NAUTICAL.CHAPTER V.SUBSIDIARY APPLIANCES.Part III.—The Boat-hook and Punt-pole.—The Life-buoy and Pontoon-raft.

Image unavailable: EGG OF DOG-FISH. PINNA. ANCHORED BOAT. WATER-SNAIL ANCHORED TO WATER-LILY LEAF.

The natural cable which will first suggest itself is evidently that of the Pinna Shell (Pinna pectinata), which fixes its shell to some rock or stone with a number of silk-like threads, spun by itself, and protruding from the base, just as a vessel on a lee shore throws out a number of cables. The threads which compose the “byssus,” as it is called, are only a few inches in length, and apparently slight. They are, however, really strong, and by acting in unison enable the shell, though sometimes two feet in length, to be held firmly to the rock. I may here mention that they have been occasionally woven into gloves, and other articles of apparel, to which their natural soft grey-brown hue gives a very pleasing appearance.

A still more familiar instance of a natural marine cable is given by the common Mussel, which can be found in thousands on almost every solid substance which affords it a hold. Even copper-bottomed ships are often covered with Mussels, all clinging by their natural cables, and it is thought that the cases which sometimes occur of being poisoned by eating Mussels, or “musselled,” as the malady is called by the seafaring population, are due to the fact that the Mussels haveanchored themselves to copper, and have in consequence imbibed the verdigris.

Passingfrom salt to fresh water, we come to a natural cable which is very common, and yet, on account of its practical invisibility, is almost unknown, except by naturalists. I refer to the curious cable which is constructed by the common Water-snail (Limnæa stagnalis), which has already been mentioned in its capacity of a boat.

This creature has a way of attaching itself to some fixed object, such as a water-lily leaf, by means of a gelatinous thread, which it can elongate at pleasure, and by means of which it can retain its position in a stream, or in still water can sink itself to the bottom, and ascend to the same spot. This cable seems to be made of the same glairy secretion as that which surrounds the egg-masses which are found so plentifully on leaves and stones in our fresh waters, and, like that substance, is all but invisible in the water, so that an inexperienced eye would not be able to see it, even if it were pointed out.

Slight, gelatinous, and almost invisible in the water as is this thread, its strength is very much greater than might be supposed. Not only can a mollusc be safely moored in the water by such a cable, but it can be actually suspended in the air, as may be seen from a letter in Hardwicke’sScience Gossipfor 1875, p. 190:—

“Last summer (September 29) I met with the following unusual fact. In a green-house, from a vine-leaf which was within a few inches of the glass ... a slug was hanging by a thread, which was more than four feet in length, not unlike a spider-web, but evidently much stronger.

“The slug was descending by means of this thread, and, as the glutinous matter from the under part of the body was drawn out by the weight of the creature, it was consolidated into a compact thread by the slug twisting itself in the direction of the hands of a clock, the power of twisting being given by the head, and the part of the body nearest the head being turned in the direction of the twist. There was no tendency to turn in the contrary direction. Evidently the thread became hard as soon as it was drawn away from the body.

“By wetting the sides of slips of glass, I secured two specimensof the thread. In one of these, part was stretched, and part quite loose, the latter appearing flat when seen through a microscope. The thread, which was highly elastic, was increased about three inches in a minute. The slug was white, and about an inch and a half in length.”

Nowwe come to the elastic system of the Chain Cable, and find it anticipated in Nature in various ways.

One curious example was that of a Spider, which found its wheel-like net in danger from a tempestuous wind. The Spider descended to the ground, a depth of about seven feet, and, instead of attaching its thread to a stone or plant, fastened it to a piece of loose stick, hauled it up a few feet clear of the ground, and then went back to its web. The piece of stick thus left suspended acted in a most admirable manner, giving strength and support, and at the same time yielding partly to the wind.

By accident the thread became broken, and the stick, which was about as thick as an ordinary pencil, and not quite three inches in length, fell to the ground. The Spider immediately descended, attached another thread, and hauled it up as before. In a day or two, when the tempestuous weather had ceased, the Spider voluntarily cut the thread, and allowed the then useless stick to drop.

A curiousexample of the elastic cable is seen in the egg-case of the Dog-fish, which is given on page35. The egg-case is formed like that of the common skate, and has a projection from each of its angles. But the projections, instead of being mere flattened horns, are lengthened into long elastic strings, tapering towards the ends, and twisted spirally, like the tendrils of a grape-vine.

These tendril-like appendages twist themselves round seaweeds and other objects, and, on account of their spiral form, can hardly ever be torn from their attachments. Sometimes after a storm the egg is thrown on the shore, still clinging to the seaweed, but to find an egg detached is very rarely done.

I have already mentioned the tendrils of the vine, and their great strength. The reader may remember the corresponding cases of the Pea and the Bryony, the latter being a most remarkable example of the strength gained by the spiral form.It clambers about hedges, is exposed to the fiercest winds, has large and broad leaves, and yet such a thing as a Bryony being blown off a hedge is scarcely, if ever, seen. I never saw an example myself, though I have had long experience in hedges.

Anotherexcellent example of this principle is found in the Vallisneria plant, which of late years has become tolerably familiar to us through the means of fresh-water aquaria, though it is not indigenous to this country.

In this plant the elastic power of the spiral cable is beautifully developed. It is an aquatic plant, mostly found in running waters, and has a most singular mode of development. It is diœcious—i.e.the male, or stamen-bearing, and the female, or pistil-bearing flowers, grow upon separate plants.

It has to deposit its seeds in the bed of the stream, and yet it is necessary that both sets of flowers should be exposed to the air and sun before they become able to perform their several duties. Add to this the fact that the male flower is quite as small in proportion to the female as is the case with the lac and scale insects, and the problem of their reaching each other becomes apparently intricate, though it is solved in a beautifully simple manner.

Fertilisation cannot be conducted by means of insects, as is the case with so many diœcious terrestrial plants, and it is absolutely necessary that actual contact should take place between them. This difficult process is effected as follows:—

The female flowers are attached to a very long spiral and closely coiled footstalk, and, when they are sufficiently developed, the footstalk elongates itself until the flower rests on the surface of the water, where it is safely anchored by its spiral cable, the coils yielding to the wavelets, and keeping the flower in its place.

Meanwhile the tiny male flowers are being developed at the bottom of the river, and are attached to very short footstalks. When they are quite ripe they disengage themselves from their footstalks, and rise to the surface of the river. Being carried along by the stream, they are sure to come in contact with the anchored female flowers. This having been done, and the seeds beginning to be developed, the spiral footstalk again coils itself tightly, and brings the seeds close to the bed of the stream, where they can take root.

There are other numerous examples, of which any reader, even slightly skilled in botany, need not be reminded, most of them being, in one form or another, modifications of the leaf or the petal, which, after all, are much the same thing. The vine and passion-flower are, however, partial exceptions.

I may here mention that soon after the failure of the first Atlantic telegraph cable, an invention was patented of a very much lighter cable, enclosed in a tube of india-rubber, and being coiled spirally at certain distances, so that the coils might give the elasticity which constitutes strength. The cable was never made, its manufacture proving to be too costly; but the idea of lightness and elasticity, having been evidently taken from the spiral tendrils of the bryony, was certainly a good one, and I should have wished to see it tried on a smaller scale than the Atlantic requires.

Asa natural consequence, after the cable comes the Anchor, which in almost every form has been anticipated by Nature, whether it be called by the name of anchor, kedge, drag, or grapnel.

On the accompanying illustrations are shown a number of corresponding forms of the Anchor, together with a few others, which, although they may not necessarily be used in the water, are nevertheless constructed on the same principle—i.e.for the purpose of grappling.

Image unavailable: SPICULES OF SYNAPTA. ANCIENT ANCHOR.

One of the most startling parallels may be seen on the right hand of the illustration, the figure having been drawn from an old Roman coin. On the other side of the same illustrationmay be seen an anchor so exactly similar in form, that the outline of the one would almost answer for that of the other. This object is a much-magnified representation of a spicule which is found on the skin of the Synapta, one of the so-called Sea-slugs, which are so extensively sold under the name of Bêche de Mer. It forms one of the curious group called the Holothuridæ.

Each of these anchors is affixed to a sort of open-worked shield, as shown above, and on the left hand; and it is a curious fact that in the various species of Synapta the anchor is rather different in form, and the shield very different in pattern. They are lovely objects, and I recommend any of my readers who possess a microscope to procure one. They need a power of at least 150 diameters to show their full beauties.

An ordinary Grapnel is here shown, and in the corresponding position on the opposite side is an almost exactly similar object, except that it is double, having the grapnel at both ends of the stem. This is a spicule of a species of sponge, and is one of the vast numbers of which the sponge principally consists.

Image unavailable: LERNENTOMA. ECHINOCOCCUS. SPONGE-SPICULE. GRAPNEL.

Next to the sponge-spicule is a still more perfect example of a natural Grapnel. This is the head of an internal parasite called Echinococcus, which holds itself in its position by means of the circle of hooks with which the head is surrounded. These hooks are easily detached, and have a curious resemblance to the claw of the lion or tiger.

On the left-hand side is a representation of a parasitic crustacean animal called Lernentoma, which adheres to various fishes, and is mostly found upon the sprat, clinging to the gills by means of its grapnel-shaped head.

On the right hand of the accompanying illustration is an ice-anchor, copied from one of those which were taken out in theArctic expedition of 1875. Opposite is the skull of the Walrus, the tusks of which are said to be used for exactly the same purpose. Below are ice-hooks, also used for the same expedition.

Image unavailable: TUSKS OF WALRUS. ICE-ANCHOR AND ICE-HOOKS.

The next illustration exhibits a butcher’s hook and a common porter’s hook, by which he lifts sacks on his back; and opposite them are some sponge-spicules, the similarity of which in form is so remarkable that the former might have been copied from the latter.

Image unavailable: SPONGE-SPICULES. BUTCHER’S HOOK. PORTER’S HOOK.SPONGE-SPICULES. BUTCHER’S HOOK. PORTER’S HOOK.

Image unavailable: MUSHROOM. MUSHROOM KEDGE.MUSHROOM. MUSHROOM KEDGE.

Our next sketch shows a remarkable example of similitude in form. There are certain small anchors called Kedges, which are very useful for mooring a boat where no great power of resistance has to be overcome, and a large anchor would be cumbersome. One of these is called, from its shape, the “Mushroom Kedge,” and is very useful, as, however it may bedropped, some part of the edge is sure to take the ground. This Kedge is shown on the right hand of the illustration, and the Mushroom, from which its shape was borrowed, is seen on the left.

Wenow come to some more examples of the principle of the Grapnel, some of which are applied to nautical, and others to terrestrial objects.

Image unavailable: EAGLE-CLAW. FLESH-HOOK.EAGLE-CLAW. FLESH-HOOK.

The right-hand upper figure represents the “Flesh-hook,” used for taking boiled meat out of the caldron, so familiar to us by the reference to it in Exodus xxvii. 3, and the still better-known allusion to its office in 1 Samuel ii. 13, 14. In the former passage, even the material, brass, which was really what we now call bronze, is mentioned, and it is a curious fact that all the specimens in the British Museum, from one of which the drawing was taken, are made of bronze. I need hardly state that the hollow handle is meant to receive a wooden staff.

On comparing this figure with that of the Eagle’s foot on the opposite side, the reader cannot but be struck with the exact resemblance between the two. Indeed, there is very little doubt that the flesh-hook was intentionally copied from the foot of some bird of prey. Perhaps the Osprey would have furnished even a better example than the Eagle, the claws being sharper and more boldly curved, so as to hold their slippery prey the better.

Onthe left hand of the next illustration is a figure of the seed-vessel of the Grapple-plant of Southern Africa, drawn from a specimen in my collection. The seed-vessel is several inches in length, and the traveller who is caught by a single hook had better wait for assistance than try to release himself. The stems of the plant are so slender, and the armed seed-vessels sonumerous, that in attempting to rescue one portion of the dress, another portion becomes entangled, and the traveller gets hopelessly captured. Besides the hooks of the seed-vessels, the branches themselves are armed with long thorns, set in pairs. The scientific name of this plant isUncinaria procumbens, the former word signifying “a hook,” and the latter “trailing.” It is also known by the popular name of Hook-plant.

Image unavailable: GRAPPLE-PLANT. DRAG.GRAPPLE-PLANT. DRAG.

In the late Kafir wars the natives made great use of this and other plants with similar properties, their own naked, dark, and oiled bodies slipping through them easily and unseen, while the scarlet coats of the soldiers were quickly entangled, and made them an easy mark for the Kafir’s spear. In this way many more of our soldiers were killed by the spears than by the bullets of their enemies.

Opposite to the Grapple-plant is shown the common Drag, which is utilised for so many purposes. Generally it is employed for recovering objects that have sunk to the bottom of the water, and its use by the officers of the Humane Society is perfectly well known, the Drag being sometimes affixed to the end of a long pole, like the flesh-hook already described, and sometimes tied to a rope.

It can also be used as an anchor, after the manner of a kedge, and has been often employed in naval engagements for the purpose of drawing two ships together, and preventing the escape of the vessel which is being worsted. My relative, the late Admiral Sir J. Harvey, K.B., used drags in this manner, and secured two French ships, one on either side, namely,L’AchilleandLe Vengeur. The first was sunk, and the second captured.

The Boat-hook and its varied Uses.—The Earth-worm and the Serpula.—Microscopic Boat-hooks.—The Life-belt.—Life-boats and their Structure.—Uses of Cork.—Wine Corks made serviceable.—The Life-collar.—Portuguese Man-of-war.—Captain Boyton’s Life-dress.—The Life-raft.—Victualling a Yacht and Boat.—The Janthina and its Air-vessels.—Cask-pontoon—Pottery-raft and its Uses.

The Boat-hook and its varied Uses.—The Earth-worm and the Serpula.—Microscopic Boat-hooks.—The Life-belt.—Life-boats and their Structure.—Uses of Cork.—Wine Corks made serviceable.—The Life-collar.—Portuguese Man-of-war.—Captain Boyton’s Life-dress.—The Life-raft.—Victualling a Yacht and Boat.—The Janthina and its Air-vessels.—Cask-pontoon—Pottery-raft and its Uses.

AS all rowing men know, an indispensable appliance to the boat is the Boat-hook, which can be used either as a pole, wherewith to push the boat along, or as a grapnel, by which it can be drawn towards the shore or a ship. As the latter portion has been discussed at the close of the preceding chapter, we may proceed to the former.

Every one knows how a boat may be propelled by a pole pressed against the bank or the bottom of the water, and that there are certain boats, called punts, which are propelled in no other way.

Now, the punt-poles and boat-hooks, of which some examples are given in the accompanying illustration, have long been anticipated in Nature, there being many creatures which have no other mode of progression; such, for example, as the common Earth-worm, which pushes itself along by certain bristles which project from the rings of which the body is composed, and which have the power of extension and contraction to a wonderful extent. As, however, I shall advert to these in another part of the work, I will content myself at present with a single example, namely, the beautiful marine worm known as the Serpula.

This worm lives in a shelly tube, which is lined with a delicate membrane, up and down which it passes with ease, ascending slowly, but generally descending with such wonderful rapidity that the eye cannot follow its movements. The latter movement will be explained in a subsequent part of the book, and we will at present only treat of the former.

Image unavailable: PUSHING SPIKES OF SERPULA. BOAT-HOOKS AND PUNT-POLES.PUSHING SPIKES OF SERPULA. BOAT-HOOKS AND PUNT-POLES.

If the creature be removed from the tube, and carefully examined, a number of projections will be seen, in each of which is a perforation. If the animal be pressed, a slight glass-like bristle passes through the perforation, and can easily be removed. If properly treated, and placed under a high power of the microscope, the tiny bristle resolves itself into the remarkable object which is shown on the left hand of the illustration.

It consists of a number of spear-like rods, each having a straight shaft, and a curved and pointed tip, deeply barbed on the inner portion of the curve. These curious bundles of spicules can be protruded or retracted at pleasure, and, as they are all directed backwards, it is evident that when they are pushed against the sides of the tube, either the points or the barbs must catch against the membrane which lines the tube, and so propel the animal upwards. When it wishes to descend, it uses another set of implements, and withdraws the first within their sheaths.

This is exactly analogous to the mode of progression employed by punters, who, after they have placed the pole against the bed of the stream, and run along the punt so as to push it as fast as possible, immediately withdraw the pole, and take it to the head of the punt, ready for another push. This, as the reader will see, is exactly the plan pursued by the Serpula in lengthening itself when it wishes to advance, and so to pressits spicules against the sides of its tube, and in shortening itself and withdrawing the spicules ready for another push.

Anotherneedful accessory of vessels now comes before us, namely, the capability of forming rafts or life-belts, which will float under any circumstances. Here, again, every human invention of which I know has been anticipated by Nature. Take, for example, the familiar instance of the cork life-belt and the cork edgings of the life-boat. Both are constructed on the same principle,i.e.the maintenance of cells which are filled by air instead of water, and are impervious to the latter.

The material most used for this purpose is cork, and life-belts constructed of it have long been in well-deserved use, the cork-bark having the property of holding much air and excluding water. Many of our life-boats are furnished with a broad and thick streak of cork, so that even if the boat be filled with water and upset, she will right herself and swim. I regret to say that many of the so-called “life-belts” which are offered for sale ought rather to be called “death-belts,” they having been found to be filled with hay and straw, with only a few shavings of cork just under the covering of the belt.

Indeed, so buoyant is this substance that a very efficient belt can be made by stringing together three or four rows of ordinary wine corks, and tying them round the neck like a collar. Under these circumstances it is simply impossible to sink, and though any one may collapse from exhaustion, drowning is almost out of the question. The now well-known cork mattress, which is used in many ships, is another example of the same principle.

Lately there has been invented a “life-collar,” which possesses similar advantages, but occupies less space when not wanted. It is nothing more than a tube of caoutchouc, which can be inflated at pleasure, and tied round the neck. The ordinary life-belt goes round the waist, and needs much more material without obtaining a better result, which is simply the keeping of the mouth and nostrils out of the water.

Perhaps the most buoyant of living beings is the Portuguese Man-of-war (Physalis pelagicus), which floats on the surface of the ocean like a bubble. It can at pleasure distend itself with air and float, or discharge the air and sink.

Now, there is a very remarkable swimming dress, which,though not entirely invented, was at least perfected by Captain Boyton, and which, as it enabled the wearer to cross from France to England under rather unfavourable circumstances, is clearly a most valuable invention.

Image unavailable: PORTUGUESE MAN-OF-WAR. CAPTAIN BOYTON’S LIFE-DRESS.PORTUGUESE MAN-OF-WAR. CAPTAIN BOYTON’S LIFE-DRESS.

Whether the inventor knew it or not I cannot say, but the Boyton life-dress is simply a modification of the Physalis, being capable of dilatation with air at will.

Somuch for the individual life-belt, and we will now pass to those which are intended to sustain more than one individual. It has almost invariably been found that when a ship has been wrecked on a rock, or stove in by the sea, that, although there may be plenty of boats, there is great difficulty in getting them into the water rightly.

Now, if parts of the ship itself could be made of materials which could not be sunk except by enormous pressure, and which might be released by a touch if the vessel were sinking, it is evident that many lives would be saved which have now been lost.

And if such movable parts of the vessel were supplied with water and provisions in air-tight cases, there is no doubt that the number of “missing” ships would be very greatly diminished. I remember an instance where a yacht was “hung up” on a mud-bank, whence there was no escape, for twenty-four hours, and there was one sandwich on board to be divided among the owner, two men, and a boy. Of course the boy had the sandwich, and the men sustained themselves as well as they could with tea, of which there was, fortunately, a canister on board. As it was, they were some thirty-six hours without food.

After such an experience the owner had special lockers made in the yacht and her boat, containing biscuit, potted meats, water,wine, spirits, tobacco, tea, an “etna” for heating the water, and matches. Of course these were on a smaller scale in the boat; but several thick rugs were also stowed away, in case of being separated from the yacht at night. It so happened that they were never needed; but the sense of security which they imparted was worth ten times the expense and trouble, which included a careful inspection of all the stores before each voyage.

In Nature there is just such a raft as is needed, capable of carrying a heavy freight, and which cannot be upset. And it is rather remarkable that it has been unconsciously imitated in various parts of the world.

Image unavailable: JANTHINA AND AIR-RAFT. CASK-PONTOON. POTTERY-RAFT OF THE NILE.JANTHINA AND AIR-RAFT. CASK-PONTOON. POTTERY-RAFT OF THE NILE.

This is the singular apparatus attached to the Violet Snail (Janthina communis), which is common enough in the Atlantic, and derives its name of Violet-shell from its beautiful colour. The chief interest, however, centres in the apparatus which is popularly called the “raft,” and which sustains the shell and eggs. It is made of a great number of air-vessels, affixed closely to each other, and by the curious property of bearing its cargo slung beneath it instead of being laid upon it.

Beneath the raft are the eggs, or rather, the capsules which contain the eggs, and at one end is the beautiful violet shell itself. The floating power of the raft is really astonishing, and even in severe tempests, when it is broken away from the animal, the raft continues to float on the surface of the waves, bearing its cargo with it.

On the opposite side of the illustration are two examples of rafts constructed so exactly on the same principle as that of the Violet Snail, that they both might have been borrowed from it.

The upper is the kind of raft which has often been constructed by sailors when trying to escape from a sinking ship, or by soldiers when wishing to convey troops across ariver, and having no regular “pontoons” at hand. It is made simply by lashing a number of empty casks to a flooring of beams and planks.

The amount of weight which such a structure will support is really astonishing, as long as the casks remain whole, and to upset it is almost impossible. Even cannon can be taken across wide expanses of water in perfect safety, and there is hardly anything more awkward of conveyance than a cannon, with its own enormous and concentrated weight, and all the needful paraphernalia of limber, ammunition (which may not be wetted, and of immense weight), horses, and men.

Yet even this heterogeneous mass of living and lifeless weight can be carried on the cask-raft, which is an exact imitation of the living raft of the Violet Snail.

Beneaththe cask-pontoon is to be seen a sketch of a very curious vessel which is in use on the Nile, and I rather think on the Ganges also, though I am not quite sure. It is formed in the following manner:—

In both countries there are whole families who from generation to generation have lived in little villages up the river, and gained their living by making pottery, mostly of a simple though artistic form, the vessel having a rather long and slender neck, and a more or less globular body.

When a man has made a sufficient number of these vessels, he lashes them together with their mouths uppermost, and then fixes upon them a simple platform of reeds. The papyrus was once largely used for this purpose, but it seems to be gradually abandoned.

He thus forms a pontoon exactly similar in principle with the cask-pontoon which has just been described. Then, taking his place on his buoyant raft, he floats down the river until he comes to some populous town, takes his raft to pieces, sells the pots and reeds, and makes his way home again by land.

Analogy between War and Hunting.—The Pitfall as used for both Purposes.—African Pitfalls for large Game, and their Armature for preventing the Escape of Prey.—Its Use in this Country on a miniature scale.—Mr. Waterton’s Mouse-trap.—Pitfall of the Ant-lion, and its Armature for preventing the Escape of Prey.—The Club and its Origin.—Gradual Development of the Weapon.—The “Pine-apple” Club of Fiji.—The Game of Pallone and the “Bracciale.”—The Irish Shillelagh.—Clubs and Maces of Wood, Metal, or mixed.—The Morgenstern.—Ominous Jesting.—Natural Clubs.—The Durian, the Diodon, and the Horse-chestnut.—The Sword, or flattened and sharpened Club.—Natural and artificial Armature of the Edge.—The Sword-grass, Leech, and Saw-fish.—Spears and Swords armed with Bones and Stones.—The Spear and Dagger, and their Analogies.—Structure of the Spear.—The Bamboo as a Weapon of War or Hunting.—Singular Combat, and its Results.

Analogy between War and Hunting.—The Pitfall as used for both Purposes.—African Pitfalls for large Game, and their Armature for preventing the Escape of Prey.—Its Use in this Country on a miniature scale.—Mr. Waterton’s Mouse-trap.—Pitfall of the Ant-lion, and its Armature for preventing the Escape of Prey.—The Club and its Origin.—Gradual Development of the Weapon.—The “Pine-apple” Club of Fiji.—The Game of Pallone and the “Bracciale.”—The Irish Shillelagh.—Clubs and Maces of Wood, Metal, or mixed.—The Morgenstern.—Ominous Jesting.—Natural Clubs.—The Durian, the Diodon, and the Horse-chestnut.—The Sword, or flattened and sharpened Club.—Natural and artificial Armature of the Edge.—The Sword-grass, Leech, and Saw-fish.—Spears and Swords armed with Bones and Stones.—The Spear and Dagger, and their Analogies.—Structure of the Spear.—The Bamboo as a Weapon of War or Hunting.—Singular Combat, and its Results.

THE two subjects which are here mentioned are practically one, the warfare being in the one case carried on against mankind, and in the other against the lower animals, the means employed being often the same in both cases.

Oneof the simplest examples of this double use is afforded by the Pitfall, which is employed in almost every part of the world, and, although mostly used for hunting, still keeps its place in warfare.

On the right hand of the accompanying illustration is shown a section of the Pitfall which is so commonly used in Africa for the capture of large game. It is, as may be seen, a conical hole, the bottom of which is armed with a pointed stake. Should a large animal fall into the pit, the shape of the sidesforces it upon the stake, by which it is transfixed. Even elephants of the largest size often fall victims to this simple trap. It is only large enough to receive the fore-legs and chest, but that is quite sufficient to cause the death of the animal, the stake penetrating to the heart.

Many a hunter has fallen into these traps, and found great difficulty in escaping, while some have not escaped at all. Indeed, in many parts of Southern Africa, when part of one tribe is about to visit another, the pitfalls are always unmasked, lest the intended guests should fall into them.

Image unavailable: PITFALL OF ANT-LION FOR CATCHING INSECTS. AFRICAN PITFALL FOR CATCHING LARGE GAME.PITFALL OF ANT-LION FOR CATCHING INSECTS. AFRICAN PITFALL FOR CATCHING LARGE GAME.

Even without the spike, the elephant would scarcely be able to save itself, owing to its enormous weight, unless helped out by its comrades before the hunters came up. Indeed, many pitfalls are intentionally made for this purpose, and are of a different shape,i.e.about eight feet in length and four in breadth.

In those which are made for the capture of the giraffe, the pit is very deep, and the place of the stake is occupied by a transverse wall, which prevents the feet of the captive from touching the ground, and keeps it suspended until the hunters can come and kill it at leisure.

Even in Belgium and our own country the pitfall is in use. When the field-mice were devastating the districts about Liege some years ago, their ravages were effectually checked by pitfalls, in which they were caught by bushels, the pitfalls being simple holes some two feet deep, and made wider below than above.

The late Mr. Waterton contrived to rid his garden of field-mice by pitfalls constructed on the same principle, though more permanent. Finding that the little animals made greathavoc among his peas just as they were starting out of the ground, he buried between the rows a number of earthen pickle-jars, sinking them to the level of the ground. He then rubbed the inside of the neck with bacon, and left them. The mice stooped down to lick off the bacon, fell into the jars, and, the neck being narrow and the sides slippery, they could not get out again.

Onthe left hand of the illustration is the section of a pitfall made by the well-known Ant-lion (Myrmeleo), of which there are several species. The history of this wonderful insect is so familiar to us that it need not be repeated at length. Suffice it to say that it digs conical pitfalls in loose sandy soil, and that it places itself at the bottom of the pit, securing the insect victims with its jaws just as the larger animals are secured by the stake of the human hunter.

It makes no false cover, as does the human hunter, but it always chooses soil so loose that if an insect approach the edge, the sand gives way, and it goes sliding down into the pit, whence its chance of escape is very small, even were there no deadly jaws at the bottom ready to receive it.

Thesimplest of all offensive weapons is necessarily theClub. At first, this was but a simple stick, such as any savage might form from a branch of a tree by knocking off the small boughs with a stone or another stick. Such clubs are still used in Australia, and I have several in my collection.

Then the inventive genius of man improved their destructive power by various means. The most obvious plan was to add to the force of its blow by simply making one end much thicker and heavier than the other. This is done in the “Knob-kerry” of Southern Africa, and it is worthy of remark that in Fiji a weapon exists so exactly like the short knob-kerry of Africa, that an inexperienced eye would scarcely be able to distinguish between them.

The next plan was to arm the enlarged head with projecting pieces or spikes, sometimes cut out of the solid wood, and sometimes artificially inserted. The “Shillelagh” of Ireland is a simple example of this kind of club. One of thebest and most elaborate examples of this sort of weapon is the “Pine-apple” Club of Fiji, a figure of which may be seen in the illustration, drawn from a specimen in my collection.

It is made in the most ingenious manner from a tree which is trained for the purpose. There are certain trees belonging to the palm tribe which possess “aërial” roots,i.e.subsidiary roots, which surround the trunk at some distance from the ground, and assist in supporting it. Some trees have no central root, and are entirely upborne by the aërial roots, while others have both.

One of these latter is selected, and when it is very young is bent over and fastened to the ground almost at right angles, as shown in the illustration. When it has grown to a sufficient age it is cut to the requisite length, the central root is sharpened to a point, and the aërial roots are also cut down in such a way that they radiate very much like the projections on a pine-apple. This is really an ingenious weapon, for if the long and sharpened end should miss its aim, the projections would be tolerably sure to inflict painful if not immediately dangerous injuries.

Image unavailable: DURIAN. POLLEN OF HOLLYHOCK. HORSE-CHESTNUT. WOODEN AND METAL CLUBS.DURIAN. POLLEN OF HOLLYHOCK. HORSE-CHESTNUT. WOODEN AND METAL CLUBS.

As the pine-apple is so well known, I have given in the opposite side of the illustration a figure of the Durian, a large Bornean fruit, which is covered with projections almost identical in appearance with those of the pine-apple club, and almost equally hard and heavy.

Perhaps some of my readers may have heard of the grand Italian game of Pallone, the “game of giants,” as it has beencalled. The ball, which is a large and rather heavy one, weighing more than twice as much as a cricket-ball, is struck with a wooden gauntlet reaching nearly half-way up the fore-arm. The original gauntlet was cut entirely out of the solid wood, and exactly resembled the exterior of the Durian. The modern gauntlet, however, has the spikes fixed separately into a wooden frame, so that they can be replaced if broken in the course of the game. The principle, however, is identical in all three cases. The technical name of this gauntlet is Bracciale.

The next improvement was to add still further to the destructive powers of the club by arming it with stones, so as to make it harder and heavier. Sometimes a stone is perforated, and the end of the club forced into it. Sometimes the stone is lashed to the club, and sometimes a hole is bored in the club, and the stone driven into it. This kind of club, made of a sort of rosewood, may be found among some of the tribes inhabiting the district of the Essequibo.

The next improvement was to make the weapon entirely of metal, and such clubs are plentiful in every good collection of arms. There was, for example, the common mace, which was used for the purpose of stunning an adversary clothed in armour which the sword could not penetrate. As this, however, was nothing more than an ordinary wooden club executed in iron, we need not produce examples.

Other and more complicated forms were soon made, and were wonderfully valuable until the rapidly improving firearms kept combatants at a distance, and rendered a hand-to-hand fight almost impossible.

Three examples of such clubs are given in the illustration, and are taken from Demmin’s valuable work called “Weapons of War.”

The upper left-hand specimen is called Morgenstern,i.e.Morning Star. It is a large, heavy wooden ball studded with steel spikes, and affixed to a handle usually some six or seven feet, but sometimes exceeding eleven feet, in length. It was chiefly used by infantry when attacking cavalry, the long shaft enabling the foot-soldier to be tolerably sure of dealing the cavalier or his horse a severe blow, while himself out of reach of the latter’s sword.

Behind it is another Morgenstern in which there is animprovement, the armed ball being furnished at the end with a spike, so that it could be used either as a mace or a spear.

The commonest form of the Morning Star is shown below, and is thus described by Demmin:—

“This mace had generally a long handle, and its head bristled with wooden or iron points. It was common among the ancients, for many museums possess several fragments of these weapons belonging to the age of bronze.

“The Morning Star was very well known and much used in Germany and Switzerland. It received its name from the ominous jest of wishing the enemy ‘good morning’ with the Morning Star when they had been surprised in camp or city.

“This weapon became very popular on account of the facility and quickness with which it could be manufactured. The peasants made it easily with the trunk of a small shrub and a handful of large nails. It was also in great request during the wars of the peasantry which have devastated Germany at different times, and the Swiss arsenals possess great numbers of them.”

One of these primitive weapons may be seen in the lower figure of the illustration.

Sometimes the spiked ball was attached to a chain, and fastened to the end of a handle varying greatly in length, measuring from two to ten feet. One of these weapons may be seen in the Guildhall of London, being held by one of the celebrated giants.

Ifthe reader will now turn to the illustration on page53, he will see that on the right of the Durian there are two spherical objects covered with spikes. The upper is the pollen of the Hollyhock, and the lower the common Horse-chestnut. The reader will see that these are precisely similar in form to the spiked balls of the Morgenstern, whether they be used at the end of a staff or slung to a chain. There are many similar examples in the vegetable kingdom which will doubtless suggest themselves to the reader, but these are amply sufficient for this purpose.

Then, in the animal world, the curious Diodons, sometimes called Urchin-fishes, or Prickly Globe-fishes, are good examples. These fishes are covered with sharp spines, and, asthey have the power of swelling their bodies into a globular form, the spikes project on all sides just like those of the pollen or chestnut. There is a specimen in my collection, which, if the tail and fins were removed, and a cast taken in metal, would make a very good Morgenstern ball.

Thenext improvement on the club was evidently to flatten it, and sharpen one or both edges, so as to make it a cutting as well as a stunning implement—in fact, the club was changed into aSword.

Image unavailable: SWORD-GRASS MAGNIFIED. SHARK-TOOTH SWORD OF MANGAIA.SWORD-GRASS MAGNIFIED. SHARK-TOOTH SWORD OF MANGAIA.

A good example of this weapon in its simplest form is the wooden sword of Australia, now an exceedingly rare weapon. It looks like a very large boomerang, but is nearly straight, and is made from the hard, tough wood of the gum-tree. Travellers say that the natives can cut off a man’s head with this very simple weapon.

I just missed obtaining one of these swords from a man-of-war, but, unfortunately, a few hours before my arrival the zealous first lieutenant had ordered a large collection of savage weapons to be thrown overboard, among which were several Australian swords.

Finding that the edges were not sufficiently sharp, and were liable to break, the maker next turned his attention to arming them with some substance harder than wood. Various materials were used for this purpose, some of which will be mentioned.

One of these is given in the illustration, and is taken from a specimen in my collection. It is made of wood, rather more than two feet in length, and would in itself be an insignificant weapon but for its armature.

This consists of a number of sharks’ teeth, which are fixed along either side, and are a most formidable apparatus, each tooth cutting like a lancet-blade, and not only being very sharp, but having their edges finely notched like the teeth of a saw. I have a series of these weapons in my collection, some being curved, some straight, and one very remarkable weapon having four blades, one straight and long blade in the centre, and three curved and short blades springing from the handle towards the point.

Opposite the shark-tooth sword is an object which might almost be taken for a similar weapon, but is, in fact, nothing but a common grass-blade, such as may be found in any of our lanes. I suppose that most of my readers must at some time have cut their fingers with grass, and the reason why is shown in the illustration, which represents a much-magnified blade of grass. The edges of the leaf are armed with sharp teeth of flint, set exactly like those of the sword, with their points directed towards the tip of the blade. The whole of the under surface of the blade is thickly set with similar but smaller teeth, arranged in the same manner. I have just brought a blade of grass from a lane near my house, and when it was placed under the half-inch power of the microscope, the resemblance to the sword was absolutely startling to some spectators who came to look at it.

As if to make the resemblance closer, many savage weapons are edged with flat stones, flint chips, or pieces of obsidian, so that the flint teeth of the grass are exactly copied by the flint edgings of the sword. The old Mexican swords were nearly all edged with obsidian, as is seen in the lower right-hand figure of the next illustration. I possess a number of obsidian flakes which were intended for that purpose, but do not appear to have been used.

The second figure from the top represents the head of a spear similarly armed, and I possess a small Australian implement in which the flakes of obsidian are set only on one side, so that the instrument can be used as a rude saw.

Between these two weapons is a spear-head armed with shark-teeth. I have a very remarkable weapon of this kind, made in Mangaia. It is eleven feet in length, and, besides being armed with a double row of sharks’ teeth nearly to the handle, it has three curved blades similarly armed, set at distances of about two feet, and projecting at right angles. Thus, if the foe were missed with the point of the spear, he would probably be wounded by one of the blades.


Back to IndexNext