on the other side of the circle, as shown inFig. 2504, in whicharepresents the shaft andbthe circle,cthe perpendicular line struck on one side of the circle, anddthe square placed upon the marking-tablee, in position to mark the line on the other side of the circle,fandgbeing wedges to keep the shaftafrom moving its position upon the table. We next mark with a scribing-block or surface gauge the depth of the keyway as denoted by the lineh, and the marking at that end of the shaft is completed. Passing to the other end of the shaft we find the centre of the shaft, and describe around it a circle equal in diameter to the required widthof keyway, and from the edges of the circle to the perimeter of the shaft draw two lines with a scribing-block, as shown inFig. 2505,arepresenting the shaft,bthe circle,c dthe breadth of the keyway,ethe marking-off table,fandgthe wedges, andhthe depth of the keyway, which must, in this case, be marked with a square resting on the table.

If, however, the shaft is too heavy or large to be placed on a marking-off table, we may proceed as follows: Strike as before the circleb,Fig. 2504, equal in diameter to the required width of keyway, and adjust a straight-edge held firmly against the end face of the shaft, so that its upper edge is coincident with the perimeter of this circle, while the straight is horizontally level-tested by a spirit-level. Draw a line along the shaft face, using the straight-edge as a guide. This will give us the linecinFig. 2505. By a similar process the lined,Fig. 2505, may be drawn. At the other end of the shaft similar lines, but standing vertical, may be marked, which will give the positions of the keyways.

Fig. 2506Fig. 2506.

Fig. 2506.

We have now marked off on the end faces of the shaft a keyway at each end, one standing at a right angle to the other; but it must be borne in mind that we have paid no attention as to which crank shall lead; that is to say, suppose inFig. 2506aandbrepresent cranks placed upon the shaftc, and running in the direction indicated by arrowd, it is evident that the crankbleads in the direction in which the engine is to run, and hence the keywayestands in advance of the keywayf; and therefore, as shown in the figure, the right-hand crank leads. To have made the left-hand crank lead, when the engine runs in the direction of the arrowd, we should, supposing the keywayfto be already cut, have to cut the keywayeon the directly opposite side of the shaft; or, what is the same thing, supposing the keywayeto be already cut, the keywayfwould require to be cut on the diametrally opposite side of the shaft. It is obvious that if the engine ran in the direction of the arrowg, the left-hand crank would lead, supposing in each case the cylinders to stand ath. Here it may be necessary to explain the manner of determining which is the right-hand and which the left-hand crank. Suppose then that the figure represents a locomotive crank, the cylinders being ath, then as the engineer stands in the cab, facing his engine,awill be the left-hand andbthe right-hand crank. It is usual in locomotives to make the left-hand crank lead when the engine is running forward, the practical difference being, that if the workman were by mistake to make the right-hand crank lead, the engine would run forward when the reversing lever was placed to run backward, andvice versâ. It makes no difference whether the shaft can be turned end for end or not: if the right or left crank is required to lead when the crank is required to revolve in a given direction the keyways in the shaft must be marked off in the relative positions on the shaft necessary to obtain that result.

The keyways may be carried along the circumference of the shaft by a square applied to its end face, or if that face is not flat by the ordinary keyway marking tool.

Fig. 2507Fig. 2507.

Fig. 2507.

To mark off the keyways in the cranks, we place a centre-piece in the bore of the crank, as shown inFig. 2507, in whicharepresents a crank having a centre-piece of sheet ironbplaced in the bore. On the face of this centre-piece we mark the centre of the hole into which it fits, and from that centre we describe the circlec, which must be of exactly same diameter as the crank-pin if it is in its place, or otherwise of the crank-pin hole. We then draw the linesdande, using as a guide a straight-edge placed one end upon the crank-pin journal, or even with the edge of the crank-pin hole, as the case may be, and the other end (of the same edge of the straight-edge) exactly even with the circumference of the circlec. Fromdandewe find the centre of the circlef, which must be central betweendande, and whose diameter must be exactly equal to the required width of keyway; and we then mark the circleg, describing it from the centre of the hole, and therefore of the circlec. By drawing the lineshandi, which must be even with the circumference of the circlesfandg, using a straight-edge as a guide, we shall obtain the correct position for the keywayk, and the whole of the keyways may be cut, care being taken to cut them quite true with the lines, and of an exact equal width.

To put the cranks on the shaft, first provide a temporary key, a close fit on the sides, but clear top and bottom, so that it will bind just easily on the sides of the keyways in both the shaft and the crank. The shaft must be placed and wedged with its keyway downwards, so that in putting the crank on, the pin end may hang downwards, which will render it more easy both to put on, handle, and adjust. As soon as the shaft has entered the crank, say a quarter of an inch, we must insert the temporary key (which may have its end edges well tapered off to assist the operation of entering it) sufficiently far into the keyway of the shaft that it willnot fall out, and we may then proceed to put the crank on the shaft to the necessary distance, keeping the temporary key sufficiently far in the keyway to enable it to act as a guide—that is to say, up to at least half the length of the keyway.

Fig. 2508Fig. 2508.

Fig. 2508.

Fig. 2509Fig. 2509.

Fig. 2509.

To put on the second crank, we first place the shaft so that the crank already on stands exactly horizontal, setting it by placing a spirit-level, as shown inFig. 2508, in whicharepresents either the crank-pin journal or the crank-pin hole in the crank, andba circle struck on the end face of the shaft and from its centre, the diameter of the circlebbeing exactly the same as that ofa. If then we so adjust the position of the crank that a spirit-level applied to the exact circumferences of the circlesaandbstands level, the crank will stand level, and we have only to put the second crank on with its centre-line standing perpendicular, and the two cranks will be at a right angle one to the other. We now proceed to put on the second crank, pursuing the same method employed in putting on the first one, save that the temporary key need not be inserted so far into the keyway, because, if the keyways have been cut the least out of true, it will make a great difference at the crank-pin, because of the increased distance of the latter from the centre of the crank-shaft. As soon as the second crank is placed to its position on the shaft we must ascertain if it stands vertical, which we may do by applying the spirit-level as shown inFig. 2509, bringing its edges exactly fair with the edges of the circlesaandb, and moving the crank until the bubble of the level stands true, and taking out the temporary key if it is necessary to adjust the crank at all.

If, however, the crank is to be forced on by hydraulic pressure, this latter adjustment should be made when the crank is just sufficiently far on the crank shaft to enable it to bind enough to well support its own weight, to facilitate which the end of the shaft is sometimes slightly tapered for a very short distance—a practice which is sometimes rendered unnecessary by reason of there being attachments fitted to the hydraulic presses which of themselves adjust the position of the cranks, and insure their being at a right angle one to the other.

After the cranks are on their places the keys may be fitted, care being taken that, if the crank last put on had to be moved to adjust it, the sides of the keyways be filed even, otherwise driving the key will tend to move the crank.

Fitting Engine Cylinders.[35]—When engine cylinders are made in quantities, as in locomotive building shops, a great deal of the fitting work is saved by the machine work; but when a single cylinder or a pair of cylinders only are to be fitted up it will not pay to make jigs and appliances; hence, they are usually fitted up entirely by hand. The first thing to do is to mark off all the holes requiring to be drilled, and have the drilling done.

[35]From the “Complete Practical Machinist.”

[35]From the “Complete Practical Machinist.”

In marking the holes in the cylinder covers it is to be noted whether that part of the cylinder cover which fits into the cylinder has a portion cut away to give room for the steam to enter (as is usually the case), and if so, first mark a line across the inside flange of the cover, parallel to the part cut away, and then scribe each end of the line across the edge of the flange. Then mark a similar line across the cylinder end, parallel to the steam port where it enters the cylinder, and scribe each end of this line across the cylinder flange, so that, when the cylinder cover is placed into the cylinder and the lines on the flanges of the cylinder and the cover are placed parallel to each other, the piece cut away on the cover will stand exactly opposite to the steam port, as it is intended to do. The cover may then be clamped to the cylinder, and holes of the requisite size for the tap (the tapping holes, as they are commonly called) may be drilled through the cover and the requisite depth into the cylinder at the same time.

Fig. 2510Fig. 2510.

Fig. 2510.

The cylinder covers must, after being drilled, as above, be taken from the cylinder, and the clearing drill put through the holes already drilled so that they will admit the bolts or studs, the clearing holes being made1⁄16inch larger than the diameter of the bolts or studs. The steam chest may be either clamped to the cylinder, and tapping holes drilled through it and the cylinder (the same as done in the case of the covers), or it may have its clearing holes drilled in it while so clamped, care being taken to let the point of the drill enter deep enough to pass completely through the steam chest, and into the cylinder deep enough to cut or drill a countersink nearly or quite equal to the diameter of the drill. If, however, the steam chest is already drilled, it may be set upon the cylinder, and the holes marked on the cylinder face by a scriber or by the end of a piece of wood or of a bolt, which end may be made either conical or flat for the purpose, marking being placed upon it; so that, by putting it through the hole of the chest, permitting it to rest upon the cylinder face (which may be chalked so as to show the marks plainly), and then revolving it with the hand, it will mark the cylinder face. This plan is generally resorted to when the holes in the chest are too deep to permit of being scribed. To true the back face, round a hole against which face the bolt head or the face of the nut may bed, in cases where such facing cannot be done by a pin countersink or a cutter used in a machine, the tool shown inFig. 2510may be employed,abeing a pin provided with a slot at one end to admit the cutterb, which is held fast by the keyc, and is also provided with a square endf, by which it may be turned or revolved by means of a wrench, and with a thread to receive the nute,dbeing a washer; so that, by screwing up the nute, the cutting-edges of the cutter are forced against the cylinderg, and will, when revolved, cut the face, against which they are forced, true with the hole in the cylinder through which the pinais passed.

After the drilling the cylinder should be placed on end and allthe holes that can be got at should be tapped. Then the cover joint, supposing it to be a ground joint, should be made according to the directions given for making ground joints, when the cylinder may be turned upside down and the other cover fitted. Then the holes for the cylinder cocks and for the steam and exhaust pipe should be tapped, and the faces for these pipe joints fitted as required.

The steam-chest holes should then be tapped and the ports marked out and chipped and filed to the lines, such lines being marked as described in the remarks on lining out work.

The face for the steam-chest seat and the steam-chest cover may then be prepared by filing, scraping, or grinding, as may be required, and simultaneously the valve seat and valve face may be fitted. If the cylinders are to be bolted together as in a locomotive, the holes for holding them together should be drilled about1⁄64inch smaller than the bolts, so that they may be reamed out together after the cylinder bores are aligned.

One cylinder face should be marked and drilled first, and the two cylinder bores being set to align true the other cylinder should be marked from the other, or if there is a saddle between the two cylinders both cylinders may be marked and drilled, and also the holes on one side of the saddle. Temporary bolts may then be put through the holes that are drilled in the cylinder and saddle and clamps used to hold the undrilled cylinder to the saddle, when the cylinder bores may be set true one to the other, and the holes on the remaining side of the saddle marked through those already drilled in the cylinder. These latter holes being drilled, temporary bolts of smaller diameter than the holes (so as to give room to move the cylinders to align their bores) may be used to bolt the cylinders together while their bores are accurately aligned, which alignment may be effected asfollows:—

Fig. 2511Fig. 2511.

Fig. 2511.

The bores should be set as near true as possible, tested by a spirit-level rested on the bore and placed as near true as can be judged with the length of the bore, and a plumb rule may be applied to the end faces where the cover joint comes. Then a straight-edge should be applied, as inFig. 2511, in whichsis the straight-edge, andcanddthe two cylinder ends.

The method of testing is shown inFig. 2511, where the straight-edgesis shown in three positions, marked respectively 1, 2, and 3 at one end, andf,g, andhat the other.

The first test should be made by simply placing the straight-edge across the two cylinder faces, as atg3; and when the cylinders are set apparently true and the spirit-level applied to the respective bores shows them true, greater accuracy may be secured by placing the straight-edge in position 1h, being pressed firmly to its cylinder face with end 1 above the other cylinder face. Then, while endhis held firmly to its cylinder, let end 1 lower until it passes entirely over the face of cylinderc, whose face it should just touch; if on meetingcthe straight-edge strikes it or does not meet it, further adjustment of the cylinder positions is necessary. Next place the straight-edge in position 2, pressing endffirmly against cylinderd, and passing the other end entirely over the end of cylinderc, which it should just touch, and no more. It will then be necessary to repeat this process, pressing the straight-edge against cylindercand testing the other end with cylinderd, and the cylinders thus set will be (if the end faces are true, as they should be, and usually are) more truly aligned than is possible by the use of the spirit-level. This method also brings the end faces of the cylinders in the same plane, so that each piston head will travel central in the length of the cylinder bore, approaching the cylinder covers equally, and therefore keeps the clearance equal. Incidentally, also, this secures accuracy in the cross-head traverse on the guide bars (supposing these bars to be bolted tothe cylinder cover). The holes for bolting the cylinders together may then be reamed and the bolts driven in and screwed up.

Fig. 2512Fig. 2512.

Fig. 2512.

To guide the tap when tapping the cylinder cover and steam-chest holes the guide stands, shown inFig. 2512, should be employed. It is bolted to the cylinder face by the boltb, which passes through a slot in the stand.

The taptis inserted through the two arms of the stand and its end inserted in the hole to be tapped when boltbis tightened up.

The stem of the tap should be of slightly larger diameter than the tap thread, so as to fit in the holes of the guide or stand.

When, however, one end of the guide bars is carried on the cylinder cover, it is necessary when setting that cover to be marked for the drilling, to so set it that the seats for the guide bar ends shall be horizontally level when the cylinder is on the engine; and when setting the bores of the cylinder in line to mark the holes for bolting the cylinders together or to the saddle, this point should also be looked to, as if these seats are not in line the faces of the guide bars will not be in line, and will not, therefore, bed fair to the cross-head guide unless the error is in some way corrected.

It is desirable that these seatings be quite true and in line one with the other on both cylinders, so that if liners require to be made, or if the ends of the bars require to be filed to let the bars together at any time, the surfaces may be filed true to the face of the bar, and thus be set true and to fit the cross-head guides without requiring to put the bars on and off to fit them true by trial.

Fig. 2513Fig. 2513.

Fig. 2513.

Reboring Cylinders in their Places on the Engine.—When a cylinder bore becomes so worn out of cylindrical truth, or becomes grooved or cut, as it is termed, as to require to be rebored, it may be done with the class of boring bar shown inFig. 2513. It consists of a bar having journal bearing in castings which bolt on to the two ends of the cylinder in place of the cylinder covers. On the bar is fitted a sliding head carrying the cutting tool and fed by a screw passing within the bar. To operate the bar and simultaneously the feed screw, the hand-wheel and worm-wheel is employed, giving rotary motion to the worm-wheel which is fast upon the bar. Fast also upon the bar is the inside one of the two small gears shown, which operates the inner of the two small gears shown above it. The outer of the upper gears engages with the outer of the lower ones, the latter being fast upon the feed screw. In the inner pair the lower is of largest diameter, but in the outer pair the upper is the largest, and as a result the outer of the lower rotates the fastest, and hence rotates the feed screw, causing the tool to feed to its cut.

The proportions of these wheels are, first or inside pair, lower wheel 36, upper 37; outside pair, upper 37, lower 36, so that the feed per bar rotation is in amount that produced by moving the outer lower gear a part of a rotation equal to twice the pitch of the teeth, the cutting tool motion depending upon the pitch of the feed screw.

To enable the rapid traverse of the head from end to end of the bar, the upper pair of gears are mounted on an eccentric stud, so that by operating the small handle shown they may be disengaged from the lower feed gears and the feed screw operated direct by means of the handle shown.

In setting such a bar to a cylinder bore it is to be remembered that two methods may be employed. First, the bar may be set to accommodate the cylinder bore, truing it out with as light a cut as possible. In this case the bore of the cylinder may be made out of line with the guide bars and with the centre of the length of the crank-pin journal.

In the second the bar may be set with a view to bore it out in line with the guide bars and crank pin, and then taking as much cut as will be necessary to true the bore.

The latter plan is the preferable of the two, unless the repairs are so extensive as to require the guide bars to be redressed and the main bearing renewed, in which case those parts requiring to be re-aligned, the cylinder may be rebored with a view to take out as little metal as possible, and the other parts set to suit the new bore.

To set the bar true to the guide bars and crank pin, and thus retain the axis of the new bore true with that of the original bore, the bar should be set true with the recessed counterbore at each end of the cylinder, which being unworn remains true.

If, however, only one cylinder cover can be conveniently taken off, the piece of wood will require to fit in the counterbore at the open end, and in the cylinder bore at the closed end of the cylinder; hence we make it large enough for the counterbore, and after having removed the ridge at that end we cut the length of the wood down to fit the cylinder bore, whereas if we made our rest to fit the bore at first we should require to use wedges to makeit fit the counterbore. In some cases holes might be bored near the ends of the rest or fulcrum to serve the same purpose as the notches.


Back to IndexNext