FOOTNOTES

CXVII. And, as we pretend not to found a sect, so do we neither offer nor promise particular effects; which may occasion some to object to us, that since we so often speak of effects, and consider everything in its relation to that end, we ought also to give some earnest of producing them. Our course and method, however (as we have often said, and again repeat), is such as not to deduce effects from effects, nor experiments from experiments (as the empirics do), but in our capacity of legitimate interpreters of nature, to deduce causes and axioms from effects and experiments; and new effects and experiments from those causes and axioms.

And although any one of moderate intelligence and ability will observe the indications and sketches of many noble effects in our tables of inventions (which form the fourth part of the Instauration), and also in the examples of particular instances cited in the second part, as well as in our observations on history (which is the subject of the third part); yet we candidly confess that our present natural history, whether compiled from books or our own inquiries, is not sufficiently copious and well ascertained to satisfy, or even assist, a proper interpretation.

If, therefore, there be any one who is more disposed and prepared for mechanical art, and ingenious in discovering effects, than in the mere management of experiment, weallow him to employ his industry in gathering many of the fruits of our history and tables in this way, and applying them to effects, receiving them as interest till he can obtain the principal. For our own part, having a greater object in view, we condemn all hasty and premature rest in such pursuits as we would Atalanta’s apple (to use a common allusion of ours); for we are not childishly ambitious of golden fruit, but use all our efforts to make the course of art outstrip nature, and we hasten not to reap moss or the green blade, but wait for a ripe harvest.

CXVIII. There will be some, without doubt, who, on a perusal of our history and tables of invention, will meet with some uncertainty, or perhaps fallacy, in the experiments themselves, and will thence perhaps imagine that our discoveries are built on false foundations and principles. There is, however, really nothing in this, since it must needs happen in beginnings.[64]For it is the same as if in writing or printing one or two letters were wrongly turned or misplaced, which is no great inconvenience to the reader, who can easily by his own eye correct the error; let men in the same way conclude, that many experiments in natural history may be erroneously believed and admitted, which are easily expunged and rejected afterward, by the discovery of causes and axioms. It is, however, true, that if these errors in natural history and experiments become great, frequent, and continued, they cannot be corrected and amended byany dexterity of wit or art. If then, even in our natural history, well examined and compiled with such diligence, strictness, and (I might say) reverential scruples, there be now and then something false and erroneous in the details, what must we say of the common natural history, which is so negligent and careless when compared with ours? or of systems of philosophy and the sciences, based on such loose soil (or rather quicksand)? Let none then be alarmed by such observations.

CXIX. Again, our history and experiments will contain much that is light and common, mean and illiberal, too refined and merely speculative, and, as it were, of no use, and this perhaps may divert and alienate the attention of mankind.

With regard to what is common; let men reflect, that they have hitherto been used to do nothing but refer and adapt the causes of things of rare occurrence to those of things which more frequently happen, without any investigation of the causes of the latter, taking them for granted and admitted.

Hence, they do not inquire into the causes of gravity, the rotation of the heavenly bodies, heat, cold, light, hardness, softness, rarity, density, liquidity, solidity, animation, inanimation, similitude, difference, organic formation, but taking them to be self-evident, manifest, and admitted, they dispute and decide upon other matters of less frequent and familiar occurrence.

But we (who know that no judgment can be formed of that which is rare or remarkable, and much less anything new brought to light, without a previous regular examination and discovery of the causes of that which is common, and the causes again of those causes) are necessarily compelledto admit the most common objects into our history. Besides, we have observed that nothing has been so injurious to philosophy as this circumstance, namely, that familiar and frequent objects do not arrest and detain men’s contemplation, but are carelessly admitted, and their causes never inquired after; so that information on unknown subjects is not more often wanted than attention to those which are known.

CXX. With regard to the meanness, or even the filthiness of particulars, for which (as Pliny observes), an apology is requisite, such subjects are no less worthy of admission into natural history than the most magnificent and costly; nor do they at all pollute natural history, for the sun enters alike the palace and the privy, and is not thereby polluted. We neither dedicate nor raise a capitol or pyramid to the pride of man, but rear a holy temple in his mind, on the model of the universe, which model therefore we imitate. For that which is deserving of existence is deserving of knowledge, the image of existence. Now the mean and splendid alike exist. Nay, as the finest odors are sometimes produced from putrid matter (such as musk and civet), so does valuable light and information emanate from mean and sordid instances. But we have already said too much, for such fastidious feelings are childish and effeminate.

CXXI. The next point requires a more accurate consideration, namely, that many parts of our history will appear to the vulgar, or even any mind accustomed to the present state of things, fantastically and uselessly refined. Hence, we have in regard to this matter said from the first, and must again repeat, that we look for experiments that shall afford light rather than profit, imitating the divine creation, which,as we have often observed, only produced light on the first day, and assigned that whole day to its creation, without adding any material work.

If any one, then, imagine such matters to be of no use, he might equally suppose light to be of no use, because it is neither solid nor material. For, in fact, the knowledge of simple natures, when sufficiently investigated and defined, resembles light, which, though of no great use in itself, affords access to the general mysteries of effects, and with a peculiar power comprehends and draws with it whole bands and troops of effects, and the sources of the most valuable axioms. So also the elements of letters have of themselves separately no meaning, and are of no use, yet are they, as it were, the original matter in the composition and preparation of speech. The seeds of substances, whose effect is powerful, are of no use except in their growth, and the scattered rays of light itself avail not unless collected.

But if speculative subtilties give offence, what must we say of the scholastic philosophers who indulged in them to such excess? And those subtilties were wasted on words, or, at least, common notions (which is the same thing), not on things or nature, and alike unproductive of benefit in their origin and their consequences: in no way resembling ours, which are at present useless, but in their consequences of infinite benefit. Let men be assured that all subtile disputes and discursive efforts of the mind are late and preposterous, when they are introduced subsequently to the discovery of axioms, and that their true, or, at any rate, chief opportunity is, when experiment is to be weighed and axioms to be derived from it. They otherwise catch and grasp at nature, but never seize or detain her: and we may well apply to nature that which has been said of opportunityor fortune, that she wears a lock in front, but is bald behind.

In short, we may reply decisively to those who despise any part of natural history as being vulgar, mean, or subtile, and useless in its origin, in the words of a poor woman to a haughty prince,[65]who had rejected her petition as unworthy, and beneath the dignity of his majesty: “Then cease to reign”; for it is quite certain that the empire of nature can neither be obtained nor administered by one who refuses to pay attention to such matters as being poor and too minute.

CXXII. Again, it may be objected to us as being singular and harsh, that we should with one stroke and assault, as it were, banish all authorities and sciences, and that too by our own efforts, without requiring the assistance and support of any of the ancients.

Now we are aware, that had we been ready to act otherwise than sincerely, it was not difficult to refer our present method to remote ages, prior to those of the Greeks (since the sciences in all probability flourished more in their natural state, though silently, than when they were paraded with the fifes and trumpets of the Greeks); or even (in parts, at least) to some of the Greeks themselves, and to derive authority and honor from thence; as men of no family labor to raise and form nobility for themselves in some ancient line, by the help of genealogies. Trusting, however, to the evidence of facts, we reject every kind of fiction and imposture; and think it of no more consequence to our subject, whether future discoveries were known to the ancients, and set or rose according to the vicissitudes of events andlapse of ages, than it would be of importance to mankind to know whether the new world be the island of Atlantis,[66]and known to the ancients, or be now discovered for the first time.

With regard to the universal censure we have bestowed, it is quite clear, to any one who properly considers the matter, that it is both more probable and more modest than any partial one could have been. For if the errors had not been rooted in the primary notions, some well conducted discoveries must have corrected others that were deficient. But since the errors were fundamental, and of such a nature, that men may be said rather to have neglected or passed over things, than to have formed a wrong or false judgment of them, it is little to be wondered at, that they did not obtain what they never aimed at, nor arrive at a goal which they had not determined, nor perform a course which they had neither entered upon nor adhered to.

With regard to our presumption, we allow that if we were to assume a power of drawing a more perfect straight line or circle than any one else, by superior steadiness of hand or acuteness of eye, it would lead to a comparison of talent; but if one merely assert that he can draw a more perfect line or circle with a ruler or compasses, than another can by his unassisted hand or eye, he surely cannot be said to boast of much. Now this applies not only to our first original attempt, but also to those who shall hereafter apply themselves to the pursuit. For our method of discovering the sciences merely levels men’s wits, and leaves but little to their superiority, since it achieves everything by the most certain rules and demonstrations. Whence (as we haveoften observed), our attempt is to be attributed to fortune rather than talent, and is the offspring of time rather than of wit. For a certain sort of chance has no less effect upon our thoughts than on our acts and deeds.

CXXIII. We may, therefore, apply to ourselves the joke of him who said, that water and wine drinkers could not think alike,[67]especially as it hits the matter so well. For others, both ancients and moderns, have in the sciences drank a crude liquor like water, either flowing of itself from the understanding, or drawn up by logic as the wheel draws up the bucket. But we drink and pledge others with a liquor made of many well-ripened grapes, collected and plucked from particular branches, squeezed in the press, and at last clarified and fermented in a vessel. It is not, therefore, wonderful that we should not agree with others.

CXXIV. Another objection will without doubt be made, namely, that we have not ourselves established a correct, or the best goal or aim of the sciences (the very defect we blame in others). For they will say that the contemplation of truth is more dignified and exalted than any utility or extent of effects; but that our dwelling so long and anxiously on experience and matter, and the fluctuating state of particulars, fastens the mind to earth, or rather casts it down into an abyss of confusion and disturbance, and separates and removes it from a much more divine state, the quiet and tranquillity of abstract wisdom. We willingly assent to their reasoning, and are most anxious to effect the very point they hint at and require. For we are founding a real model of the world in the understanding, such as it is found to be, not such as man’s reason has distorted.Now this cannot be done without dissecting and anatomizing the world most diligently; but we declare it necessary to destroy completely the vain, little and, as it were, apish imitations of the world, which have been formed in various systems of philosophy by men’s fancies. Let men learn (as we have said above) the difference that exists between the idols of the human mind and the ideas of the divine mind. The former are mere arbitrary abstractions; the latter the true marks of the Creator on his creatures, as they are imprinted on, and defined in matter, by true and exquisite touches. Truth, therefore, and utility, are here perfectly identical, and the effects are of more value as pledges of truth than from the benefit they confer on men.

CXXV. Others may object that we are only doing that which has already been done, and that the ancients followed the same course as ourselves. They may imagine, therefore, that, after all this stir and exertion, we shall at last arrive at some of those systems that prevailed among the ancients: for that they, too, when commencing their meditations, laid up a great store of instances and particulars, and digested them under topics and titles in their commonplace books, and so worked out their systems and arts, and then decided upon what they discovered, and related now and then some examples to confirm and throw light upon their doctrine; but thought it superfluous and troublesome to publish their notes, minutes, and commonplaces, and therefore followed the example of builders who remove the scaffolding and ladders when the building is finished. Nor can we indeed believe the case to have been otherwise. But to any one, not entirely forgetful of our previous observations, it will be easy to answer this objection or ratherscruple; for we allow that the ancients had a particular form of investigation and discovery, and their writings show it. But it was of such a nature, that they immediately flew from a few instances and particulars (after adding some common notions, and a few generally received opinions most in vogue) to the most general conclusions or the principles of the sciences, and then by their intermediate propositions deduced their inferior conclusions, and tried them by the test of the immovable and settled truth of the first, and so constructed their art. Lastly, if some new particulars and instances were brought forward, which contradicted their dogmas, they either with great subtilty reduced them to one system, by distinctions or explanations of their own rules, or got rid of them clumsily as exceptions, laboring most pertinaciously in the meantime to accommodate the causes of such as were not contradictory to their own principles. Their natural history and their experience were both far from being what they ought to have been, and their flying off to generalities ruined everything.

CXXVI. Another objection will be made against us, that we prohibit decisions and the laying down of certain principles, till we arrive regularly at generalities by the intermediate steps, and thus keep the judgment in suspense and lead to uncertainty. But our object is not uncertainty but fitting certainty, for we derogate not from the senses but assist them, and despise not the understanding but direct it. It is better to know what is necessary, and not to imagine we are fully in possession of it, than to imagine that we are fully in possession of it, and yet in reality to know nothing which we ought.

CXXVII. Again, some may raise this question rather than objection, whether we talk of perfecting natural philosophyalone according to our method, or the other sciences also, such as logic, ethics, politics. We certainly intend to comprehend them all. And as common logic, which regulates matters by syllogisms, is applied not only to natural, but also to every other science, so our inductive method likewise comprehends them all.[68]For we form a history and tables of invention for anger, fear, shame, and the like, and also for examples in civil life, and the mental operations of memory, composition, division, judgment, and the rest, as well as for heat and cold, light, vegetation, and the like. But since our method of interpretation, after preparing and arranging a history, does not content itself with examining the operations and disquisitions of the mind like common logic, but also inspects the nature of things, we so regulate the mind that it may be enabled to apply itself in every respect correctly to that nature. On that account we deliver numerous and various precepts in our doctrine of interpretation, so that they may apply in somemeasure to the method of discovering the quality and condition of the subject matter of investigation.

CXXVIII. Let none even doubt whether we are anxious to destroy and demolish the philosophy, arts, and sciences, which are now in use. On the contrary, we readily cherish their practice, cultivation, and honor; for we by no means interfere to prevent the prevalent system from encouraging discussion, adorning discourses, or being employed serviceably in the chair of the professor or the practice of common life, and being taken, in short, by general consent as current coin. Nay, we plainly declare, that the system we offer will not be very suitable for such purposes, not being easily adapted to vulgar apprehensions, except by effects and works. To show our sincerity in professing our regard and friendly disposition toward the received sciences, we can refer to the evidence of our published writings (especially our books on the Advancement of Learning). We will not, therefore, endeavor to evince it any further by words; but content ourselves with steadily and professedly premising, that no great progress can be made by the present methods in the theory or contemplation of science, and that they cannot be made to produce any very abundant effects.

CXXIX. It remains for us to say a few words on the excellence of our proposed end. If we had done so before, we might have appeared merely to express our wishes, but now that we have excited hope and removed prejudices, it will perhaps have greater weight. Had we performed and completely accomplished the whole, without frequently calling in others to assist in our labors, we should then have refrained from saying any more, lest we should be thought to extol our own deserts. Since, however, theindustry of others must be quickened, and their courage roused and inflamed, it is right to recall some points to their memory.

First, then, the introduction of great inventions appears one of the most distinguished of human actions, and the ancients so considered it; for they assigned divine honors to the authors of inventions, but only heroic honors to those who displayed civil merit (such as the founders of cities and empire legislators, the deliverers of their country from lasting misfortunes, the quellers of tyrants, and the like). And if any one rightly compare them, he will find the judgment of antiquity to be correct; for the benefits derived from inventions may extend to mankind in general, but civil benefits to particular spots alone; the latter, moreover, last but for a time, the former forever. Civil reformation seldom is carried on without violence and confusion, while inventions are a blessing and a benefit without injuring or afflicting any.

Inventions are also, as it were, new creations and imitations of divine works, as was expressed by the poet:[69]

“Primum frugiferos fœtus mortalibus ægrisDididerant quondam præstanti nomine AthenæEtrecreaveruntvitam legesque rogarunt.”

“Primum frugiferos fœtus mortalibus ægrisDididerant quondam præstanti nomine AthenæEtrecreaveruntvitam legesque rogarunt.”

And it is worthy of remark in Solomon, that while he flourished in the possession of his empire, in wealth, in themagnificence of his works, in his court, his household, his fleet, the splendor of his name, and the most unbounded admiration of mankind, he still placed his glory in none of these, but declared[70]that it is the glory of God to conceal a thing, but the glory of a king to search it out.

Again, let any one but consider the immense difference between men’s lives in the most polished countries of Europe, and in any wild and barbarous region of the new Indies, he will think it so great, that man may be said to be a god unto man, not only on account of mutual aid and benefits, but from their comparative states—the result of the arts, and not of the soil or climate.

Again, we should notice the force, effect, and consequences of inventions, which are nowhere more conspicuous than in those three which were unknown to the ancients; namely, printing, gunpowder, and the compass. For these three have changed the appearance and state of the whole world: first in literature, then in warfare, and lastly in navigation; and innumerable changes have been thence derived, so that no empire, sect, or star, appears to have exercised a greater power and influence on human affairs than these mechanical discoveries.

It will, perhaps, be as well to distinguish three species and degrees of ambition. First, that of men who are anxious to enlarge their own power in their country, which is a vulgar and degenerate kind; next, that of men who strive to enlarge the power and empire of their country over mankind, which is more dignified but not less covetous; but if one were to endeavor to renew and enlarge the power and empire of mankind in general over the universe, such ambition(if it may be so termed) is both more sound and more noble than the other two. Now the empire of man over things is founded on the arts and sciences alone, for nature is only to be commanded by obeying her.

Besides this, if the benefit of any particular invention has had such an effect as to induce men to consider him greater than a man, who has thus obliged the whole race, how much more exalted will that discovery be, which leads to the easy discovery of everything else! Yet (to speak the truth) in the same manner as we are very thankful for light which enables us to enter on our way, to practice arts, to read, to distinguish each other, and yet sight is more excellent and beautiful than the various uses of light; so is the contemplation of things as they are, free from superstition or imposture, error or confusion, much more dignified in itself than all the advantage to be derived from discoveries.

Lastly, let none be alarmed at the objection of the arts and sciences becoming depraved to malevolent or luxurious purposes and the like, for the same can be said of every worldly good; talent, courage, strength, beauty, riches, light itself, and the rest. Only let mankind regain their rights over nature, assigned to them by the gift of God, and obtain that power, whose exercise will be governed by right reason and true religion.

CXXX. But it is time for us to lay down the art of interpreting nature, to which we attribute no absolute necessity (as if nothing could be done without it) nor perfection, although we think that our precepts are most useful and correct. For we are of opinion, that if men had at their command a proper history of nature and experience, and would apply themselves steadily to it, and could bind themselves to two things: 1, to lay aside receivedopinions and notions; 2, to restrain themselves, till the proper season, from generalization, they might, by the proper and genuine exertion of their minds, fall into our way of interpretation without the aid of any art. For interpretation is the true and natural act of the mind, when all obstacles are removed: certainly, however, everything will be more ready and better fixed by our precepts.

Yet do we not affirm that no addition can be made to them; on the contrary, considering the mind in its connection with things, and not merely relatively to its own powers, we ought to be persuaded that the art of invention can be made to grow with the inventions themselves.

[2]Bacon uses the term in its ancient sense, and means one who, knowing the occult properties of bodies, is able to startle the ignorant by drawing out of them wonderful and unforeseen changes. See the85th aphorism of this book, and the 5thcap.book iii. of theDe Augmentis Scientiarum, where he speaks more clearly.—Ed.

[3]By this term axiomata, Bacon here speaks of general principles, or universal laws. In the19th aphorismhe employs the term to express any proposition collected from facts by induction, and thus fitted to become the starting-point of deductive reasoning. In the last and more rigorous sense of the term, Bacon held they arose from experience. See Whewell’s “Philosophy of the Inductive Sciences,” vol. i. p. 74; and Mill’s “Logic,” vol. i. p. 311; and the June “Quarterly,” 1841, for the modern phase of the discussion.—Ed.

[4]Bacon here attributes to the Aristotelian logic the erroneous consequences which sprung out of its abuse. The demonstrative forms it exhibits, whether verbally or mathematically expressed, are necessary to the support, verification, and extension of induction, and when the propositions they embrace are founded on an accurate and close observation of facts, the conclusions to which they lead, even in moral science, may be regarded as certain as the facts wrested out of nature by direct experiment. In physics such forms are absolutely required to generalize the results of experience, and to connect intermediate axioms with laws still more general, as is sufficiently attested by the fact, that no science since Bacon’s day has ceased to be experimental by the mere method of induction, and that all become exact only so far as they rise above experience, and connect their isolated phenomena with general laws by the principles of deductive reasoning. So far, then, are these forms from being useless, that they are absolutely essential to the advancement of the sciences, and in no case can be looked on as detrimental, except when obtruded in the place of direct experiment, or employed as a means of deducing conclusions about nature from imaginary hypotheses and abstract conceptions. This had been unfortunately the practice of the Greeks. From the rapid development geometry received in their hands, they imagined the same method would lead to results equally brilliant in natural science, and snatching up some abstract principle, which they carefully removed from the test of experiment, imagined they could reason out from it all the laws and external appearances of the universe. The scholastics were impelled along the same path, not only by precedent, but by profession. Theology was the only science which received from them a consistent development, and theà priorigrounds on which it rested prevented them from employing any other method in the pursuit of natural phenomena. Thus, forms of demonstration, in themselves accurate, and of momentous value in their proper sphere, became confounded with fable, and led men into the idea they were exploring truth when they were only accurately deducing error from error. One principle ever so slightly deflected, like a false quantity in an equation, could be sufficient to infect the whole series of conclusions of which it was the base; and though the philosopher might subsequently deduce a thousand consecutive inferences with the utmost accuracy or precision, he would only succeed in drawing out very methodically nine hundred and ninety-nine errors.—Ed.

[5]It would appear from this and the two preceding aphorisms, that Bacon fell into the error of denying the utility of the syllogism in the very part of inductive science where it is essentially required. Logic, like mathematics, is purely a formal process, and must, as the scaffolding to the building, be employed to arrange facts in the structure of a science, and not to form any portion of its groundwork, or to supply the materials of which the system is to be composed. The word syllogism, like most otherpsychologicalterms, has no fixed or original signification, but is sometimes employed, as it was by the Greeks, to denote general reasoning, and at others to point out the formal method of deducing a particular inference from two or more general propositions. Bacon does not confine the term within the boundaries of express definition, but leaves us to infer that he took it in the latter sense, from his custom of associating the term with the wranglings of the schools. The scholastics, it is true, abused the deductive syllogism, by employing it in its naked, skeleton-like form, and confounding it with the whole breadth of logical theory; but their errors are not to be visited on Aristotle, who never dreamed of playing with formal syllogisms, and, least of all, mistook the descending for the ascending series of inference. In our mind we are of accord with the Stagyrite, who propounds, as far as we can interpret him, two modes of investigating truth—the one by which we ascend from particular and singular facts to general laws and axioms, and the other by which we descend from universal propositions to the individual cases which they virtually include. Logic, therefore, must equally vindicate the formal purity of the synthetic illation by which it ascends to the whole, as the analytic process by which it descends to the parts. The deductive and inductive syllogism are of equal significance in building up any body of truth, and whoever restricts logic to either process, mistakes one-half of its province for the whole; and if he acts upon his error, will paralyze his methods, and strike the noblest part of science with sterility.—Ed.

[6]The Latin is,ad ea quæ revera sunt naturæ notiora. This expression,naturæ notiora,naturæ notior, is so frequently employed by Bacon, that we may conclude it to point to some distinguishing feature in the Baconian physics. It properly refers to the most evident principles and laws of nature, and springs from that system which regards the material universe as endowed with intelligence, and acting according to rules either fashioned or clearly understood by itself.—Ed.

[7]This Borgia was Alexander VI., and the expedition alluded to that in which Charles VIII. overran the Italian peninsula in five months. Bacon uses the same illustration in concluding his survey of natural philosophy, in the second book of the “De Augmentis.”—Ed.

[8]Ratio eorum qui acatalepsiam tenuerunt.Bacon alludes to the members of the later academy, who held theἀκατάληψια, or the impossibility of comprehending anything. His translator, however, makes him refer to the sceptics, who neither dogmatized about the known or the unknown, but simply held, that as all knowledge was relative,πρòς πάντα τι, man could never arrive at absolute truth, and therefore could not with certainty affirm or deny anything.—Ed.

[9]It is argued by Hallam, with some appearance of truth, that idols is not the correct translation ofεἴδωλα, from which the original idola is manifestly derived; but that Bacon used it in the literal sense attached to it by the Greeks, as a species of illusion, or false appearance, and not as a species of divinity before which the mind bows down. If Hallam be right, Bacon is saved from the odium of an analogy which his foreign commentators are not far wrong in denouncing as barbarous; but this service is rendered at the expense of the men who have attached an opposite meaning to the word, among whom are Brown, Playfair and Dugald Stewart.—Ed.

[10]We cannot see how these idols have less to do with sophistical paralogisms than with natural philosophy. The process of scientific induction involves only the first elements of reasoning, and presents such a clear and tangible surface, as to allow no lurking-place for prejudice; while questions of politics and morals, to which the deductive method, or common logic, as Bacon calls it, is peculiarly applicable, are ever liable to be swayed or perverted by the prejudices he enumerates. After mathematics, physical science is the least amenable to the illusions of feeling; each portion having been already tested by experiment and observation, is fitted into its place in the system, with all the rigor of the geometrical method; affection or prejudice cannot, as in matters of taste, history or religion, select fragmentary pieces, and form a system of their own. The whole must be admitted, or the structure of authoritative reason razed to the ground. It is needless to say that the idols enumerated present only another interpretation of the substance of logical fallacies.—Ed.

[11]The propensity to this illusion may be viewed in the spirit of system, or hasty generalization, which is still one of the chief obstacles in the path of modern science.—Ed.

[12]Though Kepler had, when Bacon wrote this, already demonstrated his three great laws concerning the elliptical path of the planets, neither Bacon nor Descartes seems to have known or assented to his discoveries. Our author deemed the startling astronomical announcements of his time to be mere theoretic solutions of the phenomena of the heavens, not so perfect as those advanced by antiquity, but still deserving a praise for the ingenuity displayed in their contrivance. Bacon believed a hundred such systems might exist, and though true in their explanation of phenomena, yet might all more or less differ, according to the preconceived notions which their framers brought to the survey of the heavens. He even thought he might put in his claim to the notice of posterity for his astronomical ingenuity, and, as Ptolemy had labored by means of epicycles and eccentrics, and Kepler with ellipses, to explain the laws of planetary motion, Bacon thought the mystery would unfold itself quite as philosophically through spiral labyrinths and serpentine lines. What the details of his system were, we are left to conjecture, and that from a very meagre but naïve account of one of his inventions which he has left in his MiscellanyMSS.—Ed.

[13]Hinc elementum ignis cum orbe suo introductum est.Bacon saw in fire the mere result of a certain combination of action, and was consequently led to deny its elementary character. The ancient physicists attributed an orbit to each of the four elements, into which they resolved the universe, and supposed their spheres to involve each other. The orbit of the earth was in the centre, that of fire at the circumference. For Bacon’s inquisition into the nature of heat, and its complete failure, seethe commencement of the second bookof theNovum Organum.—Ed.

[14]Robert Fludd is the theorist alluded to, who had supposed the gravity of the earth to be ten times heavier than water, that of water ten times heavier than air, and that of air ten times heavier than fire.—Ed.

[15]Diagoras. The same allusion occurs in the second part of the Advancement of Learning, where Bacon treats of the idols of the mind.

[16]A scholastic term, to signify the two eternities of past and future duration, that stretch out on both sides of the narrow isthmus (time) occupied by man. It must be remembered that Bacon lived before the doctrine of limits gave rise to the higher calculus, and therefore could have no conception of different denominations of infinities: on the other hand he would have thought the man insane who should have talked to him about lines infinitely great, inclosing angles infinitely little; that a right line, which is a right line so long as it is finite, by changing infinitely little its direction, becomes an infinite curve, and that a curve may become infinitely less than another curve; that there are infinite squares and infinite cubes, and infinites of infinites, all greater than one another, and the last but one of which is nothing in comparison with the last. Yet half a century sufficed from Bacon’s time, to make this nomenclature, which would have appeared to him the excess of frenzy, not only reasonable but necessary, to grasp the higher demonstrations of physical science.—Ed.

[17]Spinoza, in his letter to Oldenberg (Op. Posth.p. 398), considers this aphorism based on a wrong conception of the origin of error, and, believing it to be fundamental, was led to reject Bacon’s method altogether. Spinoza refused to acknowledge in man any such thing as a will, and resolved all his volitions into particular acts, which he considered to be as fatally determined by a chain of physical causes as any effects in nature.—Ed.

[18]Operatio spirituum in corporibus tangibilibus.Bacon distinguished with the schools the gross and tangible parts of bodies, from such as were volatile and intangible. These, in conformity with the scholastic language, he terms spirits, and frequently returns to their operations in the 2d book.—Ed.

[19]Democritus, of Abdera, a disciple of Leucippus, born B.C. 470, died 360; all his works are destroyed. He is said to be the author of the doctrine of atoms: he denied the immortality of the soul, and first taught that the milky way was occasioned by a confused light from a multitude of stars. He may be considered as the parent of experimental philosophy, in the prosecution of which he was so ardent as to declare that he would prefer the discovery of one of the causes of natural phenomena, to the possession of the diadem of Persia. Democritus imposed on the blind credulity of his contemporaries, and, like Roger Bacon, astonished them by his inventions.—Ed.

[20]The Latin isactus purus, another scholastic expression to denote the action of the substance, which composes the essence of the body apart from its accidental qualities. For an exposition of the various kinds of motions he contemplates, the reader may refer to the48th aphorism of the 2d book.—Ed.

[21]The scholastics after Aristotle distinguished in a subject three modes of beings: viz., the power or faculty, the act, and the habitude, or in other words that which is able to exist, what exists actually, and what continues to exist. Bacon means that is necessary to fix our attention not on that which can or ought to be, but on that which actually is; not on the right, but on the fact.—Ed.

[22]The inference to be drawn from this is to suspect that kind of evidence which is most consonant to our inclinations, and not to admit any notion as real except we can base it firmly upon that kind of demonstration which is peculiar to the subject, not to our impression. Sometimes the mode of proof may be consonant to our inclinations, and to the subject at the same time, as in the case of Pythagoras, when he applied his beloved numbers to the solution of astronomical phenomena; or in that of Descartes, when he reasoned geometrically concerning the nature of the soul. Such examples cannot be censured with justice, inasmuch as the methods pursued were adapted to the end of the inquiry. The remark in the text can only apply to those philosophers who attempt to build up a moral or theological system by the instruments of induction alone, or who rush, with the geometrical axiom, and theà priorisyllogism, to the investigation of nature. The means in such cases are totally inadequate to the object in view.—Ed.

[23]Gilbert lived toward the close of the sixteenth century, and was court physician to both Elizabeth and James. In his work alluded to in the text he continually asserts the advantages of the experimental over theà priorimethod in physical inquiry, and succeeded when his censor failed in giving a practical example of the utility of his precepts. His “De Magnete” contains all the fundamental parts of the science, and these so perfectly treated,thatwe have nothing to add to them at the present day.

Gilbert adopted the Copernican system, and even spoke of the contrary theory as utterly absurd, grounding his argument on the vast velocities which such a supposition requires us to ascribe to the heavenly bodies.—Ed.

[24]The Latin text adds “without end”; but Bacon is scarcely right in supposing that the descent from complex ideas and propositions to those of simple nature, involve the analyst in a series of continuous and interminable definitions. For in the gradual and analytical scale, there is a bar beyond which we cannot go, as there is a summit bounded by the limited variations of our conceptions. Logical definitions, to fulfil their conditions, or indeed to be of any avail, must be given in simpler terms than the object which is sought to be defined; now this, in the case of primordial notions and objects of sense, is impossible; therefore we are obliged to rest satisfied with the mere names of our perceptions.—Ed.

[25]The ancients supposed the planets to describe an exact circle round the south. As observations increased and facts were disclosed, which were irreconcilable with this supposition, the earth was removed from the centre to some other point in the circle, and the planets were supposed to revolve in a smaller circle (epicycle) round an imaginary point, which in its turn described a circle of which the earth was the centre. In proportion as observation elicited fresh facts, contradictory to these representations, other epicycles and eccentrics were added, involving additional confusion. Though Kepler had swept away all these complicated theories in the preceding century, by the demonstration of his three laws, which established the elliptical course of the planets, Bacon regarded him and Copernicus in the same light as Ptolemy and Xenophanes.—Ed.

[26]Empedocles, of Agrigentum, flourished 444 B.C. He was the disciple of Telanges the Pythagorean, and warmly adopted the doctrine of transmigration. He resolved the universe into the four ordinary elements, the principles of whose composition were life and happiness, or concord and amity, but whose decomposition brought forth death and evil, or discord and hatred. Heraclitus held matter to be indifferent to any peculiar form, but as it became rarer or more dense, it took the appearance of fire, air, earth and water. Fire, however, he believed to be the elementary principle out of which the others were evolved. This was also the belief of Lucretius. See book i. 783, etc.

[27]It is thus the Vulcanists and Neptunians have framed their opposite theories in geology. Phrenology is a modern instance of hasty generalization.—Ed.

[28]In Scripture everything which concerns the passing interests of the body is called dead; the only living knowledge having regard to the eternal interest of the soul.—Ed.

[29]In mechanics and the general sciences, causes compound their effects, or in other words, it is generally possible to deduceà priorithe consequence of introducing complex agencies into any experiment, by allowing for the effect of each of the simple causes which enter into their composition. In chemistry and physiology a contrary law holds; the causes which they embody generally uniting to form distinct substances, and to introduce unforeseen laws and combinations. The deductive method here is consequently inapplicable, and we are forced back upon experiment.

Bacon in the text is hardly consistent with himself, as he admits in the second book the doctrine, to which modern discovery points, of the reciprocal transmutation of the elements. What seemed poetic fiction in the theories of Pythagoras and Seneca, assumes the appearance of scientific fact in the hands of Baron Caynard.—Ed.

[30]Galileo had recently adopted the notion that nature abhorred a vacuum for an axiomatic principle, and it was not till Torricelli, his disciple, had given practical proof of the utility of Bacon’s method, by the discovery of the barometer (1643) that this error, as also that expressed below, and believed by Bacon, concerning the homœopathic tendencies of bodies, was destroyed.—Ed.

[31]Donec ad materiam potentialem et informem ventum fuerit.Nearly all the ancient philosophers admitted the existence of a certain primitive and shapeless matter as the substratum of things which the creative power had reduced to fixed proportions, and resolved into specific substances. The expression potential matter refers to that substance forming the basis of the Peripatetic system, which virtually contained all the forms that it was in the power of the efficient cause to draw out of it.—Ed.

[32]An allusion to the humanity of theSultans, who, in their earlier histories are represented as signalizing their accession to the throne by the destruction of their family, to remove the danger of rivalry and the terrors of civil war.—Ed.

[33]The text is “in odium veterum sophistarum, Protagoræ, Hippiæ, et reliquorum.” Those were called sophists, who,ostentationis aut questus causa philosophabantur. (Acad. Prior.ii.72.) They had corrupted and degraded philosophy before Socrates. Protagoras of Abdera (Ἄβδηρα), the most celebrated, taught that man is the measure of all things, by which he meant not only that all which can be known is known only as it related to our faculties, but also that apart from our faculties nothing can be known. The sceptics equally held that knowledge was probable only as it related to our faculties, but they stopped there, and did not, like the sophist, dogmatize about the unknown. The works of Protagoras were condemned for their impiety, and publicly burned by the ædiles of Athens, who appear to have discharged the office of common hangmen to the literary blasphemers of their day.—Ed.

[34]Bacon is hardly correct in implying that theenumerationem per simplicemwas the only light in which the ancients looked upon induction, as they appear to have regarded it as only one, and that the least important, of its species. Aristotle expressly considers induction in a perfect or dialectic sense, and in an imperfect or rhetorical sense. Thus if a genus (G), contains four species (A,B,C,D), the syllogism would lead us to infer, that what is true ofG, is true of any one of the four. But perfect induction would reason, that what we can prove ofA,B,C,D, separately, we may properly state as true ofG, the whole genus. This is evidently a formal argument as demonstrative as the syllogism. In necessary matters, however, legitimate induction may claim a wider province, and infer of the whole genus what is only apparent in a part of the species. Such are those inductive inferences which concern the laws of nature, the immutability of forms, by which Bacon strove to erect his new system of philosophy. The Stagyrite, however, looked uponenumerationem per simplicem, without any regard to the nature of the matter, or to the completeness of the species, with as much reprehensive caution as Bacon, and guarded his readers against it as the source of innumerable errors.—Ed.

[35]SeeAx.lxi.toward the end. This subject extends toAx. lxxviii.

[36]Gorgias of Leontium went to Athens in 424 B.C. He and Polus were disciples of Empedocles, whom we have already noticed (Aphorism 63), where he sustained the three famous propositions, that nothing exists, that nothing can be known, and that it is out of the power of man to transmit or communicate intelligence. He is reckoned one of the earliest writers on the art of rhetoric, and for that reason, Plato called his elegant dialogue on that subject after his name.

[37]Chrysippus, a stoic philosopher of Soli in Cilicia, Campestris, born in 280, died in the 143d Olympiad, 208 B.C. He was equally distinguished for natural abilities and industry, seldom suffering a day to elapse without writing 500 lines. He wrote several hundred volumes, of which three hundred were on logical subjects; but in all, borrowed largely from others. He was very fond of thesoritesin argument, which is hence called by Persius the heap of Chrysippus. He was called the Column of the Portico, a name given to the Stoical School from Zeno, its founder, who had given his lessons under the portico.

Carneades, born about 215, died in 130. He attached himself to Chrysippus, and sustained withéclatthe scepticism of the academy. The Athenians sent him with Critolaus and Diogenes as ambassador to Rome, where he attracted the attention of his new auditory by the subtilty of his reasoning, and the fluency and vehemence of his language. Before Galba and Cato the Censor, he harangued with great variety of thought and copiousness of diction in praise of justice. The next day, to establish his doctrine of the uncertainty of human knowledge, he undertook to refute all his arguments. He maintained with the New Academy, that the senses, the imagination, and the understanding frequently deceive us, and therefore cannot be infallible judges of truth, but that from the impressions produced on the mind by means of the senses, we infer appearances of truth or probabilities. Nevertheless, with respect to the conduct of life, Carneades held that probable opinions are a sufficient guide.

Xenophanes, a Greek philosopher, of Colophon, born in 556, the founder of the Eleatic school, which owes its fame principally to Parmenides. Wild in his opinions about astronomy, he supposed that the stars were extinguished every morning, and rekindled at night; that eclipses were occasioned by the temporary extinction of the sun, and that there were several suns for the convenience of the different climates of the earth. Yet this man held the chair of philosophy at Athens for seventy years.

Philolaus, a Pythagorean philosopher of Crotona, B.C. 374. He first supported the diurnal motion of the earth round its axis, and its annual motion round the sun. Cicero (Acad.iv. 39) has ascribed this opinion to the Syracusan philosopher Nicetas, and likewise to Plato. From this passage, it is most probable that Copernicus got the idea of the system he afterward established. Bacon, in the Advancement of Human Learning, charges Gilbert with restoring the doctrines of Philolaus, because he ventured to support the Copernican theory.—Ed.

[38]Bacon is equally conspicuous for the use and abuse of analogical illustrations. The levity, as Stuart Mill very properly observes, by which substances float on a stream, and the levity which is synonymous with worthlessness, have nothing beside the name in common; and to show how little value there is in the figure, we need only change the word into buoyancy, to turn the semblance of Bacon’s argument against himself.—Ed.

[39]We have before observed, that the New Academy did not profess skepticism, but theἀκατάληψια, or incomprehensibility of the absolute essences of things. Even modern physicists are not wanting, to assert with this school that the utmost knowledge we can obtain is relative, and necessarily short of absolute certainty. It is not without an appearance of truth that these philosophers maintain that our ideas and perceptions do not express the nature of the things which they represent, but only the effects of the peculiar organs by which they are conveyed to the understanding, so that were these organs changed, we should have different conceptions of their nature. That constitution of air which is dark to man is luminous to bats and owls.

[40]Owing to the universal prevalence of Aristotelism.

[41]It must be remembered, that when Bacon wrote, algebra was in its infancy, and the doctrine of units and infinitesimals undiscovered.

[42]Because the vulgar make up the overwhelming majority in such decisions, and generally allow their judgments to be swayed by passion or prejudice.

[43]See end ofAxiom lxi. The subject extends toAxiom xc.

[44]If we adopt the statement of Herodotus, who places the Homeric era 400 years back from his time, Homer lived about 900 years before Christ. On adding this number to the sixteen centuries of the Christian era which had elapsed up to Bacon’s time, we get the twenty-five centuries he mentions. The Homeric epoch is the furthest point in antiquity from which Bacon could reckon with any degree of certainty. Hesiod, if he were not contemporary, immediately preceded him.

The epoch of Greek philosophy may be included between Thales and Plato, that is, from the 35th to the 88th Olympiad; that of the Roman, between Terence and Pliny. The modern revolution, in which Bacon is one of the central figures, took its rise from the time of Dante and Petrarch, who lived at the commencement of the fourteenth century; and to which, on account of the invention of printing, and the universal spread of literature, which has rendered a second destruction of learning impossible, it is difficult to foresee any other end than the extinction of the race of man.—Ed.

[45]The allusion is evidently to Roger Bacon and Réné Descartes.—Ed.

[46]From the abuse of the scholastics, who mistook theà priorimethod, the deductive syllogism, for the entire province of logic.—Ed.

[47]SeeAphorism xcv.

[48]The incongruity to which Bacon alludes appears to spring from confounding two things, which are not only distinct, but affect human knowledge in inverse proportion, viz., the experience which terminates with life, with that experience which one century transmits to another.—Ed.

[49]The Chinese characters resemble, in many respects, the hieroglyphics of the Egyptians, being adapted to represent ideas, not sounds.

[50]SeeAxiom 75.

[51]The methods by which Newton carried the rule and compass to the boundaries of creation is a sufficient comment on the sagacity of the text. The same cause which globulizes a bubble, has rounded the earth, and the same law which draws a stone to its surface, keeps the moon in her orbit. It was by calculating and ascertaining these principles upon substances entirely at his disposal that this great philosopher was enabled to give us a key to unlock the mysteries of the universe.—Ed.

[52]See the “Clouds” of Aristophanes, where Socrates is represented as chasing Jupiter out of the sky, by resolving thunderstorms into aërial concussions and whirlwinds.—Ed.

[53]Robespierre was the latest victim of this bigotry. In his younger days he attempted to introduce Franklin’s lightning conductor into France, but was persecuted by those whose lives he sought to protect, as one audaciously striving to avert the designs of Providence.—Ed.

[54]We can hardly agree with the text. The scholastics, in building up a system of divinity, certainly had recourse to the deductive syllogism, because the inductive was totally inapplicable, except as a verificatory process. With regard to the technical form in which they marshalled their arguments, which is what our author aims at in his censure, they owed nothing at all to Aristotle, the conducting a dispute in naked syllogistic fashion having originated entirely with themselves.—Ed.

[55]Bacon cannot be supposed to allude to those divines who have attempted to show that the progress of physical science is confirmatory of revelation, but only to such as have built up a system of faith out of their own refinements on nature and revelation, as Patricius and Emanuel Swedenborg.—Ed.

[56]Daniel xii. 4.

[57]Bacon, in this Aphorism, appears to have entertained a fair idea of the use of the inductive and deductive methods in scientific inquiry, though his want of geometrical knowledge must have hindered him from accurately determining the precise functions of each, as it certainly led him in other parts of the Organon (V.Aph.82), to undervalue the deductive, and, as he calls it, the dogmatic method, and to rely too much upon empiricism.—Ed.

[58]The reader may consult the note of the23d Aphorismfor the fault which Bacon censures, and, if he wish to pursue the subject further, may read Plato’s Timæus, where that philosopher explains his system in detail. Bacon, however, is hardly consistent in one part of his censure, for he also talks about the spirit and appetites of inanimate substances, and that so frequently, as to preclude the supposition that he is employing metaphor.—Ed.

[59]Proclus flourished about the beginning of the fifth century, and was the successor of Plotinus, Porphyry and Iamblicus, who, in the two preceding centuries, had revived the doctrines of Plato, and assailed the Christian religion. The allusion in the text must be assigned to Iamblicus, who, in the fourth century, had republished the Pythagorean theology of numbers, and endeavored to construct the world out of arithmetic, thinking everything could be solved by the aid of proportions and geometry. Bacon must not be understood in the text to censure the use but the abuse of mathematics and physical investigations, as in the “De Augmentis” (lib.iv.c.6), he enumerates the multiplicity of demonstration scientific facts admit of, from this source.—Ed.

[60]See Livy, lib.ix.c. 17, where, in a digression on the probable effect of a contest between Rome and Alexander the Great, he says: “Non cum Dario rem esse dixisset: quem mulierum ac spadonum agmen trahentem inter purpuram atque aurum, oneratum fortunæ apparatibus, prædam veriùs quam hostem, nihil aliud quam ausus vana contemnere, incruentus devicit.”

[61]The lowest axioms are such as spring from simple experience—such as in chemistry, that animal substances yield no fixed salt by calcination; in music, that concords intermixed with discords make harmony, etc. Intermediate axioms advance a step further, being the result of reflection, which, applied to our experimental knowledge, deduces laws from them, such as in optics of the first degree of generality, that the angle of incidence is equal to the angle of reflection; and in mechanics, Kepler’s three laws of motion, while his general law, that all bodies attract each other with forces proportional to their masses, and inversely as the squares of their distances, may be taken as one of the highest axioms. Yet so far is this principle from being only notional or abstract, it has presented us with a key which fits into the intricate wards of the heavens, and has laid bare to our gaze the principal mechanism of the universe. But natural philosophy in Bacon’s day had not advanced beyond intermediate axioms, and the term notional or abstract is applied to those general axioms then current, not founded on the solid principles of inductive inquiry, but based uponà priorireasoning and airy metaphysics.—Ed.

[62]This hope has been abundantly realized in the discovery of gravity and the decomposition of light, mainly by the inductive method. To a better philosophy we may also attribute the discovery of electricity, galvanism and their mutual connection with each other, and magnetism, the inventions of the air-pump, steam-engine and the chronometer.


Back to IndexNext