FOOTNOTES

Besides the substances which are cold to the touch, there are others which have also the effect of cold, and condense; they appear, however, to act only upon the bodies of animals, and scarcely any further. Of these we have many instances, in medicines and plasters. Some condense the flesh and tangible parts, such as astringent and inspissating medicines, others the spirits, such as soporifics. There are two modes of condensing the spirits, by soporifics or provocatives to sleep; the one by calming the motion, the other by expelling the spirit. The violet, dried roses, lettuces, and other benign or mild remedies, by their friendly and gently cooling vapors, invite the spiritsto unite, and restrain their violent and perturbed motion. Rose-water, for instance, applied to the nostrils in fainting fits, causes the resolved and relaxed spirits to recover themselves, and, as it were, cherishes them. But opiates, and the like, banish the spirits by their malignant and hostile quality. If they be applied, therefore, externally, the spirits immediately quit the part and no longer readily flow into it; but if they be taken internally, their vapor, mounting to the head, expels, in all directions, the spirits contained in the ventricles of the brain, and since these spirits retreat, but cannot escape, they consequently meet and are condensed, and are sometimes completely extinguished and suffocated; although the same opiates, when taken in moderation, by a secondary accident (the condensation which succeeds their union), strengthen the spirits, render them more robust, and check their useless and inflammatory motion, by which means they contribute not a little to the cure of diseases, and the prolongation of life.

The preparations of bodies, also, for the reception of cold should not be omitted, such as that water a little warmed is more easily frozen than that which is quite cold, and the like.

Moreover, since nature supplies cold so sparingly, we must act like the apothecaries, who, when they cannot obtain any simple ingredient, take a succedaneum, orquid pro quo, as they term it, such as aloes for xylobalsamum, cassia for cinnamon. In the same manner we should look diligently about us, to ascertain whether there may be any substitutes for cold, that is to say, in what other manner condensation can be effected, which is the peculiar operation of cold. Such condensations appear hitherto to be of four kinds only. 1. By simple compression, which is of littleavail toward permanent condensation, on account of the elasticity of substances, but may still, however, be of some assistance. 2. By the contraction of the coarser, after the escape or departure of the finer parts of a given body; as is exemplified in induration by fire, and the repeated heating and extinguishing of metals, and the like. 3. By the cohesion of the most solid homogeneous parts of a given body, which were previously separated, and mixed with others less solid, as in the return of sublimated mercury to its simple state, in which it occupies much less space than it did in powder, and the same may be observed of the cleansing of all metals from their dross. 4. By harmony, or the application of substances which condense by some latent power. These harmonies are as yet but rarely observed, at which we cannot be surprised, since there is little to hope for from their investigation, unless the discovery of forms and confirmation be attained. With regard to animal bodies, it is not to be questioned that there are many internal and external medicines which condense by harmony, as we have before observed, but this action is rare in inanimate bodies. Written accounts, as well as report, have certainly spoken of a tree in one of the Tercera or Canary Islands (for I do not exactly recollect which) that drips perpetually, so as to supply the inhabitants, in some degree, with water; and Paracelsus says that the herb calledros solisis filled with dew at noon, while the sun gives out its greatest heat, and all other herbs around it are dry. We treat both these accounts as fables; they would, however, if true, be of the most important service, and most worthy of examination. As to the honey-dew, resembling manna, which is found in May on the leaves of the oak, we are of opinion that it is not condensed by any harmony or peculiarityof the oak leaf, but that while it falls equally upon other leaves it is retained and continues on those of the oak, because their texture is closer, and not so porous as that of most of the other leaves.[164]

With regard to heat, man possesses abundant means and power; but his observation and inquiry are defective in some respects, and those of the greatest importance, notwithstanding the boasting of quacks. For the effects of intense heat are examined and observed, while those of a more gentle degree of heat, being of the most frequent occurrence in the paths of nature, are, on that very account, least known. We see, therefore, the furnaces, which are most esteemed, employed in increasing the spirits of bodies to a great extent, as in the strong acids, and some chemical oils; while the tangible parts are hardened, and, when the volatile part has escaped, become sometimes fixed; the homogeneous parts are separated, and the heterogeneous incorporated and agglomerated in a coarse lump; and (what is chiefly worthy of remark) the junction of compound bodies, and the more delicate conformations are destroyed and confounded. But the operation of a less violent heat should be tried and investigated, by which more delicate mixtures and regular conformations may be produced and elicited, according to the example of nature, and in imitation of the effect of the sun, which we have alluded to in theaphorism on the instances of alliance. For the works of nature are carried on in much smaller portions, and in more delicate and varied positions than those of fire, as we now employ it. But man will then appear to have really augmented his power, when the works of nature can beimitated in species, perfected in power, and varied in quantity; to which should be added the acceleration in point of time. Rust, for instance, is the result of a long process, butcrocus martisis obtained immediately; and the same may be observed of natural verdigris and ceruse. Crystal is formed slowly, while glass is blown immediately: stones increase slowly, while bricks are baked immediately, etc. In the meantime (with regard to our present subject) every different species of heat should, with its peculiar effects, be diligently collected and inquired into; that of the heavenly bodies, whether their rays be direct, reflected, or refracted, or condensed by a burning-glass; that of lightning, flame, and ignited charcoal; that of fire of different materials, either open or confined, straitened or overflowing, qualified by the different forms of the furnaces, excited by the bellows, or quiescent, removed to a greater or less distance, or passing through different media; moist heats, such as thebalneum Mariæ, and the dunghill; the external and internal heat of animals; dry heats, such as the heat of ashes, lime, warm sand; in short, the nature of every kind of heat, and its degrees.

We should, however, particularly attend to the investigation and discovery of the effects and operations of heat, when made to approach and retire by degrees, regularly, periodically, and by proper intervals of space and time. For this systematical inequality is in truth the daughter of heaven and mother of generation, nor can any great result be expected from a vehement, precipitate, or desultory heat. For this is not only most evident in vegetables, but in the wombs of animals also there arises a great inequality of heat, from the motion, sleep, food, and passions of the female. The same inequality prevails in those subterraneousbeds where metals and fossils are perpetually forming, which renders yet more remarkable the ignorance of some of the reformed alchemists, who imagined they could attain their object by the equable heat of lamps, or the like, burning uniformly. Let this suffice concerning the operation and effects of heat; nor is it time for us to investigate them thoroughly before the forms and conformations of bodies have been further examined and brought to light. When we have determined upon our models, we may seek, apply, and arrange our instruments.

4. The fourth mode of action is by continuance, the very steward and almoner, as it were, of nature. We apply the term continuance to the abandonment of a body to itself for an observable time, guarded and protected in the meanwhile from all external force. For the internal motion then commences to betray and exert itself when the external and adventitious is removed. The effects of time, however, are far more delicate than those of fire. Wine, for instance, cannot be clarified by fire as it is by continuance. Nor are the ashes produced by combustion so fine as the particles dissolved or wasted by the lapse of ages. The incorporations and mixtures, which are hurried by fire, are very inferior to those obtained by continuance; and the various conformations assumed by bodies left to themselves, such as mouldiness, etc., are put a stop to by fire or a strong heat. It is not, in the meantime, unimportant to remark that there is a certain degree of violence in the motion of bodies entirely confined; for the confinement impedes the proper motion of the body. Continuance in an open vessel, therefore, is useful for separations, and in one hermetically sealed for mixtures, that in a vessel partly closed, but admitting the air, for putrefaction. But instances of theoperation and effect of continuance must be collected diligently from every quarter.

5. The direction of motion (which is the fifth method of action) is of no small use. We adopt this term, when speaking of a body which, meeting with another, either arrests, repels, allows, or directs its original motion. This is the case principally in the figure and position of vessels. An upright cone, for instance, promotes the condensation of vapor in alembics, but when reversed, as in inverted vessels, it assists the refining of sugar. Sometimes a curved form, or one alternately contracted and dilated, is required. Strainers may be ranged under this head, where the opposed body opens a way for one portion of another substance and impedes the rest. Nor is this process or any other direction of motion carried on externally only, but sometimes by one body within another. Thus, pebbles are thrown into water to collect the muddy particles, and syrups are refined by the white of an egg, which glues the grosser particles together so as to facilitate their removal. Telesius, indeed, rashly and ignorantly enough attributes the formation of animals to this cause, by means of the channels and folds of the womb. He ought to have observed a similar formation of the young in eggs which have no wrinkles or inequalities. One may observe a real result of this direction of motion in casting and modelling.

6. The effects produced by harmony and aversion (which is the sixth method) are frequently buried in obscurity; for these occult and specific properties (as they are termed), the sympathies and antipathies, are for the most part but a corruption of philosophy. Nor can we form any great expectation of the discovery of the harmony which exists between natural objects, before that of their forms andsimple conformations, for it is nothing more than the symmetry between these forms and conformations.

The greater and more universal species of harmony are not, however, so wholly obscure, and with them, therefore, we must commence. The first and principal distinction between them is this; that some bodies differ considerably in the abundance and rarity of their substance, but correspond in their conformation; others, on the contrary, correspond in the former and differ in the latter. Thus the chemists have well observed, that in their trial of first principles sulphur and mercury, as it were, pervade the universe; their reasoning about salt, however, is absurd, and merely introduced to comprise earthy dry fixed bodies. In the other two, indeed, one of the most universal species of natural harmony manifests itself. Thus there is a correspondence between sulphur, oil, greasy exhalations, flame, and, perhaps, the substance of the stars. On the other hand, there is a like correspondence between mercury, water, aqueous vapor, air, and, perhaps, pure inter-sidereal ether. Yet do these two quaternions, or great natural tribes (each within its own limits), differ immensely in quantity and density of substance, while they generally agree in conformation, as is manifest in many instances. On the other hand, the metals agree in such quantity and density (especially when compared with vegetables, etc.), but differ in many respects in conformation. Animals and vegetables, in like manner, vary in their almost infinite modes of conformation, but range within very limited degrees of quantity and density of substance.

The next most general correspondence is that between individual bodies and those which supply them by way of menstruum or support. Inquiry, therefore, must be madeas to the climate, soil, and depth at which each metal is generated, and the same of gems, whether produced in rocks or mines, also as to the soil in which particular trees, shrubs, and herbs, mostly grow and, as it were, delight; and as to the best species of manure, whether dung, chalk, sea sand, or ashes, etc., and their different propriety and advantage according to the variety of soils. So also the grafting and setting of trees and plants (as regards the readiness of grafting one particular species on another) depends very much upon harmony, and it would be amusing to try an experiment I have lately heard of, in grafting forest trees (garden trees alone having hitherto been adopted), by which means the leaves and fruit are enlarged, and the trees produce more shade. The specific food of animals again should be observed, as well as that which cannot be used. Thus the carnivorous cannot be fed on herbs, for which reason the order of feuilletans, the experiment having been made, has nearly vanished; human nature being incapable of supporting their regimen, although the human will has more power over the bodily frame than that of other animals. The different kinds of putrefaction from which animals are generated should be noted.

The harmony of principal bodies with those subordinate to them (such indeed may be deemed those we have alluded to above) are sufficiently manifest, to which may be added those that exist between different bodies and their objects, and, since these latter are more apparent, they may throw great light when well observed and diligently examined upon those which are more latent.

The more internal harmony and aversion, or friendship and enmity (for superstition and folly have rendered the terms of sympathy and antipathy almost disgusting), havebeen either falsely assigned, or mixed with fable, or most rarely discovered from neglect. For if one were to allege that there is an enmity between the vine and the cabbage, because they will not come up well when sown together, there is a sufficient reason for it in the succulent and absorbent nature of each plant, so that the one defrauds the other. Again, if one were to say that there is a harmony and friendship between the corn and the corn-flower, or the wild poppy, because the latter seldom grow anywhere but in cultivated soils, he ought rather to say, there is an enmity between them, for the poppy and the corn-flower are produced and created by those juices which the corn has left and rejected, so that the sowing of the corn prepares the ground for their production. And there are a vast number of similar false assertions. As for fables, they must be totally exterminated. There remains, then, but a scanty supply of such species of harmony as has borne the test of experiment, such as that between the magnet and iron, gold and quicksilver, and the like. In chemical experiments on metals, however, there are some others worthy of notice, but the greatest abundance (where the whole are so few in numbers) is discovered in certain medicines, which, from their occult and specific qualities (as they are termed), affect particular limbs, humors, diseases, or constitutions. Nor should we omit the harmony between the motion and phenomena of the moon, and their effects on lower bodies, which may be brought together by an accurate and honest selection from the experiments of agriculture, navigation, and medicine, or of other sciences. By as much as these general instances, however, of more latent harmony, are rare, with so much the more diligence are they to be inquired after, through tradition, and faithful and honestreports, but without rashness and credulity, with an anxious and, as it were, hesitating degree of reliance. There remains one species of harmony which, though simple in its mode of action, is yet most valuable in its use, and must by no means be omitted, but rather diligently investigated. It is the ready or difficult coition or union of bodies in composition, or simple juxtaposition. For some bodies readily and willingly mix, and are incorporated, others tardily and perversely; thus powders mix best with water, chalk and ashes with oils, and the like. Nor are these instances of readiness and aversion to mixture to be alone collected, but others, also, of the collocation, distribution, and digestion of the parts when mingled, and the predominance after the mixture is complete.

7. Lastly, there remains the seventh, and last of the seven, modes of action; namely, that by the alternation and interchange of the other six; but of this, it will not be the right time to offer any examples, until some deeper investigation shall have taken place of each of the others. The series, or chain of this alternation, in its mode of application to separate effects, is no less powerful in its operation than difficult to be traced. But men are possessed with the most extreme impatience, both of such inquiries, and their practical application, although it be the clew of the labyrinth in all greater works. Thus far of the generally useful instances.

LI. The twenty-seventh and last place we will assign to the magical instances, a term which we apply to those where the matter or efficient agent is scanty or small, in comparison with the grandeur of the work or effect produced; so that even when common they appear miraculous, some at first sight, others even upon more attentive observation.Nature, however, of herself, supplies these but sparingly. What she will do when her whole store is thrown open, and after the discovery of forms, processes, and conformation, will appear hereafter. As far as we can yet conjecture, these magic effects are produced in three ways, either by self-multiplication, as in fire, and the poisons termed specific, and the motions transferred and multiplied from wheel to wheel; or by the excitement, or, as it were, invitation of another substance, as in the magnet, which excites innumerable needles without losing or diminishing its power; and again in leaven, and the like; or by the excess of rapidity of one species of motion over another, as has been observed in the case of gunpowder, cannon, and mines. The two former require an investigation of harmonies, the latter of a measure of motion. Whether there be any mode of changing bodiesper minima(as it is termed), and transferring the delicate conformations of matter, which is of importance in all transformations of bodies, so as to enable art to effect, in a short time, that which nature works out by divers expedients, is a point of which we have as yet no indication. But, as we aspire to the extremest and highest results in that which is solid and true, so do we ever detest, and, as far as in us lies, expel all that is empty and vain.

LII. Let this suffice as to the respective dignity of prerogatives of instances. But it must be noted, that in this our organ, we treat of logic, and not of philosophy. Seeing, however, that our logic instructs and informs the understanding, in order that it may not, with the small hooks, as it were, of the mind, catch at, and grasp mere abstractions, but rather actually penetrate nature, and discover the properties and effects of bodies, and the determinate laws oftheir substance (so that this science of ours springs from the nature of things, as well as from that of the mind); it is not to be wondered at, if it have been continually interspersed and illustrated with natural observations and experiments, as instances of our method. The prerogative instances are, as appears from what has preceded, twenty-seven in number, and are termed, solitary instances, migrating instances, conspicuous instances, clandestine instances, constitutive instances, similar instances, singular instances, deviating instances, bordering instances, instances of power, accompanying and hostile instances, subjunctive instances, instances of alliance, instances of the cross, instances of divorce, instances of the gate, citing instances, instances of the road, supplementary instances, lancing instances, instances of the rod, instances of the course, doses of nature, wrestling instances, suggesting instances, generally useful instances, and magical instances. The advantage, by which these instances excel the more ordinary, regards specifically either theory or practice, or both. With regard to theory, they assist either the senses or the understanding; the senses, as in the five instances of the lamp; the understanding, either by expediting the exclusive mode of arriving at the form, as in solitary instances, or by confining, and more immediately indicating the affirmative, as in the migrating, conspicuous, accompanying, and subjunctive instances; or by elevating the understanding, and leading it to general and common natures, and that either immediately, as in the clandestine and singular instances, and those of alliance; or very nearly so, as in the constitutive; or still less so, as in the similar instances; or by correcting the understanding of its habits, as in the deviating instances; or by leading to the grand form or fabric of the universe, as in the borderinginstances; or by guarding it from false forms and causes, as in those of the cross and of divorce. With regard to practice, they either point it out, or measure, or elevate it. They point it out, either by showing where we must commence in order not to repeat the labors of others, as in the instances of power; or by inducing us to aspire to that which may be possible, as in the suggesting instances; the four mathematical instances measure it. The generally useful and the magical elevate it.

Again, out of these twenty-seven instances, some must be collected immediately, without waiting for a particular investigation of properties. Such are the similar, singular, deviating, and bordering instances, those of power, and of the gate, and suggesting, generally useful, and magical instances; for these either assist and cure the understanding and senses, or furnish our general practice. The remainder are to be collected when we finish our synoptical tables for the work of the interpreter, upon any particular nature; for these instances, honored and gifted with such prerogatives, are like the soul amid the vulgar crowd of instances, and (as we from the first observed) a few of them are worth a multitude of the others. When, therefore, we are forming our tables they must be searched out with the greatest zeal, and placed in the table. And, since mention must be made of them in what follows, a treatise upon their nature has necessarily been prefixed. We must next, however, proceed to the supports and corrections of induction, and thence to concretes, the latent process, and latent conformations, and the other matters, which we have enumerated in their order in thetwenty-first aphorism, in order that, like good and faithful guardians, we may yield up their fortune to mankind upon the emancipation and majorityof their understanding; from which must necessarily follow an improvement of their estate, and an increase of their power over nature. For man, by the fall, lost at once his state of innocence, and his empire over creation, both of which can be partially recovered even in this life, the first by religion and faith, the second by the arts and sciences. For creation did not become entirely and utterly rebellious by the curse, but in consequence of the Divine decree, “in the sweat of thy brow shalt thou eat bread,” she is compelled by our labors (not assuredly by our disputes or magical ceremonies), at length, to afford mankind in some degree his bread, that is to say, to supply man’s daily wants.

END OF “NOVUM ORGANUM”

[71]Τὸ τὶ ἦν εἶναι, orἦνοὐσίαof Aristotle.—See lib. iii.Metap.

[72]These divisions are from Aristotle’s Metaphysics, where they are termed, 1.ὓλη ἢ τὸ ὑποκείμενον. 2.τὸ τὶ ἦν εἶναι. 3.ὅθεν ἡ ἀρχὴ τῆς κινήσεως. 4.τὸ οὗ ἕνεκεν—καὶ τὸ ἀγαθόν.

[73]SeeAphorism li.andsecond paragraph of Aphorism lxv.in the first book.

[74]Bacon means, that although there exist in nature only individualities, yet a certain number of these may have common properties, and be controlled by the same laws. Now, these homogeneous qualities which distinguish them from other individuals, lead us to class them under one expression, and sometimes under a single term. Yet these classes are only pure conceptions in Bacon’s opinion, and cannot be taken for distinct substances. He evidently here aims a blow at the Realists, who concluded that the essence which united individualities in a class was the only real and immutable existence in nature, inasmuch as it entered into their ideas of individual substances as a distinct and essential property, and continued in the mind as the mold, type or pattern of the class, while its individual forms were undergoing perpetual renovation and decay.—Ed.

[75]Bacon’s definition is obscure. All the idea we have of a law of nature consists in invariable sequence between certain classes of phenomena; but this cannot be the complete sense attached by Bacon to the term form, as he employs it in thefourth aphorismas convertible with the nature of any object; and again, in thefirst aphorism, as thenatura naturans, or general law or condition in any substance or quality—natura naturata—which is whatever its form is, or that particular combination of forces which impresses a certain nature upon matter subject to its influence. Thus, in the Newtonian sense, the form of whiteness would be that combination of the seven primitive rays of light which give rise to that color. In combination with this word, and affording a still further insight into its meaning, we have the phrases,latens processus ad formam, et latens schematismus corporum. Now, thelatens schematismussignifies the internal texture, structure, or configuration of bodies, or the result of the respective situation of all the parts of a body; while thelatens processus ad formampoints out the gradation of movements which takes place among themoleculaof bodies when they either conserve or change their figure. Hence we may consider the form of any quality in body as something convertible with that quality,i.e., when it exists the quality is present, andvice versâ. In this sense, the form of a thing differs only from its efficient cause in being permanent, whereas we apply cause to that which exists in order of time. Thelatens processusandlatens schematismusare subordinate to form, as concrete exemplifications of its essence. The former is the secret and invisible process by which change is effected, and involves the principle since called the law of continuity. Thus, the succession of events between the application of the match to the expulsion of the bullet is an instance of latent progress which we can now trace with some degree of accuracy. It also more directly refers to the operation by which one form or condition of being is induced upon another. For example, when the surface of iron becomes rusty, or when water is converted into steam, some change has taken place, or latent process from one form to another. Mechanics afford many exemplifications of the first latent process we have denoted, and chemistry of the second. Thelatens schematismusis that visible structure of bodies on which so many of their properties depend. When we inquire into the constitution of crystals, and into the internal structure of plants, we are examining into their latent schematism.—Ed.

[76]By the recent discoveries in electric magnetism, copper wires, or, indeed, wires of any metal, may be transformed into magnets; the magnetic law, or form, having been to that extent discovered.

[77]Haller has pursued this investigation in his “Physiology,” and has left his successors little else to do than repeat his discoveries.—Ed.

[78]Bacon here first seems pregnant with the important development of the higher calculus, which, in the hands of Newton and Descartes, was to effect as great a revolution in philosophy as his method.—Ed.

[79]By spirit, Bacon here plainly implies material fluid too fine to be grasped by the unassisted sense, which rather operates than reasons. We sometimes adopt the same mode of expression, as in the words spirits of nitre, spirits of wine. Some such agency has been assumed by nearly all the modern physicists, a few of whom, along with Bacon, would leave us to gather from their expressions, that they believe such bodies endowed with the sentient powers of perception. As another specimen of his sentiment on this subject, we may refer to a paragraph on the decomposition of compounds, in his essay on death, beginning—“The spirit which exists in all living bodies, keeps all the parts in due subjection; when it escapes, the body decomposes, or the similar parts unite.”—Ed.

[80]The theory of the Epicureans and others. The atoms are supposed to be invisible, unalterable particles, endued with all the properties of the given body, and forming that body by their union. They must be separated, of course, which either takes a vacuum for granted, or introduces atertium quidinto the composition of the body.

[81]Compare the three following aphorisms with the last three chapters of the third book of the “De Augmentis Scientiarum.”

[82]Bacon gives this unfortunate term its proper signification;μετα, in composition, with the Greeks signifying change or mutation. Most of our readers, no doubt, are aware that the obtrusion of this word into technical philosophy was purely capricious, and is of no older date than the publication of Aristotle’s works by Andronicus of Rhodes, one of the learned men into whose hands the manuscripts of that philosopher fell, after they were brought by Sylla from Athens to Rome. To fourteen books in these MSS. with no distinguishing title, Andronicus is said to have prefixed the wordsτα μετα τα φυσικα, to denote the place which they ought to hold either in the order of Aristotle’s arrangement, or in that of study. These books treat first of those subjects which are common to matter and mind; secondly, of things separate from matter,i.e.of God, and of the subordinate spirits, which were supposed by the Peripatetics to watch over particular portions of the universe. The followers of Aristotle accepted the whimsical title of Andronicus, and in their usual manner allowed a word to unite things into one science which were plainly heterogeneous. Their error was adopted by the Peripatetics of the Christian Church. The schoolmen added to the notion of ontology, the science of the mind, or pneumatology, and as that genus of being has since become extinct with the schools, metaphysics thus in modern parlance comes to be synonymous with psychology. It were to be wished that Bacon’s definition of the term had been accepted, and mental science delivered from one of the greatest monstrosities in its nomenclature, yet Bacon whimsically enough in hisDe Augmentisincludes mathematics in metaphysics.—Ed.

[83]

“Ne tenues pluviæ, rapidive potentia solisAcrior, aut Boreæ penetrabile frigus adurat.”—Virg.Georg.i. 92, 93.

“Ne tenues pluviæ, rapidive potentia solisAcrior, aut Boreæ penetrabile frigus adurat.”—Virg.Georg.i. 92, 93.

—Virg.Georg.i. 92, 93.

[84]This notion, which he repeats again, and particularizes in the18th aph.of this book, is borrowed from the ancients, and we need not say is as wise as their other astronomical conjectures. The sun also approaches stars quite as large in other quarters of the zodiac, when it looks down upon the earth through the murky clouds of winter. When that luminary is in Leo, the heat of the earth is certainly greater than at any other period, but this arises from the accumulation of heat after the solstice, for the same reason that the maximum heat of the day is at two o’clock instead of noon.—Ed.

[85]Bouguer,employed by Louis XIV. in philosophical researches, ascended the Andes to discover the globular form of the earth, and published an account of his passage, which verifies the statement of Bacon.

[86]Montanari asserts in his book against the astrologers that he had satisfied himself by numerous and oft-repeated experiments, that the lunar rays gathered to a focus produced a sensible degree of heat.Muschenbröck, however, adopts the opposite opinion, and asserts that himself,De la Hire,Villet, andTschirnhausenhad tried with that view the strongest burning-glasses in vain. (Opera de Igne.)De la Landemakes a similar confession in his Astronomy (vol. ii. vii. § 1413).Bouguer, whom we have just quoted, demonstrated that the light of the moon was 300,000 degrees less than that of the sun; it would consequently benecessaryto invent a glass with an absorbing power 300,000 degrees greater than those ordinarily in use, to try the experiment Bacon speaks of.—Ed.

[87]In this thermometer, mercury was not dilated by heat or contracted by cold, as the one now in use, but a mass of air employed instead, which filled the cavity of the bulb. This being placed in an inverted position to ours, that is to say, with the bulb uppermost, pressed down the liquor when the air became dilated by heat, as ours press it upward; and when the heat diminished, theliquorrose to occupy the place vacated by the air, as the one now in use descends. It consequently was liable to be affected by a change in the temperature, as by the weight of air, and could afford only a rude standard of accuracy in scientific investigations. This thermometer was not Bacon’s own contrivance, as is commonly supposed, but that of Drebbel.—Ed.

[88]La Landeis indignant that the Chaldeans should have more correct notions of the nature of comets than the modern physicists, and charges Bacon with entertaining the idea that they were the mere effects of vapor and heat. This passage, with two others more positive, in the “De Aug.” (cap. xl.) and the “Descript. Globi Intellect.” (cap. vi.) certainly afford ground for the assertion; but if Bacon erred, he erred with Galileo, and with the foremost spirits of the times. It is true that Pythagoras and Seneca had asserted their belief in the solidity of these bodies, but the wide dominion which Aristotle subsequently exercised, threw their opinions into the shade, and made the opposite doctrine everywhere paramount.—Ed.

[89]Was it a silk apron which exhibited electric sparks? Silk was then scarce.

[90]The Italian fire-fly.

[91]This last is found to be the real reason, air not being a good conductor, and therefore not allowing the escape of heat. The confined air is disengaged when these substances are placed under an exhausted receiver.

[92]This is erroneous. Air, in fact, is one of the worst, and metals are the best conductors of heat.

[93]SeeNo. 28 in the table of the degrees of heat.

[94]Bacon here mistakes sensation confined to ourselves for an internal property of distinct substances. Metals are denser than wood, and our bodies consequently coming into contact with more particles of matter when we touch them, lose a greater quantity of heat than in the case of lighter substances.—Ed.

[95]This was the ancient opinion, but the moderns incline to the belief that these insects are produced by generation or fecundity from seeds deposited by their tribes in bodies on the verge of putrefaction.—Ed.

[96]The correct measure of the activity of flame may be obtained by multiplying its natural force into the square of its velocity. On this account the flame of vivid lightning mentioned inNo. 23contains so much vigor, its velocity being greater than that arising from other heat.—Ed.

[97]The fires supply fresh heat, the water has only a certain quantity of heat, which being diffused over a fresh supply of cooler water, must be on the whole lowered.

[98]If condensation were the cause of the greater heat, Bacon concludes the centre of the flame would be the hotter part, andvice versâ. The fact is, neither of the causes assigned by Bacon is the true one; for the fire burns more quickly only because the draught of air is more rapid, the cold dense air pressing rapidly into the heated room and toward the chimney.—Ed.

[99]Bacon appears to have confounded combustibility and fusibility with susceptibility of heat; for though the metals will certainly neither dissolve as soon as ice or butter, nor be consumed as soon as wood, that only shows that different degrees of heat are required to produce similar effects on different bodies; but metals much more readily acquire and transmit the same degree of heat than any of the above substances. The rapid transmission renders them generally cold to the touch. The convenience of fixing wooden handles to vessels containing hot water illustrates these observations.

[100]Another singular error, the truth being, that solid bodies are the best conductors; but of course where heat is diffused over a large mass, it is less in each part, than if that part alone absorbed the whole quantum of heat.—Ed.

[101]This general law or form has been well illustrated by Newton’s discovery of the decomposition of colors.

[102]I.e., the common link or form which connects the various kinds of natures, such as the different hot or red natures enumerated above.—SeeAphorism iii. part 2.

[103]This is erroneous—all metals expand considerably when heated.

[104]“Quid ipsum,” theτὸ τὶ ἦν εἶναιof Aristotle.

[105]To show the error of the text, we need only mention the case of water, which, when confined in corked vases, and exposed to the action of a freezing atmosphere, is sure to swell out and break those vessels which are not sufficiently large to contain its expanded volume. Megalotti narrates a hundred other instances of a similar character.—Ed.

[106]Bacon’s inquisition into the nature of heat, as an example of the mode of interpreting nature, cannot be looked upon otherwise than as a complete failure. Though the exact nature of this phenomenon is still an obscure and controverted matter, the science of thermotics now consists of many important truths, and to none of these truths is there so much as an approximation in Bacon’s process. The steps by which this science really advanced were the discovery of a measure of a heat or temperature, the establishment of the laws of conduction and radiation, of the laws of specific heat, latent heat, and the like. Such advances have led toAmpère’s hypothesis, that heat consists in the vibrations of an imponderable fluid; and to Laplace’s theory, that temperature consists in the internal radiation of a similar medium. These hypotheses cannot yet be said to be even probable, but at least they are so modified as to include some of the preceding laws which are firmly established, whereas Bacon’s “form,” or true definition of heat, as stated in the text, includes no laws of phenomena, explains no process, and is indeed itself an example of illicit generalization.

In all the details of his example of heat he is unfortunate. He includes in his collection of instances, thehottastes of aromatic plants, the caustic effects of acids, and many other facts which cannot be ascribed to heat without a studious laxity in the use of the word.—Ed.

[107]By this term Bacon understands general phenomena, taken in order from the great mass of indiscriminative facts, which, as they lie in nature, are apt to generate confusion by their number, indistinctness and complication. Such classes of phenomena, as being peculiarly suggestive of causation, he quaintly classes under the title of prerogative inquiries, either seduced by the fanciful analogy, which such instances bore to theprerogativa centuriain the Roman Comitia, or justly considering them as Herschel supposes to hold a kind of prerogative dignity from being peculiarly suggestive of causation.

Two high authorities in physical science (v. Herschel,Nat. Phil.,art.192; Whewell’s Philosophy of the Inductive Sciences, vol. ii. p. 243) pronounce these instances of little service in the task of induction, being for the most part classed not according to the ideas which they involve, or to any obvious circumstance in the facts of which they consist, but according to the extent and manner of their influence upon the inquiry in which they are employed. Thus we have solitary instances, migrating instances, ostensive instances, clandestine instances, so termed according to the degree in which they exhibit, or seem to exhibit, the property, whose nature we would examine. We have guide-post instances, crucial instances, instances of the parted road, of the doorway, of the lamp, according to the guidance they supply to our advance. Whewell remarks that such a classification is much of the same nature as if, having to teach the art of building, we were to describe tools with reference to the amount and place of the work which they must do, instead of pointing out their construction and use; as if we were to inform the pupil that we must have tools for lifting a stone up, tools for moving it sidewise, tools for laying it square, and tools for cementing it firmly. The means are thus lost in the end, and we reap the fruits of unmethodical arrangement in the confusion of cross division. In addition, all the instances are leavened with the error of confounding the laws with the causes of phenomena, and we are urged to adopt the fundamental error of seeking therein the universal agents, or general causes of phenomena, without ascending the gradual steps of intermediate laws.—Ed.

[108]Of these nine general heads no more than the first is prosecuted by the author.

[109]This very nearly approaches to Sir I. Newton’s discovery of the decomposition of light by the prism.

[110]The mineral kingdom, as displaying the same nature in all its gradations, from the shells so perfect in structure in limestone to the finer marbles in which their nature gradually disappears, is the great theatre for instances of migration.—Ed.

[111]Bacon was not aware of the fact since brought to light by Römer, that down to fourteen fathoms from the earth’s mean level the thermometer remains fixed at the tenth degree, but that as the thermometer descends below that depth the heat increases in a ratio proportionate to the descent, which happens with little variation in all climates. Buffon considers this a proof of a central fire in our planet.—Ed.

[112]All the diversities of bodies depend upon two principles,i.e., the quantity and the position of the elements that enter into their composition. The primary difference is not that which depends on the greatest or least quantity of material elements, but that which depends on their position. It was the quick perception of this truth that made Leibnitz say that to complete mathematics it was necessary to join to the analysis of quantity the analysis of position.—Ed.

[113]Query?

[114]The real cause of this phenomenon is the attraction of the surface-water in the vessel by the sides of the bubbles. When the bubbles approach, the sides nearest each other both tend to raise the small space of water between them, and consequently less water is raised by each of these nearer sides than by the exterior part of the bubble, and the greater weight of the water raised on the exterior parts pushes the bubbles together. In the same manner a bubble near the side of a vessel is pushed toward it; the vessel and bubble both drawing the water that is between them. The latter phenomenon cannot be explained on Bacon’s hypothesis.

[115]Modern discoveries appear to bear out the sagacity of Bacon’s remark, and the experiments of Baron Cagnard may be regarded as a first step toward its full demonstration. After the new facts elicited by that philosopher, there can be little doubt that the solid, liquid and aëriform state of bodies are merely stages in a progress of gradual transition from one extreme to the other, and that however strongly marked the distinctions between them may appear, they will ultimately turn out to be separated by no sudden or violent line of demarcation, but slide into each other by imperceptible gradations. Bacon’s suggestion, however, is as old as Pythagoras, and perhaps simultaneous with the first dawn of philosophic reason. The doctrine of the reciprocal transmutation of the elements underlies all the physical systems of the ancients, and was adopted by the Epicureans as well as the Stoics. Ovid opens his last book of the Metamorphoses with the poetry of the subject, where he expressly points to the hint of Bacon:—


Back to IndexNext