CHAPTER II.Of the Explication of Conceptions.

CHAPTER II.Of the Explication of Conceptions.AphorismII.The Explication of Conceptions, as requisite for the progress of science, has been effected by means of discussions and controversies among scientists; often by debates concerning definitions; these controversies have frequently led to the establishment of a Definition; but along with the Definition, a corresponding Proposition has always been expressed or implied. The essential requisite for the advance of science is the clearness of the Conception, not the establishment of a Definition. The construction of an exact Definition is often very difficult. The requisite conditions of clear Conceptions may often be expressed by Axioms as well as by Definitions.AphorismIII.Conceptions, for purposes of science, must beappropriateas well as clear: that is, they must be modifications ofthatFundamental Idea, by which the phenomena can really be interpreted. This maxim may warn us from errour, though it may not lead to discovery. Discovery depends upon the previous cultivation or natural clearness of the appropriate Idea, and thereforeno discovery is the work of accident.Sect. I.—Historical Progress of the Explication of Conceptions.1.WE have given the appellation ofIdeasto certain comprehensive forms of thought,—asspace,number,cause,composition,resemblance,—which we apply to the phenomena which we contemplate. But the special modifications of these ideas which are31exemplified in particular facts, we have termedConceptions; asa circle,a square number,an accelerating force,a neutral combinationof elements, agenus. Such Conceptions involve in themselves certain necessary and universal relations derived from the Ideas just enumerated; and these relations are an indispensable portion of the texture of our knowledge. But to determine the contents and limits of this portion of our knowledge, requires an examination of the Ideas and Conceptions from which it proceeds. The Conceptions must be, as it were, carefullyunfolded, so as to bring into clear view the elements of truth with which they are marked from their ideal origin. This is one of the processes by which our knowledge is extended and made more exact; and this I shall describe as theExplication of Conceptions.In the several Books of the History of Ideas we have discussed a great many of the Fundamental Ideas of the most important existing sciences. We have, in those Books, abundant exemplifications of the process now under our consideration. We shall here add a few general remarks, suggested by the survey which we have thus made.2. Such discussions as those in which we have been engaged concerning our fundamental Ideas, have been the course by which, historically speaking, those Conceptions which the existing sciences involve have been rendered so clear as to be fit elements of exact knowledge. Thus, the disputes concerning the various kinds and measures ofForcewere an important part of the progress of the science of Mechanics. The struggles by which philosophers attained a right general conception ofplane, ofcircular, ofelliptical Polarization, were some of the most difficult steps in the modern discoveries of Optics. A Conception of theAtomic Constitutionof bodies, such as shall include what we know, and assume nothing more, is even now a matter of conflict among Chemists. The debates by which, in recent times, the Conceptions ofSpeciesandGenerahave been rendered more exact, have improved the science of Botany: the imperfection of the science of32Mineralogy arises in a great measure from the circumstance, that in that subject, the Conception of aSpeciesis not yet fixed. In Physiology, what a vast advance would that philosopher make, who should establish a precise, tenable, and consistent Conception ofLife!Thus discussions and speculations concerning the import of very abstract and general terms and notions, may be, and in reality have been, far from useless and barren. Such discussions arose from the desire of men to impress their opinions on others, but they had the effect of making the opinions much more clear and distinct. In trying to make others understand them, they learnt to understand themselves. Their speculations were begun in twilight, and ended in the full brilliance of day. It was not easily and at once, without expenditure of labour or time, that men arrived at those notions which now form the elements of our knowledge; on the contrary, we have, in the history of science, seen how hard, discoverers, and the forerunners of discoverers, have had to struggle with the indistinctness and obscurity of the intellect, before they could advance to the critical point at which truth became clearly visible. And so long as, in this advance, some speculators were more forward than others, there was a natural and inevitable ground of difference of opinion, of argumentation, of wrangling. But the tendency of all such controversy is to diffuse truth and to dispel errour. Truth is consistent, and can bear the tug of war; Errour is incoherent, and falls to pieces in the struggle. True Conceptions can endure the sun, and become clearer as a fuller light is obtained; confused and inconsistent notions vanish like visionary spectres at the break of a brighter day. And thus all the controversies concerning such Conceptions as science involves, have ever ended in the establishment of the side on which the truth was found.3. Indeed, so complete has been the victory of truth in most of these instances, that at present we can hardly imagine the struggle to have been necessary. The very essence of these triumphs is that they lead us to regard the views we reject as not only false,33but inconceivable. And hence we are led rather to look back upon the vanquished with contempt than upon the victors with gratitude. We now despise those who, in the Copernican controversy, could not conceive the apparent motion of the sun on the heliocentric hypothesis;—or those who, in opposition to Galileo, thought that a uniform force might be that which generated a velocity proportional to the space;—or those who held there was something absurd in Newton’s doctrine of the different refrangibility of differently coloured rays;—or those who imagined that when elements combine, their sensible qualities must be manifest in the compound;—or those who were reluctant to give up the distinction of vegetables into herbs, shrubs, and trees. We cannot help thinking that men must have been singularly dull of comprehension, to find a difficulty in admitting what is to us so plain and simple. We have a latent persuasion that we in their place should have been wiser and more clear-sighted;—that we should have taken the right side, and given our assent at once to the truth.4. Yet in reality, such a persuasion is a mere delusion. The persons who, in such instances as the above, were on the losing side, were very far, in most cases, from being persons more prejudiced, or stupid, or narrow-minded, than the greater part of mankind now are; and the cause for which they fought was far from being a manifestly bad one, till it had been so decided by the result of the war. It is the peculiar character of scientific contests, that what is only an epigram with regard to other warfare is a truth in this;—They who are defeated are really in the wrong. But they may, nevertheless, be men of great subtilty, sagacity, and genius; and we nourish a very foolish self-complacency when we suppose that we are their superiors. That this is so, is proved by recollecting that many of those who have made very great discoveries have laboured under the imperfection of thought which was the obstacle to the next step in knowledge. Though Kepler detected with great acuteness the Numerical Laws of the solar system, he laboured in34vain to conceive the very simplest of the Laws of Motion by which the paths of the planets are governed. Though Priestley made some important steps in chemistry, he could not bring his mind to admit the doctrine of a general Principle of Oxidation. How many ingenious men in the last century rejected the Newtonian Attraction as an impossible chimera! How many more, equally intelligent, have, in the same manner, in our own time, rejected, I do not now mean as false, but as inconceivable, the doctrine of Luminiferous Undulations! To err in this way is the lot, not only of men in general, but of men of great endowments, and very sincere love of truth.5. And those who liberate themselves from such perplexities, and who thus go on in advance of their age in such matters, owe their superiority in no small degree to such discussions and controversies as those to which we now refer. In such controversies, the Conceptions in question are turned in all directions, examined on all sides; the strength and the weakness of the maxims which men apply to them are fully tested; the light of the brightest minds is diffused to other minds. Inconsistency is unfolded into self-contradiction; axioms are built up into a system of necessary truths; and ready exemplifications are accumulated of that which is to be proved or disproved, concerning the ideas which are the basis of the controversy.The History of Mechanics from the time of Kepler to that of Lagrange, is perhaps the best exemplification of the mode in which the progress of a science depends upon such disputes and speculations as give clearness and generality to its elementary conceptions. This, it is to be recollected, is the kind of progress of which we are now speaking; and this is the principal feature in the portion of scientific history which we have mentioned. For almost all that was to be done by reference to observation, was executed by Galileo and his disciples. What remained was the task of generalization and simplification. And this was promoted in no small degree by the various controversies which took place within that period concerning35mechanical conceptions:—as, for example, the question concerning the measure of the Force of Percussion;—the war of theVis Viva;—the controversy of the Center of Oscillation;—of the independence of Statics and Dynamics;—of the principle of Least Action;—of the evidence of the Laws of Motion;—and of the number of Laws really distinct. None of these discussions was without its influence in giving generality and clearness to the mechanical ideas of mathematicians: and therefore, though remote from general apprehension, and dealing with very abstract notions, they were of eminent use in the perfecting the science of Mechanics. Similar controversies concerning fundamental notions, those, for example, which Galileo himself had to maintain, were no less useful in the formation of the science of Hydrostatics. And the like struggles and conflicts, whether they take the form of controversies between several persons, or only operate in the efforts and fluctuations of the discoverer’s mind, are always requisite, before the conceptions acquire that clearness which makes them flt to appear in the enunciation of scientific truth. This, then, was one object of the History of Ideas;—to bring under the reader’s notice the main elements of the controversies which have thus had so important a share in the formation of the existing body of science, and the decisions on the controverted points to which the mature examination of the subject has led; and thus to give an abundant exhibition of that step which we term the Explication of Conceptions.Sect. II.—Use of Definitions.6. The result of such controversies as we have been speaking of, often appears to be summed up in aDefinition; and the controversy itself has often assumed the form of a battle of definitions. For example, the inquiry concerning the Laws of Falling Bodies led to the question whether the proper Definition of auniform forceis, that it generates a velocity proportional to thespacefrom rest, or to thetime. The controversy of theVis Vivawas, what was the36proper Definition of themeasure of force. A principal question in the classification of minerals is, what is the Definition of amineral species. Physiologists have endeavoured to throw light on their subject, by Definingorganization, or some similar term.7. It is very important for us to observe, that these controversies have never been questions of insulated andarbitraryDefinitions, as men seem often tempted to suppose them to have been. In all cases there is a tacit assumption of some Proposition which is to be expressed by means of the Definition, and which gives it its importance. The dispute concerning the Definition thus acquires a real value, and becomes a question concerning true and false. Thus in the discussion of the question, What is a Uniform Force? it was taken for granted that ‘gravity is a uniform force:’—in the debate of theVis Viva, it was assumed that ‘in the mutual action of bodies the whole effect of the force is unchanged:’—in the zoological definition of Species, (that it consists of individuals which have, or may have, sprung from the same parents,) it is presumed that ‘individuals so related resemble each other more than those which are excluded by such a definition;’ or perhaps, that ‘species so defined have permanent and definite differences.’ A definition of Organization, or of any other term, which was not employed to express some principle, would be of no value.The establishment, therefore, of a right Definition of a Term may be a useful step in the Explication of our Conceptions; but this will be the casethenonly when we have under our consideration some Proposition in which the Term is employed. For then the question really is, how the Conception shall be understood and defined in order that the Proposition may be true.8. The establishment of a Proposition requires an attention to observed Facts, and can never be rightly derived from our Conceptions alone. We must hereafter consider the necessity which exists that the Facts should be rightly bound together, as well as that our Conceptions should be clearly employed, in order to37lead us to real knowledge. But we may observe here that, in such cases at least as we are now considering, the two processes are co-ordinate. To unfold our Conceptions by the means of Definitions, has never been serviceable to science, except when it has been associated with an immediateuseof the Definitions. The endeavour to define a uniform Force was combined with the assertion that ‘gravity is a uniform force:’ the attempt to define Accelerating Force was immediately followed by the doctrine that ‘accelerating forces may be compounded:’ the process of defining Momentum was connected with the principle that ‘momenta gained and lost are equal:’ naturalists would have given in vain the Definition of Species which we have quoted, if they had not also given the ‘characters’ of species so separated. Definition and Proposition are the two handles of the instrument by which we apprehend truth; the former is of no use without the latter. Definition may be the best mode of explaining our Conception, but that which alone makes it worth while to explain it in any mode, is the opportunity of using it in the expression of Truth. When a Definition is propounded to us as a useful step in knowledge, we are always entitled to ask what Principle it serves to enunciate. If there be no answer to this inquiry, we define and give clearness to our conceptions in vain. While we labour at such a task, we do but light up a vacant room;—we sharpen a knife with which we have nothing to cut;—we take exact aim, while we load our artillery with blank cartridge;—we apply strict rules of grammar to sentences which have no meaning.If, on the other hand, we have under our consideration a proposition probably established, every step which we can make in giving distinctness and exactness to the Terms which this proposition involves, is an important step towards scientific truth. In such cases, any improvement in our Definition is a real advance in the explication of our Conception. The clearness of our impressions casts a light upon the Ideas which we contemplate and convey to others.389. But thoughDefinitionmay be subservient to a right explication of our conceptions, it isnot essentialto that process. It is absolutely necessary to every advance in our knowledge, that those by whom such advances are made should possess clearly the conceptions which they employ: but it is by no means necessary that they should unfold these conceptions in the words of a formal Definition. It is easily seen, by examining the course of Galileo’s discoveries, that he had a distinct conception of theMoving Forcewhich urges bodies downwards upon an inclined plane, while he still hesitated whether to call itMomentum,Energy,Impetus, orForce, and did not venture to offer a Definition of the thing which was the subject of his thoughts. The Conception ofPolarizationwas clear in the minds of many optical speculators, from the time of Huyghens and Newton to that of Young and Fresnel. This Conception we have defined to be ‘Opposite properties depending upon opposite positions;’ but this notion was, by the discoverers, though constantly assumed and expressed by means of superfluous hypotheses, never clothed in definite language. And in the mean time, it was the custom, among subordinate writers on the same subjects, to say, that the termPolarizationhad no definite meaning, and was merely an expression of our ignorance. The Definition which was offered by Haüy and others of aMineralogical Species;—‘The same elements combined in the same proportions, with the same fundamental form;’—was false, inasmuch as it was incapable of being rigorously applied to any one case; but this defect did not prevent the philosophers who propounded such a Definition from making many valuable additions to mineralogical knowledge, in the way of identifying some species and distinguishing others. The right Conception which they possessed in their minds prevented their being misled by their own very erroneous Definition. The want of any precise Definitions ofStrata, andFormations, andEpochs, among geologists, has not prevented the discussions which they have carried on upon such subjects from being highly serviceable39in the promotion of geological knowledge. For however much the apparent vagueness of these terms might leave their arguments open to cavil, there was a general understanding prevalent among the most intelligent cultivators of the science, as to what was meant in such expressions; and this common understanding sufficed to determine what evidence should be considered conclusive and what inconclusive, in these inquiries. And thus the distinctness of Conception, which is a real requisite of scientific progress, existed in the minds of the inquirers, although Definitions, which are a partial and accidental evidence of this distinctness, had not yet been hit upon. The Idea had been developed in men’s minds, although a clothing of words had not been contrived for it, nor, perhaps, the necessity of such a vehicle felt: and thus that essential condition of the progress of knowledge, of which we are here speaking, existed; while it was left to the succeeding speculators to put this unwritten Rule in the form of a verbal Statute.10. Men are often prone to consider it as a thoughtlessomissionof an essential circumstance, and as aneglectwhich involves some blame, when knowledge thus assumes a form in which Definitions, or rather Conceptions, are implied but are not expressed. But in such a judgment, they assumethatto be a matter of choice requiring attention only, which is in fact as difficult and precarious as any other portion of the task of discovery. Todefine, so that our Definition shall have any scientific value, requires no small portion of that sagacity by which truth is detected. As we have already said, Definitions and Propositions are co-ordinate in their use and in their origin. In many cases, perhaps in most, the Proposition which contains a scientific truth, is apprehended with confidence, but with some vagueness and vacillation, before it is put in a positive, distinct, and definite form.—It is thus known to be true, before it can be enunciated in terms each of which is rigorously defined. The business of Definition is part of the business of discovery. When it has been clearly seen what ought to be our Definition, it40must be pretty well known what truth we have to state. The Definition, as well as the discovery, supposes a decided step in our knowledge to have been made. The writers on Logic in the middle ages, made Definition the last stage in the progress of knowledge; and in this arrangement at least, the history of science, and the philosophy derived from the history, confirm their speculative views. If the Explication of our Conceptions ever assume the form of a Definition, this will come to pass, not as an arbitrary process, or as a matter of course, but as the mark of one of those happy efforts of sagacity to which all the successive advances of our knowledge are owing.Sect. III.—Use of Axioms.11. Our Conceptions, then, even when they become so clear as the progress of knowledge requires, are not adequately expressed, or necessarily expressed at all, by means of Definitions. We may ask, then, whether there is anyother modeof expression in which we may look for the evidence and exposition of that peculiar exactness of thought which the formation of Science demands. And in answer to this inquiry, we may refer to the discussions respecting many of the Fundamental Ideas of the sciences contained in ourHistoryof such Ideas. It has there been seen that these Ideas involve many elementary truths which enter into the texture of our knowledge, introducing into it connexions and relations of the most important kind, although these elementary truths cannot be deduced from any verbal definition of the idea. It has been seen that these elementary truths may often be enunciated by means ofAxioms, stated in addition to, or in preference to, Definitions. For example, the Idea of Cause, which forms the basis of the science of Mechanics, makes its appearance in our elementary mechanical reasonings, not as a Definition, but by means of the Axioms that ‘Causes are measured by their effects,’ and that ‘Reaction is equal and opposite to action.’ Such axioms, tacitly assumed or41occasionally stated, as maxims of acknowledged validity, belong to all the Ideas which form the foundations of the sciences, and are constantly employed in the reasoning and speculations of those who think clearly on such subjects. It may often be a task of some difficulty to detect and enunciate in words the Principles which are thus, perhaps silently and unconsciously, taken for granted by those who have a share in the establishment of scientific truth: but inasmuch as these Principles are an essential element in our knowledge, it is very important to our present purpose to separate them from the associated materials, and to trace them to their origin. This accordingly I attempted to do, with regard to a considerable number of the most prominent of such Ideas, in theHistory. The reader will there find many of these Ideas resolved into Axioms and Principles by means of which their effect upon the elementary reasonings of the various sciences may be expressed. That Work is intended to form, in some measure, a representation of the Ideal Side of our physical knowledge;—a Table of those contents of our Conceptions which are not received directly from facts;—an exhibition of Rules to which we know that truth must conform.Sect. IV.—Clear and appropriate Ideas.12. In order, however, that we may see the necessary cogency of these rules, we must possess, clearly and steadily, the Ideas from which the rules flow. In order to perceive the necessary relations of the Circles of the Sphere, we must possess clearly the Idea of Solid Space:—in order that we may see the demonstration of the composition of forces, we must have the Idea of Cause moulded into a distinct Conception of Statical Force. This is thatClearness of Ideaswhich we stipulate for in any one’s mind, as the first essential condition of his making any new step in the discovery of truth. And we now see what answer we are able to give, if we are asked for a Criterion of this Clearness of42Idea. The Criterion is, that the person shallseethe necessity of the Axioms belonging to each Idea;—shall accept them in such a manner as to perceive the cogency of the reasonings founded upon them. Thus, a person has a clear Idea of Space who follows the reasonings of geometry and fully apprehends their conclusiveness. The Explication of Conceptions, which we are speaking of as an essential part of real knowledge, is the process by which we bring the Clearness of our Ideas to bear upon the Formation of our knowledge. And this is done, as we have now seen, not always, nor generally, nor principally, by laying down a Definition of the Conception; but by acquiring such a possession of it in our minds as enables, indeed compels us, to admit, along with the Conception, all the Axioms and Principles which it necessarily implies, and by which it produces its effect upon our reasonings.13. But in order that we may make any real advance in the discovery of truth, our Ideas must not only be clear, they must also beappropriate. Each science has for its basis a different class of Ideas; and the steps which constitute the progress of one science can never be made by employing the Ideas of another kind of science. No genuine advance could ever be obtained in Mechanics by applying to the subject the Ideas of Space and Time merely:—no advance in Chemistry, by the use of mere Mechanical Conceptions:—no discovery in Physiology, by referring facts to mere Chemical and Mechanical Principles. Mechanics must involve the Conception ofForce;—Chemistry, the Conception ofElementary Composition;—Physiology, the Conception ofVital Powers. Each science must advance by means of its appropriate Conceptions. Each has its own field, which extends as far as its principles can be applied. I have already noted the separation of several of these fields by the divisions of the Books of theHistoryof Ideas. The Mechanical, the Secondary Mechanical, the Chemical, the Classificatory, the Biological Sciences form so many great Provinces in the Kingdom of knowledge, each in a great measure possessing its own peculiar fundamental principles. Every attempt to build up a43new science by the application of principles which belong to an old one, will lead to frivolous and barren speculations.This truth has been exemplified in all the instances in which subtle speculative men have failed in their attempts to frame new sciences, and especially in the essays of the ancient schools of philosophy in Greece, as has already been stated in the History of Science. Aristotle and his followers endeavoured in vain to account for the mechanical relation of forces in the lever by applying theinappropriategeometrical conceptions of the properties of the circle:—they speculated to no purpose about the elementary composition of bodies, because they assumed theinappropriateconception oflikenessbetween the elements and the compound, instead of the genuine notion of elements merelydeterminingthe qualities of the compound. And in like manner, in modern times, we have seen, in the history of the fundamental ideas of the physiological sciences, how all theinappropriatemechanical and chemical and other ideas which were applied in succession to the subject failed in bringing into view any genuine physiological truth.14. That the real cause of the failure in the instances above mentioned lay in theConceptions, is plain. It was not ignorance of the facts which in these cases prevented the discovery of the truth. Aristotle was as well acquainted with the fact of the proportion of the weights which balance on a Lever as Archimedes was, although Archimedes alone gave the true mechanical reason for the proportion.With regard to the doctrine of the Four Elements indeed, the inapplicability of the conception of composition of qualities, required, perhaps, to be proved by some reference to facts. But this conception was devised at first, and accepted by succeeding times, in a blind and gratuitous manner, which could hardly have happened if men had been awake to the necessary condition of our knowledge;—that the conceptions which we introduce into our doctrines are not arbitrary or accidental notions, but certain peculiar modes of44apprehension strictly determined by the subject of our speculations.15. It may, however, be said that this injunction that we are to employappropriateConceptions only in the formation of our knowledge, cannot be of practical use, because we can only determine what Ideasareappropriate, by finding that they truly combine the facts. And this is to a certain extent true. Scientific discovery must ever depend upon some happy thought, of which we cannot trace the origin;—some fortunate cast of intellect, rising above all rules. No maxims can be given which inevitably lead to discovery. No precepts will elevate a man of ordinary endowments to the level of a man of genius: nor will an inquirer of truly inventive mind need to come to the teacher of inductive philosophy to learn how to exercise the faculties which nature has given him. Such persons as Kepler or Fresnel, or Brewster, will have their powers of discovering truth little augmented by any injunctions respecting Distinct and Appropriate Ideas; and such men may very naturally question the utility of rules altogether.16. But yet the opinions which such persons may entertain, will not lead us to doubt concerning the value of the attempts to analyse and methodize the process of discovery. Who would attend to Kepler if he had maintained that the speculations of Francis Bacon were worthless? Notwithstanding what has been said, we may venture to assert that the Maxim which points out the necessity of Ideas appropriate as well as clear, for the purpose of discovering truth, is not without its use. It may, at least, have a value as a caution or prohibition, and may thus turn us away from labours certain to be fruitless. We have already seen, in theHistoryof Ideas, that this maxim, if duly attended to, would have at once condemned, as wrongly directed, the speculations of physiologists of the mathematical, mechanical, chemical, and vital-fluid schools; since the Ideas which the teachers of these schools introduce, cannot suffice for the purposes of physiology, which seeks truths respecting the vital powers. Again,45it is clear from similar considerations that no definition of a mineralogical species by chemical characters alone can answer the end of science, since we seek to make mineralogy, not an analytical but a classificatory science1. Even before the appropriate conception is matured in men’s minds so that they see clearly what it is, they may still have light enough to see what it is not.1This agrees with what M. Necker has well observed in hisRègne Mineral, that those who have treated mineralogy as a merely chemical science, have substituted the analysis of substances for the classification of individuals. SeeHistory of Ideas, b. viii. chap. iii.17. Another result of this view of the necessity of appropriate Ideas, combined with a survey of the history of science is, that though for the most part, as we shall see, the progress of science consists in accumulating and combining Facts rather than in debating concerning Definitions; there are still certain periods when thediscussionof Definitions may be the most useful mode of cultivating some special branch of science. This discussion is of course always to be conducted by the light of facts; and, as has already been said, along with the settlement of every good Definition will occur the corresponding establishment of some Proposition. But still at particular periods, the want of a Definition, or of the clear conceptions which Definition supposes, may be peculiarly felt. A good and tenable Definition ofSpeciesin Mineralogy would at present be perhaps the most important step which the science could make. A just conception of the nature ofLife, (and if expressed by means of a Definition, so much the better,) can hardly fail to give its possessor an immense advantage in the speculations which now come under the considerations of physiologists. And controversies respecting Definitions, in these cases, and such as these, may be very far from idle and unprofitable.Thus the knowledge that Clear and Appropriate Ideas are requisite for discovery, although it does not lead to any very precise precepts, or supersede the value of natural sagacity and inventiveness, may still46be of use to us in our pursuit after truth. It may show us what course of research is, in each stage of science, recommended by the general analogy of the history of knowledge; and it may both save us from hopeless and barren paths of speculation, and make us advance with more courage and confidence, to know that we are looking for discoveries in the manner in which they have always hitherto been made.Sect. V.—Accidental Discoveries.18. Another consequence follows from the views presented in this Chapter, and it is the last I shall at present mention.No scientific discoverycan, with any justice, be considereddue to accident. In whatever manner facts may be presented to the notice of a discoverer, they can never become the materials of exact knowledge, except they find his mind already provided with precise and suitable conceptions by which they may be analysed and connected. Indeed, as we have already seen, facts cannot be observed as Facts, except in virtue of the Conceptions which the observer2himself unconsciously supplies; and they are not Facts of Observation for any purpose of Discovery, except these familiar and unconscious acts of thought be themselves of a just and precise kind. But supposing the Facts to be adequately observed, they can never be combined into any new Truth, except by means of some new Conceptions, clear and appropriate, such as I have endeavoured to characterize. When the observer’s mind is prepared with such instruments, a very few facts, or it may be a single one, may bring the process of discovery into action. But in such cases, this previous condition of the intellect, and not the single fact, is really the main and peculiar cause of the success. The fact is merely the occasion by which the engine of discovery is brought into play sooner or later. It is, as I have elsewhere said, only the spark which discharges a gun already loaded and pointed; and there47is little propriety in speaking of such an accident as the cause why the bullet hits the mark. If it were true that the fall of an apple was the occasion of Newton’s pursuing the train of thought which led to the doctrine of universal gravitation, the habits and constitution of Newton’s intellect, and not the apple, were the real source of this great event in the progress of knowledge. The common love of the marvellous, and the vulgar desire to bring down the greatest achievements of genius to our own level, may lead men to ascribe such results to any casual circumstances which accompany them; but no one who fairly considers the real nature of great discoveries, and the intellectual processes which they involve, can seriously hold the opinion of their being the effect of accident.2B. i. of this vol. AphorismIII.19. Such accidents never happen to common men. Thousands of men, even of the most inquiring and speculative men, had seen bodies fall; but who, except Newton, ever followed the accident to such consequences? And in fact, how little of his train of thought was contained in, or even directly suggested by, the fall of the apple! If the apple fall, said the discoverer, ‘why should not the moon, the planets, the satellites, fall?’ But how much previous thought,—what a steady conception of the universality of the laws of motion gathered from other sources,—were requisite, that the inquirer should see any connexion in these cases! Was it by accident that he saw in the apple an image of the moon, and of every body in the solar system?20. The same observations may be made with regard to the other cases which are sometimes adduced as examples of accidental discovery. It has been said, ‘By the accidental placing of a rhomb of calcareous spar upon a book or line Bartholinus discovered the property of theDouble Refractionof light.’ But Bartholinus could have seen no such consequence in the accident if he had not previously had a clear conception ofsingle refraction. A lady, in describing an optical experiment which had been shown her, said of her teacher, ‘He told me toincrease and diminish48the angle of refraction, and at last I found that he only meant me to move my head up and down.’ At any rate, till the lady had acquired the notions which the technical terms convey, she could not have made Bartholinus’s discovery by means of his accident. ‘By accidentally combining two rhombs in different positions,’ it is added, ‘Huyghens discovered thePolarizationof Light.’ Supposing that this experiment had been made without design, what Huyghens really observed was, that the images appeared and disappeared alternately as he turned one of the rhombs round. But was it an easy or an obvious business to analyze this curious alternation into the circumstances of the rays of light havingsides, as Newton expressed it, and into the additional hypotheses which are implied in the term ‘polarization’? Those will be able to answer this question, who have found how far from easy it is to understand clearly what is meant by ‘polarization’ in this case, now that the property is fully established. Huyghens’s success depended on his clearness of thought, for this enabled him to perform the intellectual analysis, which never would have occurred to most men, however often they had ‘accidentally combined two rhombs in different positions.’ ‘By accidentally looking through a prism of the same substance, and turning it round, Malus discovered the polarization of light by reflection.’ Malus saw that, in some positions of the prism, the light reflected from the windows of the Louvre thus seen through the prism, became dim. A common man would have supposed this dimness the result of accident; but Malus’s mind was differently constituted and disciplined. He considered the position of the window, and of the prism; repeated the experiment over and over; and in virtue of the eminently distinct conceptions of space which he possessed, resolved the phenomena into its geometrical conditions. A believer in accident would not have sought them; a person of less clear ideas would not have found them. A person must have a strange confidence in the virtue of chance, and the worthlessness of intellect, who can say that49‘in all these fundamental discoveries appropriate ideas had no share,’ and that the discoveries ‘might have been made by the most ordinary observers.’21. I have now, I trust, shown in various ways, how theExplication of Conceptions, including in this term their clear development from Fundamental Ideas in the discoverer’s mind, as well as their precise expression in the form of Definitions or Axioms, when that can be done, is an essential part in the establishment of all exact and general physical truths. In doing this, I have endeavoured to explain in what sense the possession of clear and appropriate ideas is a main requisite for every step in scientific discovery. That it is far from being the only step, I shall soon have to show; and if any obscurity remain on the subject treated of in the present chapter, it will, I hope, be removed when we have examined the other elements which enter into the constitution of our knowledge.

CHAPTER II.Of the Explication of Conceptions.

AphorismII.

The Explication of Conceptions, as requisite for the progress of science, has been effected by means of discussions and controversies among scientists; often by debates concerning definitions; these controversies have frequently led to the establishment of a Definition; but along with the Definition, a corresponding Proposition has always been expressed or implied. The essential requisite for the advance of science is the clearness of the Conception, not the establishment of a Definition. The construction of an exact Definition is often very difficult. The requisite conditions of clear Conceptions may often be expressed by Axioms as well as by Definitions.

AphorismIII.

Conceptions, for purposes of science, must beappropriateas well as clear: that is, they must be modifications ofthatFundamental Idea, by which the phenomena can really be interpreted. This maxim may warn us from errour, though it may not lead to discovery. Discovery depends upon the previous cultivation or natural clearness of the appropriate Idea, and thereforeno discovery is the work of accident.

Sect. I.—Historical Progress of the Explication of Conceptions.

1.WE have given the appellation ofIdeasto certain comprehensive forms of thought,—asspace,number,cause,composition,resemblance,—which we apply to the phenomena which we contemplate. But the special modifications of these ideas which are31exemplified in particular facts, we have termedConceptions; asa circle,a square number,an accelerating force,a neutral combinationof elements, agenus. Such Conceptions involve in themselves certain necessary and universal relations derived from the Ideas just enumerated; and these relations are an indispensable portion of the texture of our knowledge. But to determine the contents and limits of this portion of our knowledge, requires an examination of the Ideas and Conceptions from which it proceeds. The Conceptions must be, as it were, carefullyunfolded, so as to bring into clear view the elements of truth with which they are marked from their ideal origin. This is one of the processes by which our knowledge is extended and made more exact; and this I shall describe as theExplication of Conceptions.

In the several Books of the History of Ideas we have discussed a great many of the Fundamental Ideas of the most important existing sciences. We have, in those Books, abundant exemplifications of the process now under our consideration. We shall here add a few general remarks, suggested by the survey which we have thus made.

2. Such discussions as those in which we have been engaged concerning our fundamental Ideas, have been the course by which, historically speaking, those Conceptions which the existing sciences involve have been rendered so clear as to be fit elements of exact knowledge. Thus, the disputes concerning the various kinds and measures ofForcewere an important part of the progress of the science of Mechanics. The struggles by which philosophers attained a right general conception ofplane, ofcircular, ofelliptical Polarization, were some of the most difficult steps in the modern discoveries of Optics. A Conception of theAtomic Constitutionof bodies, such as shall include what we know, and assume nothing more, is even now a matter of conflict among Chemists. The debates by which, in recent times, the Conceptions ofSpeciesandGenerahave been rendered more exact, have improved the science of Botany: the imperfection of the science of32Mineralogy arises in a great measure from the circumstance, that in that subject, the Conception of aSpeciesis not yet fixed. In Physiology, what a vast advance would that philosopher make, who should establish a precise, tenable, and consistent Conception ofLife!

Thus discussions and speculations concerning the import of very abstract and general terms and notions, may be, and in reality have been, far from useless and barren. Such discussions arose from the desire of men to impress their opinions on others, but they had the effect of making the opinions much more clear and distinct. In trying to make others understand them, they learnt to understand themselves. Their speculations were begun in twilight, and ended in the full brilliance of day. It was not easily and at once, without expenditure of labour or time, that men arrived at those notions which now form the elements of our knowledge; on the contrary, we have, in the history of science, seen how hard, discoverers, and the forerunners of discoverers, have had to struggle with the indistinctness and obscurity of the intellect, before they could advance to the critical point at which truth became clearly visible. And so long as, in this advance, some speculators were more forward than others, there was a natural and inevitable ground of difference of opinion, of argumentation, of wrangling. But the tendency of all such controversy is to diffuse truth and to dispel errour. Truth is consistent, and can bear the tug of war; Errour is incoherent, and falls to pieces in the struggle. True Conceptions can endure the sun, and become clearer as a fuller light is obtained; confused and inconsistent notions vanish like visionary spectres at the break of a brighter day. And thus all the controversies concerning such Conceptions as science involves, have ever ended in the establishment of the side on which the truth was found.

3. Indeed, so complete has been the victory of truth in most of these instances, that at present we can hardly imagine the struggle to have been necessary. The very essence of these triumphs is that they lead us to regard the views we reject as not only false,33but inconceivable. And hence we are led rather to look back upon the vanquished with contempt than upon the victors with gratitude. We now despise those who, in the Copernican controversy, could not conceive the apparent motion of the sun on the heliocentric hypothesis;—or those who, in opposition to Galileo, thought that a uniform force might be that which generated a velocity proportional to the space;—or those who held there was something absurd in Newton’s doctrine of the different refrangibility of differently coloured rays;—or those who imagined that when elements combine, their sensible qualities must be manifest in the compound;—or those who were reluctant to give up the distinction of vegetables into herbs, shrubs, and trees. We cannot help thinking that men must have been singularly dull of comprehension, to find a difficulty in admitting what is to us so plain and simple. We have a latent persuasion that we in their place should have been wiser and more clear-sighted;—that we should have taken the right side, and given our assent at once to the truth.

4. Yet in reality, such a persuasion is a mere delusion. The persons who, in such instances as the above, were on the losing side, were very far, in most cases, from being persons more prejudiced, or stupid, or narrow-minded, than the greater part of mankind now are; and the cause for which they fought was far from being a manifestly bad one, till it had been so decided by the result of the war. It is the peculiar character of scientific contests, that what is only an epigram with regard to other warfare is a truth in this;—They who are defeated are really in the wrong. But they may, nevertheless, be men of great subtilty, sagacity, and genius; and we nourish a very foolish self-complacency when we suppose that we are their superiors. That this is so, is proved by recollecting that many of those who have made very great discoveries have laboured under the imperfection of thought which was the obstacle to the next step in knowledge. Though Kepler detected with great acuteness the Numerical Laws of the solar system, he laboured in34vain to conceive the very simplest of the Laws of Motion by which the paths of the planets are governed. Though Priestley made some important steps in chemistry, he could not bring his mind to admit the doctrine of a general Principle of Oxidation. How many ingenious men in the last century rejected the Newtonian Attraction as an impossible chimera! How many more, equally intelligent, have, in the same manner, in our own time, rejected, I do not now mean as false, but as inconceivable, the doctrine of Luminiferous Undulations! To err in this way is the lot, not only of men in general, but of men of great endowments, and very sincere love of truth.

5. And those who liberate themselves from such perplexities, and who thus go on in advance of their age in such matters, owe their superiority in no small degree to such discussions and controversies as those to which we now refer. In such controversies, the Conceptions in question are turned in all directions, examined on all sides; the strength and the weakness of the maxims which men apply to them are fully tested; the light of the brightest minds is diffused to other minds. Inconsistency is unfolded into self-contradiction; axioms are built up into a system of necessary truths; and ready exemplifications are accumulated of that which is to be proved or disproved, concerning the ideas which are the basis of the controversy.

The History of Mechanics from the time of Kepler to that of Lagrange, is perhaps the best exemplification of the mode in which the progress of a science depends upon such disputes and speculations as give clearness and generality to its elementary conceptions. This, it is to be recollected, is the kind of progress of which we are now speaking; and this is the principal feature in the portion of scientific history which we have mentioned. For almost all that was to be done by reference to observation, was executed by Galileo and his disciples. What remained was the task of generalization and simplification. And this was promoted in no small degree by the various controversies which took place within that period concerning35mechanical conceptions:—as, for example, the question concerning the measure of the Force of Percussion;—the war of theVis Viva;—the controversy of the Center of Oscillation;—of the independence of Statics and Dynamics;—of the principle of Least Action;—of the evidence of the Laws of Motion;—and of the number of Laws really distinct. None of these discussions was without its influence in giving generality and clearness to the mechanical ideas of mathematicians: and therefore, though remote from general apprehension, and dealing with very abstract notions, they were of eminent use in the perfecting the science of Mechanics. Similar controversies concerning fundamental notions, those, for example, which Galileo himself had to maintain, were no less useful in the formation of the science of Hydrostatics. And the like struggles and conflicts, whether they take the form of controversies between several persons, or only operate in the efforts and fluctuations of the discoverer’s mind, are always requisite, before the conceptions acquire that clearness which makes them flt to appear in the enunciation of scientific truth. This, then, was one object of the History of Ideas;—to bring under the reader’s notice the main elements of the controversies which have thus had so important a share in the formation of the existing body of science, and the decisions on the controverted points to which the mature examination of the subject has led; and thus to give an abundant exhibition of that step which we term the Explication of Conceptions.

Sect. II.—Use of Definitions.

6. The result of such controversies as we have been speaking of, often appears to be summed up in aDefinition; and the controversy itself has often assumed the form of a battle of definitions. For example, the inquiry concerning the Laws of Falling Bodies led to the question whether the proper Definition of auniform forceis, that it generates a velocity proportional to thespacefrom rest, or to thetime. The controversy of theVis Vivawas, what was the36proper Definition of themeasure of force. A principal question in the classification of minerals is, what is the Definition of amineral species. Physiologists have endeavoured to throw light on their subject, by Definingorganization, or some similar term.

7. It is very important for us to observe, that these controversies have never been questions of insulated andarbitraryDefinitions, as men seem often tempted to suppose them to have been. In all cases there is a tacit assumption of some Proposition which is to be expressed by means of the Definition, and which gives it its importance. The dispute concerning the Definition thus acquires a real value, and becomes a question concerning true and false. Thus in the discussion of the question, What is a Uniform Force? it was taken for granted that ‘gravity is a uniform force:’—in the debate of theVis Viva, it was assumed that ‘in the mutual action of bodies the whole effect of the force is unchanged:’—in the zoological definition of Species, (that it consists of individuals which have, or may have, sprung from the same parents,) it is presumed that ‘individuals so related resemble each other more than those which are excluded by such a definition;’ or perhaps, that ‘species so defined have permanent and definite differences.’ A definition of Organization, or of any other term, which was not employed to express some principle, would be of no value.

The establishment, therefore, of a right Definition of a Term may be a useful step in the Explication of our Conceptions; but this will be the casethenonly when we have under our consideration some Proposition in which the Term is employed. For then the question really is, how the Conception shall be understood and defined in order that the Proposition may be true.

8. The establishment of a Proposition requires an attention to observed Facts, and can never be rightly derived from our Conceptions alone. We must hereafter consider the necessity which exists that the Facts should be rightly bound together, as well as that our Conceptions should be clearly employed, in order to37lead us to real knowledge. But we may observe here that, in such cases at least as we are now considering, the two processes are co-ordinate. To unfold our Conceptions by the means of Definitions, has never been serviceable to science, except when it has been associated with an immediateuseof the Definitions. The endeavour to define a uniform Force was combined with the assertion that ‘gravity is a uniform force:’ the attempt to define Accelerating Force was immediately followed by the doctrine that ‘accelerating forces may be compounded:’ the process of defining Momentum was connected with the principle that ‘momenta gained and lost are equal:’ naturalists would have given in vain the Definition of Species which we have quoted, if they had not also given the ‘characters’ of species so separated. Definition and Proposition are the two handles of the instrument by which we apprehend truth; the former is of no use without the latter. Definition may be the best mode of explaining our Conception, but that which alone makes it worth while to explain it in any mode, is the opportunity of using it in the expression of Truth. When a Definition is propounded to us as a useful step in knowledge, we are always entitled to ask what Principle it serves to enunciate. If there be no answer to this inquiry, we define and give clearness to our conceptions in vain. While we labour at such a task, we do but light up a vacant room;—we sharpen a knife with which we have nothing to cut;—we take exact aim, while we load our artillery with blank cartridge;—we apply strict rules of grammar to sentences which have no meaning.

If, on the other hand, we have under our consideration a proposition probably established, every step which we can make in giving distinctness and exactness to the Terms which this proposition involves, is an important step towards scientific truth. In such cases, any improvement in our Definition is a real advance in the explication of our Conception. The clearness of our impressions casts a light upon the Ideas which we contemplate and convey to others.38

9. But thoughDefinitionmay be subservient to a right explication of our conceptions, it isnot essentialto that process. It is absolutely necessary to every advance in our knowledge, that those by whom such advances are made should possess clearly the conceptions which they employ: but it is by no means necessary that they should unfold these conceptions in the words of a formal Definition. It is easily seen, by examining the course of Galileo’s discoveries, that he had a distinct conception of theMoving Forcewhich urges bodies downwards upon an inclined plane, while he still hesitated whether to call itMomentum,Energy,Impetus, orForce, and did not venture to offer a Definition of the thing which was the subject of his thoughts. The Conception ofPolarizationwas clear in the minds of many optical speculators, from the time of Huyghens and Newton to that of Young and Fresnel. This Conception we have defined to be ‘Opposite properties depending upon opposite positions;’ but this notion was, by the discoverers, though constantly assumed and expressed by means of superfluous hypotheses, never clothed in definite language. And in the mean time, it was the custom, among subordinate writers on the same subjects, to say, that the termPolarizationhad no definite meaning, and was merely an expression of our ignorance. The Definition which was offered by Haüy and others of aMineralogical Species;—‘The same elements combined in the same proportions, with the same fundamental form;’—was false, inasmuch as it was incapable of being rigorously applied to any one case; but this defect did not prevent the philosophers who propounded such a Definition from making many valuable additions to mineralogical knowledge, in the way of identifying some species and distinguishing others. The right Conception which they possessed in their minds prevented their being misled by their own very erroneous Definition. The want of any precise Definitions ofStrata, andFormations, andEpochs, among geologists, has not prevented the discussions which they have carried on upon such subjects from being highly serviceable39in the promotion of geological knowledge. For however much the apparent vagueness of these terms might leave their arguments open to cavil, there was a general understanding prevalent among the most intelligent cultivators of the science, as to what was meant in such expressions; and this common understanding sufficed to determine what evidence should be considered conclusive and what inconclusive, in these inquiries. And thus the distinctness of Conception, which is a real requisite of scientific progress, existed in the minds of the inquirers, although Definitions, which are a partial and accidental evidence of this distinctness, had not yet been hit upon. The Idea had been developed in men’s minds, although a clothing of words had not been contrived for it, nor, perhaps, the necessity of such a vehicle felt: and thus that essential condition of the progress of knowledge, of which we are here speaking, existed; while it was left to the succeeding speculators to put this unwritten Rule in the form of a verbal Statute.

10. Men are often prone to consider it as a thoughtlessomissionof an essential circumstance, and as aneglectwhich involves some blame, when knowledge thus assumes a form in which Definitions, or rather Conceptions, are implied but are not expressed. But in such a judgment, they assumethatto be a matter of choice requiring attention only, which is in fact as difficult and precarious as any other portion of the task of discovery. Todefine, so that our Definition shall have any scientific value, requires no small portion of that sagacity by which truth is detected. As we have already said, Definitions and Propositions are co-ordinate in their use and in their origin. In many cases, perhaps in most, the Proposition which contains a scientific truth, is apprehended with confidence, but with some vagueness and vacillation, before it is put in a positive, distinct, and definite form.—It is thus known to be true, before it can be enunciated in terms each of which is rigorously defined. The business of Definition is part of the business of discovery. When it has been clearly seen what ought to be our Definition, it40must be pretty well known what truth we have to state. The Definition, as well as the discovery, supposes a decided step in our knowledge to have been made. The writers on Logic in the middle ages, made Definition the last stage in the progress of knowledge; and in this arrangement at least, the history of science, and the philosophy derived from the history, confirm their speculative views. If the Explication of our Conceptions ever assume the form of a Definition, this will come to pass, not as an arbitrary process, or as a matter of course, but as the mark of one of those happy efforts of sagacity to which all the successive advances of our knowledge are owing.

Sect. III.—Use of Axioms.

11. Our Conceptions, then, even when they become so clear as the progress of knowledge requires, are not adequately expressed, or necessarily expressed at all, by means of Definitions. We may ask, then, whether there is anyother modeof expression in which we may look for the evidence and exposition of that peculiar exactness of thought which the formation of Science demands. And in answer to this inquiry, we may refer to the discussions respecting many of the Fundamental Ideas of the sciences contained in ourHistoryof such Ideas. It has there been seen that these Ideas involve many elementary truths which enter into the texture of our knowledge, introducing into it connexions and relations of the most important kind, although these elementary truths cannot be deduced from any verbal definition of the idea. It has been seen that these elementary truths may often be enunciated by means ofAxioms, stated in addition to, or in preference to, Definitions. For example, the Idea of Cause, which forms the basis of the science of Mechanics, makes its appearance in our elementary mechanical reasonings, not as a Definition, but by means of the Axioms that ‘Causes are measured by their effects,’ and that ‘Reaction is equal and opposite to action.’ Such axioms, tacitly assumed or41occasionally stated, as maxims of acknowledged validity, belong to all the Ideas which form the foundations of the sciences, and are constantly employed in the reasoning and speculations of those who think clearly on such subjects. It may often be a task of some difficulty to detect and enunciate in words the Principles which are thus, perhaps silently and unconsciously, taken for granted by those who have a share in the establishment of scientific truth: but inasmuch as these Principles are an essential element in our knowledge, it is very important to our present purpose to separate them from the associated materials, and to trace them to their origin. This accordingly I attempted to do, with regard to a considerable number of the most prominent of such Ideas, in theHistory. The reader will there find many of these Ideas resolved into Axioms and Principles by means of which their effect upon the elementary reasonings of the various sciences may be expressed. That Work is intended to form, in some measure, a representation of the Ideal Side of our physical knowledge;—a Table of those contents of our Conceptions which are not received directly from facts;—an exhibition of Rules to which we know that truth must conform.

Sect. IV.—Clear and appropriate Ideas.

12. In order, however, that we may see the necessary cogency of these rules, we must possess, clearly and steadily, the Ideas from which the rules flow. In order to perceive the necessary relations of the Circles of the Sphere, we must possess clearly the Idea of Solid Space:—in order that we may see the demonstration of the composition of forces, we must have the Idea of Cause moulded into a distinct Conception of Statical Force. This is thatClearness of Ideaswhich we stipulate for in any one’s mind, as the first essential condition of his making any new step in the discovery of truth. And we now see what answer we are able to give, if we are asked for a Criterion of this Clearness of42Idea. The Criterion is, that the person shallseethe necessity of the Axioms belonging to each Idea;—shall accept them in such a manner as to perceive the cogency of the reasonings founded upon them. Thus, a person has a clear Idea of Space who follows the reasonings of geometry and fully apprehends their conclusiveness. The Explication of Conceptions, which we are speaking of as an essential part of real knowledge, is the process by which we bring the Clearness of our Ideas to bear upon the Formation of our knowledge. And this is done, as we have now seen, not always, nor generally, nor principally, by laying down a Definition of the Conception; but by acquiring such a possession of it in our minds as enables, indeed compels us, to admit, along with the Conception, all the Axioms and Principles which it necessarily implies, and by which it produces its effect upon our reasonings.

13. But in order that we may make any real advance in the discovery of truth, our Ideas must not only be clear, they must also beappropriate. Each science has for its basis a different class of Ideas; and the steps which constitute the progress of one science can never be made by employing the Ideas of another kind of science. No genuine advance could ever be obtained in Mechanics by applying to the subject the Ideas of Space and Time merely:—no advance in Chemistry, by the use of mere Mechanical Conceptions:—no discovery in Physiology, by referring facts to mere Chemical and Mechanical Principles. Mechanics must involve the Conception ofForce;—Chemistry, the Conception ofElementary Composition;—Physiology, the Conception ofVital Powers. Each science must advance by means of its appropriate Conceptions. Each has its own field, which extends as far as its principles can be applied. I have already noted the separation of several of these fields by the divisions of the Books of theHistoryof Ideas. The Mechanical, the Secondary Mechanical, the Chemical, the Classificatory, the Biological Sciences form so many great Provinces in the Kingdom of knowledge, each in a great measure possessing its own peculiar fundamental principles. Every attempt to build up a43new science by the application of principles which belong to an old one, will lead to frivolous and barren speculations.

This truth has been exemplified in all the instances in which subtle speculative men have failed in their attempts to frame new sciences, and especially in the essays of the ancient schools of philosophy in Greece, as has already been stated in the History of Science. Aristotle and his followers endeavoured in vain to account for the mechanical relation of forces in the lever by applying theinappropriategeometrical conceptions of the properties of the circle:—they speculated to no purpose about the elementary composition of bodies, because they assumed theinappropriateconception oflikenessbetween the elements and the compound, instead of the genuine notion of elements merelydeterminingthe qualities of the compound. And in like manner, in modern times, we have seen, in the history of the fundamental ideas of the physiological sciences, how all theinappropriatemechanical and chemical and other ideas which were applied in succession to the subject failed in bringing into view any genuine physiological truth.

14. That the real cause of the failure in the instances above mentioned lay in theConceptions, is plain. It was not ignorance of the facts which in these cases prevented the discovery of the truth. Aristotle was as well acquainted with the fact of the proportion of the weights which balance on a Lever as Archimedes was, although Archimedes alone gave the true mechanical reason for the proportion.

With regard to the doctrine of the Four Elements indeed, the inapplicability of the conception of composition of qualities, required, perhaps, to be proved by some reference to facts. But this conception was devised at first, and accepted by succeeding times, in a blind and gratuitous manner, which could hardly have happened if men had been awake to the necessary condition of our knowledge;—that the conceptions which we introduce into our doctrines are not arbitrary or accidental notions, but certain peculiar modes of44apprehension strictly determined by the subject of our speculations.

15. It may, however, be said that this injunction that we are to employappropriateConceptions only in the formation of our knowledge, cannot be of practical use, because we can only determine what Ideasareappropriate, by finding that they truly combine the facts. And this is to a certain extent true. Scientific discovery must ever depend upon some happy thought, of which we cannot trace the origin;—some fortunate cast of intellect, rising above all rules. No maxims can be given which inevitably lead to discovery. No precepts will elevate a man of ordinary endowments to the level of a man of genius: nor will an inquirer of truly inventive mind need to come to the teacher of inductive philosophy to learn how to exercise the faculties which nature has given him. Such persons as Kepler or Fresnel, or Brewster, will have their powers of discovering truth little augmented by any injunctions respecting Distinct and Appropriate Ideas; and such men may very naturally question the utility of rules altogether.

16. But yet the opinions which such persons may entertain, will not lead us to doubt concerning the value of the attempts to analyse and methodize the process of discovery. Who would attend to Kepler if he had maintained that the speculations of Francis Bacon were worthless? Notwithstanding what has been said, we may venture to assert that the Maxim which points out the necessity of Ideas appropriate as well as clear, for the purpose of discovering truth, is not without its use. It may, at least, have a value as a caution or prohibition, and may thus turn us away from labours certain to be fruitless. We have already seen, in theHistoryof Ideas, that this maxim, if duly attended to, would have at once condemned, as wrongly directed, the speculations of physiologists of the mathematical, mechanical, chemical, and vital-fluid schools; since the Ideas which the teachers of these schools introduce, cannot suffice for the purposes of physiology, which seeks truths respecting the vital powers. Again,45it is clear from similar considerations that no definition of a mineralogical species by chemical characters alone can answer the end of science, since we seek to make mineralogy, not an analytical but a classificatory science1. Even before the appropriate conception is matured in men’s minds so that they see clearly what it is, they may still have light enough to see what it is not.

1This agrees with what M. Necker has well observed in hisRègne Mineral, that those who have treated mineralogy as a merely chemical science, have substituted the analysis of substances for the classification of individuals. SeeHistory of Ideas, b. viii. chap. iii.

17. Another result of this view of the necessity of appropriate Ideas, combined with a survey of the history of science is, that though for the most part, as we shall see, the progress of science consists in accumulating and combining Facts rather than in debating concerning Definitions; there are still certain periods when thediscussionof Definitions may be the most useful mode of cultivating some special branch of science. This discussion is of course always to be conducted by the light of facts; and, as has already been said, along with the settlement of every good Definition will occur the corresponding establishment of some Proposition. But still at particular periods, the want of a Definition, or of the clear conceptions which Definition supposes, may be peculiarly felt. A good and tenable Definition ofSpeciesin Mineralogy would at present be perhaps the most important step which the science could make. A just conception of the nature ofLife, (and if expressed by means of a Definition, so much the better,) can hardly fail to give its possessor an immense advantage in the speculations which now come under the considerations of physiologists. And controversies respecting Definitions, in these cases, and such as these, may be very far from idle and unprofitable.

Thus the knowledge that Clear and Appropriate Ideas are requisite for discovery, although it does not lead to any very precise precepts, or supersede the value of natural sagacity and inventiveness, may still46be of use to us in our pursuit after truth. It may show us what course of research is, in each stage of science, recommended by the general analogy of the history of knowledge; and it may both save us from hopeless and barren paths of speculation, and make us advance with more courage and confidence, to know that we are looking for discoveries in the manner in which they have always hitherto been made.

Sect. V.—Accidental Discoveries.

18. Another consequence follows from the views presented in this Chapter, and it is the last I shall at present mention.No scientific discoverycan, with any justice, be considereddue to accident. In whatever manner facts may be presented to the notice of a discoverer, they can never become the materials of exact knowledge, except they find his mind already provided with precise and suitable conceptions by which they may be analysed and connected. Indeed, as we have already seen, facts cannot be observed as Facts, except in virtue of the Conceptions which the observer2himself unconsciously supplies; and they are not Facts of Observation for any purpose of Discovery, except these familiar and unconscious acts of thought be themselves of a just and precise kind. But supposing the Facts to be adequately observed, they can never be combined into any new Truth, except by means of some new Conceptions, clear and appropriate, such as I have endeavoured to characterize. When the observer’s mind is prepared with such instruments, a very few facts, or it may be a single one, may bring the process of discovery into action. But in such cases, this previous condition of the intellect, and not the single fact, is really the main and peculiar cause of the success. The fact is merely the occasion by which the engine of discovery is brought into play sooner or later. It is, as I have elsewhere said, only the spark which discharges a gun already loaded and pointed; and there47is little propriety in speaking of such an accident as the cause why the bullet hits the mark. If it were true that the fall of an apple was the occasion of Newton’s pursuing the train of thought which led to the doctrine of universal gravitation, the habits and constitution of Newton’s intellect, and not the apple, were the real source of this great event in the progress of knowledge. The common love of the marvellous, and the vulgar desire to bring down the greatest achievements of genius to our own level, may lead men to ascribe such results to any casual circumstances which accompany them; but no one who fairly considers the real nature of great discoveries, and the intellectual processes which they involve, can seriously hold the opinion of their being the effect of accident.

2B. i. of this vol. AphorismIII.

19. Such accidents never happen to common men. Thousands of men, even of the most inquiring and speculative men, had seen bodies fall; but who, except Newton, ever followed the accident to such consequences? And in fact, how little of his train of thought was contained in, or even directly suggested by, the fall of the apple! If the apple fall, said the discoverer, ‘why should not the moon, the planets, the satellites, fall?’ But how much previous thought,—what a steady conception of the universality of the laws of motion gathered from other sources,—were requisite, that the inquirer should see any connexion in these cases! Was it by accident that he saw in the apple an image of the moon, and of every body in the solar system?

20. The same observations may be made with regard to the other cases which are sometimes adduced as examples of accidental discovery. It has been said, ‘By the accidental placing of a rhomb of calcareous spar upon a book or line Bartholinus discovered the property of theDouble Refractionof light.’ But Bartholinus could have seen no such consequence in the accident if he had not previously had a clear conception ofsingle refraction. A lady, in describing an optical experiment which had been shown her, said of her teacher, ‘He told me toincrease and diminish48the angle of refraction, and at last I found that he only meant me to move my head up and down.’ At any rate, till the lady had acquired the notions which the technical terms convey, she could not have made Bartholinus’s discovery by means of his accident. ‘By accidentally combining two rhombs in different positions,’ it is added, ‘Huyghens discovered thePolarizationof Light.’ Supposing that this experiment had been made without design, what Huyghens really observed was, that the images appeared and disappeared alternately as he turned one of the rhombs round. But was it an easy or an obvious business to analyze this curious alternation into the circumstances of the rays of light havingsides, as Newton expressed it, and into the additional hypotheses which are implied in the term ‘polarization’? Those will be able to answer this question, who have found how far from easy it is to understand clearly what is meant by ‘polarization’ in this case, now that the property is fully established. Huyghens’s success depended on his clearness of thought, for this enabled him to perform the intellectual analysis, which never would have occurred to most men, however often they had ‘accidentally combined two rhombs in different positions.’ ‘By accidentally looking through a prism of the same substance, and turning it round, Malus discovered the polarization of light by reflection.’ Malus saw that, in some positions of the prism, the light reflected from the windows of the Louvre thus seen through the prism, became dim. A common man would have supposed this dimness the result of accident; but Malus’s mind was differently constituted and disciplined. He considered the position of the window, and of the prism; repeated the experiment over and over; and in virtue of the eminently distinct conceptions of space which he possessed, resolved the phenomena into its geometrical conditions. A believer in accident would not have sought them; a person of less clear ideas would not have found them. A person must have a strange confidence in the virtue of chance, and the worthlessness of intellect, who can say that49‘in all these fundamental discoveries appropriate ideas had no share,’ and that the discoveries ‘might have been made by the most ordinary observers.’

21. I have now, I trust, shown in various ways, how theExplication of Conceptions, including in this term their clear development from Fundamental Ideas in the discoverer’s mind, as well as their precise expression in the form of Definitions or Axioms, when that can be done, is an essential part in the establishment of all exact and general physical truths. In doing this, I have endeavoured to explain in what sense the possession of clear and appropriate ideas is a main requisite for every step in scientific discovery. That it is far from being the only step, I shall soon have to show; and if any obscurity remain on the subject treated of in the present chapter, it will, I hope, be removed when we have examined the other elements which enter into the constitution of our knowledge.


Back to IndexNext