Unloading and Loading a Coastwise Steamer by Electric Light.
Unloading and Loading a Coastwise Steamer by Electric Light.
The ocean greyhound is simply an exponent of the times. What the limited express trains are on land, the racer is upon the sea—the“Atlantic Limited.” Expense is no object. The faster the ship, the greater the rush for passage in her. She is, of course, a floating palace of magnificence, but speed is the main object, and speed is at times as important for certain classes of freight as it is for passengers. The hue and cry that steamship companies are endangering the lives of their passengers by ocean racing is pointed in the wrong direction. It is the public who are to blame, if blame it is to annihilate time and space by the genius of man. The owners of these vessels spend millions to build ships, and then risk both their capital invested, and the reputation of their line for safety, in order to satisfy their patrons. People of the nineteenth century—Americans in particular—are in a hurry, and never stop to consider the enormous expense, the immense consumption of coal, the fearful and terrible strain on the firemen and coal-passers down in the bowels of the great vessel. Everything is done with a rush. Lightning express trains across continents and racers upon the oceans are necessities of the day.
The love of record-breaking is universal. The performance of the Majestic on August 5, 1891, thrilled the people of every nation. Her triumph of crossing the Atlantic in 5 days, 18 hours, and 8 minutes was echoed round the world. Hardly had the echoes died out when her sister-ship—twin in size and type—the Teutonic, came into New York Harbor with a better record still. It was 5 days, 16 hours, and 30 minutes, and the Teutonic was crowned “Queen of the Seas.”
But for how long?
The City of Paris held her record for upward of two years; the Etruria and the Umbria each was the crack racer for a year; but the Majestic only held the coveted place at the head of the Atlantic fleet for just two weeks.
At the rate of increase of speed since 1880, when the Arizona was champion, with a record of 7 days, 8 hours, and 8 minutes, we should have a five-day ship before many years, and perhaps eventually a four-day ship. At a 25-knot gait a steamship would cross from Daunt’s Rock to Sandy Hook in 4 days and 15 hours. The Teutonicaveraged 20.349 knots for the entire trip, and on a 24-hour run she averaged over 21 knots.
The success of the White Star ships is bound to have a marked effect upon the future of ocean navigation. The Cunard Company has already contracted for the construction of two steamships which are promised to outdo any of the present greyhounds; and rumor has it that the Inman line is about to add two new vessels to its fleet, the plans of which are now prepared, and it is expected that these new ships will go “one better.” Should this promise be fulfilled, there is little doubt but that Europeans who visit Chicago’s Columbian Fair in 1893 may cross the Atlantic in five days, or even less.
The freight capacity of the ocean greyhound, however, is small compared with her gross tonnage. The engines, boiler, and coal bunkers, and the space devoted to passengers, leave but little room for general cargo. Thus the gross tonnage of the Teutonic is 9,686, and her net tonnage 4,244, considerably less than half; while the Cufic, a freight boat of the same line, with a gross tonnage of 4,639, has a net tonnage of 3,055. The fast steamships therefore constitute the ocean express. They carry the mails, specie, and freights of a perishable nature, like meats and provisions, or of a character that requires speedy delivery.
The mail is placed in a capacious compartment about 50 feet long, 15 feet wide, and 7 feet high. It is located on the lower orlop deck, forward of the forehatch, and is capable of holding about 1,000 bags of mail. The bags for the different countries are separated in transit, and on arrival at Queenstown the mails are landed, provided there is time to catch the 12.30A.M.special train, which is made up to connect with the mail-boat leaving Kingstown early the same morning for Holyhead. Should this connection be missed, only the Irish and Scotch mails are landed at Queenstown. The other mails are landed at Liverpool.
To the steamship Trave belongs the honor of having carried the largest European mail ever shipped from the port of New York, being 1,002 bags, in December, 1889. The largest European mailever received at the port of New York was 1,062 bags, brought by the Servia in December, 1890.
The system of sorting the mails on board ship, which was recently inaugurated by the United States and German governments, is a success. It is in operation on eight vessels of the North German Lloyd line and the four express ships of the Hamburg-American line. This system is termed the “sea post-office,” and is similar to a post-office on land. The space required on board ship for the manipulation of the mails is equal to about three or four state-rooms. For each vessel the United States provides one official, and Germany supplies another. The latter has an assistant.
All disbursements are made at present by the German Government, but at the end of the year the two governments divide the expenses. On the eastern trip all mails, except the newspaper mail, are landed at Southampton. Only the German mail, and that for countries beyond Germany, is sorted. The British mail is put ashore unsorted, in the same manner that it is on the British steamship lines. The sorting of the mail during the passage enables the packages for each country to be forwarded direct from the nearest landing-point to their ultimate destination without delay. The saving of time at New York City alone is from 4 to 6 hours, and for Pittsburg and for points west and south of that place, where an immediate reply is required, a saving of from 24 to 48 hours is effected. The day cannot be far distant when all foreign mails will be sorted at sea; the system indeed has been in operation for many years on the P. & O. ships sailing to India and Australia.
In these days of heavy gold shipments, the specie-room on the steamship is a very important institution. It is located in an out-of-the-way place amidships, under the saloon. Few of the passengers know of its existence, or of the valuable treasure that is carried across the ocean with them. The room varies slightly on different ships, but is usually about 16 feet long, by 10 feet wide, and 8 feet high. It is constructed of steel plates one-quarter of an inch thick, and strongly riveted together. The floor, the ceiling, and the wallsare all of steel plates. There is a heavy door, also made of steel. It is provided with two English “Chubb” locks, a variety of combination lock that is said to be burglar-proof. The gold and silver is usually in bars, but occasionally a quantity of coin in bags is shipped. This was the case when the heavy shipments of gold were made last spring. The Majestic is credited with carrying the largest quantity, her strong box having $4,500,000 intrusted to it for safe keeping.
The Specie-room of a Passenger Steamship.
The Specie-room of a Passenger Steamship.
The fast steamships are provided with enormous refrigerators for carrying dressed beef and mutton. The temperature is kept at about 30 degrees. Fruits, vegetables, butter, cheese, and bacon are shipped in large quantities in summer, and apples, oranges, oysters, and hops are sent over in the winter. Space is always reserved for the various European express companies.
Next to the ocean greyhound comes a class of steamships requiring from 7 to 8 days to cross the Atlantic, and having accommodation for from 800 to 1,000 passengers of all classes, and from 2,000 to 5,000 tons of freight. Both passenger and freight rates are slightly less than on the greyhounds, a preference being given to the latter at certain times, according to the condition of the market. The slower ships are patronized by people to whom the saving of a few dollars is an object, and by some who enjoy the ocean trip too much to be in a hurry about landing, and by others who imagine all sorts of dreadful things are going to happen to the racers. The class of freight carried varies but little from the faster ships, except that themails, specie, and express goods are usually lacking. Cotton, tobacco, and merchandise, including manufactured goods and machinery, form the bulk of the general cargo.
The next grade of steamship is the new type, called the freighter. It is the result of the tendency to build express ships, and its object is to accommodate the freight which is crowded out by the speed requirements. These ships combine enormous freight capacity with a high rate of speed and minimum coal consumption. They have reduced the time of freighters between New York and Liverpool from 16 to 10 days without materially increasing the rate of freight. They carry heavy goods of all kinds to the amount of 5,000 tons, and from 600 to 800 head of cattle. To this class belong the four new White Star ships, the Tauric, the Nomadic—both of which have twin screws—the Runic, and the Cufic; also the Europe and America, of the National line.
The Nomadic has the record of carrying the largest amount of freight in one trip. In August, 1891, she carried 9,591 tons, including coal necessary for the voyage. The America, of the National line, left the port of New York, March 17, 1891, with 8,577 tons, including her coal, which was the largest cargo on record at that time, and until surpassed by the Nomadic. The England, also of the National line, carried 1,022 head of cattle from this port on September 18, 1889. This is the largest cargo of cattle ever carried by any ship.
Just previous to the heavy duty on tin-plate going into effect on July 1, 1891, the Cufic brought the largest cargo of tin-plate on record, being 76,529 boxes.
A type of ship which was at one time considered a first-class passenger vessel has been gradually forced from the trade by faster ships more luxuriously fitted, and is now engaged in carrying general freight. To this class belong the entire fleet of the National line, some of which, like the Spain, were at one time favorite passenger boats.
Another class of freight steamship is that wanderer of the seas,the “tramp.” Belonging to no regular line, identified with no particular class of cargo, having no regularity as to time of departure or ports of destination, and with a hold that takes anything from cotton to guano, from guano to bananas, and from bananas to petroleum, this nomad of the deep is a peculiar institution.
What more appropriate name than “tramp” can you suggest?
She is often a ship of considerable size, and is usually chartered for cargoes of a heavy character, but will take anything that offers. She usually has engines of low power, and her coal consumption is small. She requires from 15 to 20 days to cross the Atlantic.
In the summer of 1891 men who go down to the sea in ships were startled by seeing something new. A type of vessel of which much is promised, even to a revolution of the entire ocean freight business of the world, successfully made the trip from the head of Lake Superior to Liverpool, and returned to this country. This is the “whaleback” Charles W. Wetmore.
Built at West Superior, Mich., this original craft, having more the appearance of a large barge than an ocean steamship, has taken 87,000 bushels of grain, from the heart of the grain-producing region, through the lakes and the rapids of the St. Lawrence River, to the ocean and across to Liverpool.
The vessel is shaped like a huge cigar, pointed at both ends; her deck is arched and without any obstructions, save for a small turret forward, and a deck-house aft. The latter contains the cabin, wheel-house, and quarters for the captain, officers, and engineers.
When loaded, the hatches, which are huge iron plates, are bolted down and form a smooth deck surface, over which the waves have full play, saving Jack Tar the trouble of using the holy-stone or swab. The crew is quartered in the turret forward. The machinery, which is located directly aft, consists of a compound engine of 800 horse-power, with a 26-inch high-pressure cylinder.
The “Whaleback” Steamship for Grain and other Freight.Larger image(163 kB)
The “Whaleback” Steamship for Grain and other Freight.
Larger image(163 kB)
The hull is made of steel, and is 265 feet in length, 38 feet in breadth, and the depth of hold is 24 feet. Four feet above the keel is an inner skin for additional safety, and between this skin and the hullare nine compartments, which are buoyant air-chambers when the ship is loaded, and serve to hold water ballast when she has a light cargo. A railing made of wire rope extends the length of the hull on each side, and is intended as a protection for the men when they have occasion to visit their shipmates in the after part of the vessel.
The hold is one large compartment, with a bulkhead forward, where the men’s quarters are, and one aft, where the machinery is located, and also the firemen’s quarters.
The Wetmore draws 17 feet of water, and her capacity is said to be 100,000 bushels of grain, or 3,000 tons of other cargo.
The advantages claimed for the whaleback are her low cost of construction, which is one-third less than that of an English tramp steamship of the same capacity; her elongated, elliptical form, which offers less resistance to the wind and waves, so that she can be propelled with less power than the ordinary steamship; her small consumption of coal, but from twelve to thirteen tons a day, or about half that of an ordinary steamship, being used; and a crew of twenty men navigating the Wetmore, as against a crew of thirty men required to man another ship.
It is also stated that the Wetmore can be discharged more quickly of grain or other cargo, and that there is less rolling and tossing at sea than in the ordinary type of steamships. But it must be remembered that as yet the Wetmore is only an experiment. Her transatlantic trip was taken in August, when the sea was most tranquil. How she will behave in midwinter, when her arched back will be coated with ice, and her deck-works perhaps washed away, is not quite clear. Her lack of life-boats and other life-saving appliances is also noticeable.
This type of vessel in some modified form will no doubt be a great success as a carrier of grain, coal, oil, molasses, and other bulky freights; but the Wetmore must be furnished with hoisting machinery or other devices in order to facilitate the quick loading of heavy materials, before she becomes what may be regarded as a complete success.
To the three classes of steamships last mentioned, the carrying of grain is a large item. But there are at all seasons of the year vessels engaged almost exclusively in carrying grain.
About 2,000 vessels loaded with grain sailed from the port of New York during 1890. The number was even greater in 1891, owing to the abundance and quality of the grain crop of the United States, the small crops abroad, and the action of the Russian Government in prohibiting the export of rye from its territory.
The sailing vessel is rapidly disappearing from the grain-carrying trade. Ten years ago there were 1,782 sailing ships engaged in the grain trade, now there are only about thirty cargoes in a year from New York. The total amount of grain and breadstuffs exported from the United States in 1890 was valued at $141,602,847. Of this New York shipped 321⁄4per cent., and yet fears are entertained that New York will lose her grain business, owing to the heavy port and storage charges compared with those of other seaports. In 1890, New York handled $45,649,765 worth of grain. Corn led in the amount shipped, there being a total of 24,374,745 bushels. Wheat came next with 12,607,484 bushels, and there were 9,192,203 bushels of oats and 1,389,419 bushels of rye. There were 3,693,598 barrels of wheat flour shipped from New York out of a total for the United States of 11,319,456 barrels. Barley, buckwheat, and rice were exported in smaller quantities, and cornmeal, oatmeal, and other preparations, not included in the above figures, were sent to foreign ports.
Ships are specially fitted up for carrying grain. The hold is divided into compartments by a longitudinal bulkhead in addition to the ordinary bulkheads. This is done to prevent the cargo from shifting. The hold is ceiled in order to prevent any waste of grain which is shipped in bulk in the lower hold; shifting planks are placed on each side of the keelson and fitted to side stanchions between the beams, and care is taken to secure the planks so that they will hold their places even in a rough sea. The British Board of Trade requires that the hatches of the lower hold shall be supplied with a feeder or hopper capable of holding a sufficient quantity ofgrain to fill the hold completely as the grain settles; these feeders extend above the lower deck. The space between decks is filled with grain in bags. Care is taken in loading to stow these bags so that the space between decks will be entirely filled. These requirements have been adopted by ship-owners and shippers generally.
With the exception of the American line from Philadelphia, United States vessels cut but a small figure in grain traffic. Their four vessels are the only American steamships engaged in the business. In one year Great Britain carried 616 shiploads of grain, or an aggregate of nearly 25,000,000 bushels; Germany carried 167 shiploads, or nearly 4,000,000 bushels; Belgium carried 70 shiploads; France, 33; Denmark, 21; Italy, 15; Spain, 8; Austria, 10; Portugal, 9; and Norway, 6.
The handling of all this grain, by the time it arrives by canal-boat or by railway from the West, to the time that the ship sails from the harbor, requires a large number of elevators and many men.
There are 31 floating elevators in the port of New York, which are towed alongside of grain ships in order to fill in bulk. The grain is simply pumped from the capacious bins of the elevator to the hold of the ship.
The large stationary grain elevators are used as much for storage as for loading vessels. The number of stationary elevators in the port of New York is 22, and the total storage capacity of this port is 26,000,000 bushels.
Some idea of the quantity of grain stored in one of these elevators may be gained from the fact that when the elevators of the New York Central Railroad Company, at Sixtieth Street and the North River, were burned, the loss on the grain alone amounted to at least $75,000. The elevators had a total capacity of 2,300,000 bushels, and contained only 100,000 bushels at the time of the fire. Only one elevator was rebuilt.
The transfer capacity at the port of New York, or the rate at which grain ships can be loaded, is 458,000 bushels per hour.
Another type of vessel is the fruit steamship. There are about90 in the tropical fruit trade between the United States, West Indies, and Central America. Bananas form the great bulk of the trade; cocoa-nuts, oranges, pineapples, and other fruits make up the balance of the cargoes. The principal fruit ports in the United States, besides New York, are Boston, Philadelphia, Baltimore, and New Orleans. The steamships are built expressly for the fruit trade, and are all, or nearly so, under the Norwegian and English flags, the Norwegian ships predominating. The hull is of steel lined with wood; the space between the steel plates (or outer skin of the vessel) and the wood is filled in with charcoal, which makes the ship a huge floating refrigerator. The vessels are provided with all the latest improvements in motive power, including triple-expansion engines and steam steering-gear. Some of the best ships devoted exclusively to the fruit trade have twin screws, and have accommodation for from 10 to 12 saloon passengers. Their average speed is from 11 to 13 knots. Many of the ships have their engines and boilers further aft than is the case in ordinary freighters.
Unloading a Banana Steamship.
Unloading a Banana Steamship.
Fruit steamships have three decks, all open, with a space of about two inches between each of the deck planks. This arrangement assures a free circulation of air at all times, and thus the fruit is preserved from heating and decay. These ships carry from 15,000 to 25,000 bunches of bananas, each bunch averaging in weight from 60 to 80 pounds, but some bunches have been found to weigh over 200 pounds. The fruit is “stowed” by an experienced stevedore, who devotes himself exclusively to the fruit trade. The bunches are placed on end along the decks, until all the space is filled; then a second and a third tier of bunches are laid flat, one over the other, in a manner that allows plenty of ventilation. Great care is taken to prevent the fruit from contact with salt-water, which causes the black spots frequently seen on bananas. After the vessels discharge the fruit they return in ballast for another cargo. The bulk of the crop is shipped during the five months from February to August. At the expiration of the season about one-third of the fruit vessels return to tropical ports and continue in the trade betweenthere and the United States fruit ports during the winter. The other ships return to Europe with a grain cargo, and are chartered for general freight until the next fruit season.
Besides these vessels already mentioned, there are also three or four regular steamship lines which are largely engaged in the tropical fruit trade. The principal lines are the Atlas line, the Pacific Mail, the Anchor line, and the Honduras & Central American line. The vessels of the Atlas line are fitted with the most modern appliances for the preservation of the fruit. All these lines have excellent passenger accommodation, and carry a general cargo as well.
The total receipts of bananas at all United States ports in 1890 was 13,284,756 bunches, New York alone receiving 5,433,295 bunches of the fruit. The principal ports of shipments were Jamaica, 2,108,975 bunches; Baracoa, 1,478,596 bunches; Port Limon, 547,976 bunches; Honduras, 205,290 bunches; and other ports, 125,000 bunches.
The Mediterranean fruit trade requires a large fleet of steamships during the autumn and winter months. Oranges, lemons, limes, Malaga grapes, raisins, currants, and nuts form the bulk of the cargoes. Sicily alone sends us 1,000,000 boxes of oranges a year, and half as many boxes of lemons. Spanish grapes, to the amount of 600,000 barrels annually, and dried fruits in vast quantities from the various Mediterranean ports, make up an enormous import trade. There are no steamships specially devoted to this business, as the season lasts only a portion of the year. The vessels employed are steamships which are well ventilated, and having a good rate of speed, as they all, or nearly so, carry passengers and a general cargo.
The Florio line, the Mediterranean fleet of the Anchor line, and the Mediterranean and New York Steamship Company, handle nearly all of this class of trade.
The tank steamship, for carrying oil in bulk, is an American invention. Ship-builders declared for years that no vessel with a shifting cargo, like oil in bulk, would live through a gale, but an enterprising Yankee demonstrated the fact that petroleum could bepumped from the pipe line directly into the hold of a steamship and transported across the ocean in safety. The cost of barrelling the oil is saved, and there is also considerable economy in loading.
Cross-section of a Tank Steamship, showing the Expansion Tank.
Cross-section of a Tank Steamship, showing the Expansion Tank.
The tank steamship can always be distinguished by her odd appearance, the funnel being placed a little forward of the mizzen-mast. She has two decks; the hold is divided into from 7 to 9 compartments or tanks for oil; each tank has a capacity of about 4,000 barrels. An empty space of about two feet, called a safety well, is forward of the boilers and engines, separating them from the cargo hold. This empty space, which has a bulkhead on each side, is sometimes filled with water. The depth of the tanks or hold is about 24 feet. On the top of these tanks are expansion tanks, about 5 feet square, reaching to the upper deck, and provided with hatches. The tanks are filled quite full, but sufficient space is left unfilled in the expansion tanks to allow for the expansion of the oil, which is one per cent. in volume for every 20 degrees Fahrenheit.
The tanks are filled by means of a very powerful pump, situated at varying distances, from a few yards to one-eighth of a mile from the ship. The greatest care is taken in loading the vessel. A man with a flag is stationed on the ship’s deck, and another man with a flag is placed at the tank. The signal to start and to stop pumping is passed from one to the other. The largest vessel can be filled in about twelve hours. The balance of space between decks is used for storing coal, the ship’s fuel. When the cargo is dischargedin Europe the tanks are filled with water ballast for the return trip.
Loading a Tank Steamship with Oil, by Force Pumps.
Loading a Tank Steamship with Oil, by Force Pumps.
Some of these steamships have been very lucky in picking up disabled passenger steamships, which, of course, means a substantial salvage. There are now about 70 of these tank steamships in the trade, the majority of which are employed by the Standard Oil Company and their connections, and new ones are being constantly added to meet the increasing trade. They are all under foreign flag—English, German, and Dutch—but the Standard Oil Company owns a large interest in them.
These steamships are all supplied with triple expansion engines, and are capable of maintaining a speed of from 8 to 11 knots per hour on the small coal consumption of about 25 tons for each 24 hours. The Bayonne is the fastest; she made the trip from England to New York in 11 days, averaging 11.10 knots per hour. They averagefrom 2,000 to 3,000 tons gross, and carry from 3,000 to 4,000 tons of cargo. Aft of the engine-room is the cabin and officers’ quarters, which are comfortable in every particular. The crew is located in the forecastle, as is usual on all vessels. The crew number about 30, all told.
Another type of steamship, which is an outcome of the tank idea, is the molasses ship. These have been used with success in carrying molasses in bulk between Havana and New York. The Circassian Prince is a notable instance of this type. The traffic in molasses is not very great at present, but when the trade increases tank steamships will, no doubt, be largely employed.
The loading of an ocean steamship is a sight well worth a visit to one of the city piers to witness. With the exception of the North German Lloyd, the Hamburg-American, the Netherlands, and the Thingvalla lines, whose piers are in Hoboken, and the Red Star Line, and some of the Inman vessels, in Jersey City, the great transatlantic steamships dock along the North River, from Canal Street up to Twenty-fourth Street. The length of the steamships, some of them being nearly 600 feet, make very long piers necessary. These piers on a sailing day present an animated scene. A long line of trucks, loaded with all sorts of merchandise, moves slowly down the pier, each truck delivering its packages opposite the particular hatchway down which they are to be lowered. The big ships load at four different hatchways at the same time. Steam-hoisting apparatus at each, and separate gangs of men, all, however, under the direction of one stevedore, load and stow the immense cargo in an incredibly short space of time.
All prominent lines handle their own freight, but some of the smaller lines give it out by contract to a stevedore, who employs his own men. About six gangs of twenty-five men each, and about twelve foremen and dock-clerks are employed. As many men are employed as can work to advantage. The day men are relieved by other gangs of men who work at night. In rush times a few men are added to each gang. From 10,000 to 100,000 packages constitute anocean steamship’s cargo. The largest number of packages are carried at the season of the year when the Bordeaux fruit canning trade is on, and the proportion of small packages is increased. Some big packages, such as a street-car completely boxed, or a steam-launch enclosed in a case, require considerable power and much skill to load. Heavy machinery and enormous cases are lifted from the dock, swung over the open hatchway, and lowered to the cavernous depths as quickly and easily as though they weighed but a hundred pounds instead of several tons.
The stowing of the freight requires experience and judgment. The weight must be arranged so that the vessel stands upon an even keel, and she must not be down at the bow, or too low at the stern. Then the cargo must be stowed so that it will not shift. The importance of this is seen when the rolling and plunging of the ship in a heavy sea is considered. The cargo would not only be seriously injured if it tumbled about, but the vessel would be unmanageable. The stevedores and the ’longshoremen who attend to this work are experienced men, and the difficulty of loading ships with inexperienced men caused the owners of many steamships to permit them to remain idle at the time of the great London dock strikes.
Particular attention is paid to stowing the cargo of an ocean racer. Every package is fitted into place, so that the cargo will be a solid part of the vessel, and serve to ballast and trim her to the best advantage.19
The North German Lloyd line holds the record for rapid loading and unloading of cargo. The Eider arrived at 10A.M., one day in January, 1890, and in twenty-nine hours her freight was discharged,and a full cargo, the mails, and her complement of passengers were on board, and the lines cast off for a return trip to Europe.
The ocean steamships are coaled at their docks. The barges containing the coal are towed alongside, on both sides of the vessel, and the work of coaling commences immediately after her arrival in port. It is hoisted up by iron buckets, coaling on both sides going on at the same time. It requires about four and a half days to coal one of the big greyhounds. There are eight coal barges employed in the work; each of these barges contains from 250 to 300 tons of coal. Some of the lines get their coal from Baltimore, and others from Norfolk. The coaling, as now conducted, is a tedious as well as a dirty process, and it is difficult to understand why lines have not adopted the elevator method which was tried on some of the naval and coastwise vessels some two years ago, and proved a success, both as to economy, rapidity, and cleanliness. The experiment showed that 500 tons of coal could be stowed away in the bunkers by chutes in one hour.
A Cattle Steamship at Sea.
A Cattle Steamship at Sea.
The loading of cattle-ships is interesting. The vessels are tied up to the docks in Jersey City and Weehawken, where the stock-yards are located, and the cattle are driven up a narrow gang-plank. When steamships take grain or other cargo in the hold and cattle on deck, the latter are usually loaded from barges at the wharf, or while the vessel is at anchor in the bay. Occasionally a fractious steer breaks away from the drivers, and, plunging over the side of the gang-plank, takes a bath in the water. A sailor jumps in and passes a rope around the animal, which is then hoisted on board by means of a block and tackle. The cattle are placed in strongly constructed pens between decks, as well as on the upper deck. The space for each head of cattle is fixed by law at 2 feet 6 inches by 8 feet. The pens hold half a dozen cattle each. Experience has shown that there was greater loss when more room than this was allowed for the cattle. A steer with plenty of room in his pen would roll from side to side and become bruised or crippled when a heavy sea was encountered. By packing the cattle tightly, they serve as buffersfor each other, and the loss is diminished. Within the last two or three years the methods of shipping cattle have been improved, so that the loss is now less than two per cent.
The cost of shipping cattle from New York to Liverpool is about half a cent per pound, live weight. This includes the care and the feed during the voyage. From ten to a dozen men are employed to look after the cattle on the trip. Very low wages are paid these men, as there are always a number of applications on hand from impecunious men who are desirous of working their passage to Europe by taking care of the cattle. A few men are regularly engaged in the business of taking care of cattle at sea. They are known as “cowboys of the sea,” and are big burly fellows who are used to rough living and to facing danger. The work of feeding and watering the cattle is not an easy task in fair weather, and with a rough sea on it is dangerous. When severe storms are met, the cattle become panic-stricken, and the men are obliged to go among them and quiet them. Sometimes the pens are broken down in a gale, and there is pandemonium aboard. Cattle-ships have arrived in port with only a small portion of the number of cattle taken on board, but as the losses fall upon the shippers and the reputation of the steamship line is to some extent at stake, they are, therefore, more interested in the safety of cattle at sea than anyone else. The efforts of Samuel Plimsoll, M.P., and the cattle inspectors of Great Britain and the United States, have materially improved the methods of this traffic.
Ocean freights are lower than those by rail. They fluctuate from day to day, and are affected by the supply, and by the available tonnage in port. Grain was carried from New York to Liverpool in 1890 for three shillings a quarter; the increased shipments in 1891 advanced the price to from four shillings to four shillings and ninepence a quarter, an advance of fifty per cent. The increased rate on grain affects all other rates, as the steamships vary their cargo according to the demands of the trade.
Just previous to the time the McKinley Bill went into effect,space on the fast steamships commanded seven times the usual rate, and hundreds of thousands of dollars depended upon the arrival of big consignments of dutiable goods within the time limit. The demand for space on the North German Lloyd line was so great that on one of the ships due to arrive in New York just before the new law went into effect, when shippers could not obtain room in the hold, several state-rooms were hired, and filled full of cutlery and other goods on which there was a considerable advance of duty. It will be remembered that in some instances tugs were sent out beyond Sandy Hook to meet steamships and sailing vessels which had been delayed, and hasten their arrival. The Etruria reached Quarantine at 11P.M.on October 4, 1890. Captain Haines was taken off on a tug, which ploughed her way up the Bay. At the Battery a team of fast horses was waiting, and the captain rushed breathless into the Custom House, with barely one minute to spare, before midnight, when the new law went into effect. Thousands of dollars were saved by the timely arrival of the Etruria. The Zaandam, which had been chartered to bring over a large cargo of Sumatra tobacco, on which the duty was advanced $1.25 per pound, arrived a few hours late, although she sailed three days ahead of the Werkendam, of the same line, with a similar cargo, which arrived in time to save the increased duty.
Every nation is interested in the extension of its ocean freight-carrying business. The welfare of the farmer, the artisan, and the merchant is interwoven with that of men who live on the sea. Commerce and the industries go hand in hand, and the magnificent showing that the former makes is only an indication of the prosperity of the latter. No more apt illustration of the growth of the American nation in the last quarter of a century can be pointed out than the development of her ocean traffic.
Important Part Taken by the United States in Establishing Ocean Routes—Rivalry in Sailing Vessels with England—Effect of the Discovery of Gold in California—The Cape Horn Route—Australian Packet Lines—The Problem of a Short Route to India—Four Main Routes of Steamship Traffic—Characteristics of the Regular Service between Europe and the East—Port Said and the Suez Canal—Scenes at Aden and at Bombay—The Run to Colombo, Ceylon—Some of the By-ways of Travel from Singapore—The Pacific Mail—From Yokohama to San Francisco—Two Routes from Panama to New York—South American Ports—Magnificent Scenery of the Magellan Straits—Beauties of the Port of Rio—The Great Ocean Route from London to Australia.
WRITERS of maritime history give to the United States the credit of establishing long lines of communication by sea with far-distant countries. As early as 1789 the merchants of Boston despatched their ships direct to China and the East Indies, some time before England entered on this trade; for the American vessels not only brought their cargoes to the home markets, but also trans-shipped spices, silks, teas, sugar, coffee, and cotton to Europe. In those times a skipper felt satisfied if he made the outward voyage of 15,000 miles, by way of the Cape of Good Hope, in 150 days, and came backviaCape Horn, some 17,000 miles, in the same time.
The development of the resources of the East by the East India Company, and the richness of the freights carried by the United States vessels—the proceeds of a single voyage often defraying the first cost of the ship—induced England to enter into competition;thus starting that rivalry between the sailing fleets of the two nations that was long the admiration of the world. In 1845 the American clippers, long, low, of good beam, very fine lines, and with yards so square and spars so lofty as to set a greater spread of canvas in proportion to their tonnage than any ship hitherto sailed, entered the race and left all rivals far astern. Then followed the days of which the old “sad sea-dogs” still love to tell, when every stitch of sail was carried until the fierce wind blew it from the bolt-ropes; when for weeks the lee scuppers lay buried in the seething waters and the flying jibboom plunged deep into the white-capped waves; when the good ship Sovereign of the Seas came into port 90 days from Hong-Kong, and the town gathered on the wharf to welcome the daring navigators; while the cargo of teas and coffees was sold at fabulous prices. And these old salts still discuss the dinner given to the bold captain that night, when the log of the voyage would be read and men would sit amazed at hearing that in 22 days the ship had sailed over 5,391 miles, that for four days her daily run had been 341.8 miles, and that in one day she had done 375 miles, at the rate of 15.6 knots.
The discovery of gold in California started a line of travel 14,000 miles long from Europe and the Eastern seaboard of the United StatesviaCape Horn to the western coast of North America. Ships on this line took out merchandise of every description to be used in building and maintaining the city of San Francisco, and after landing this freight, for which they received $25 a ton, they sailed for China, whence, after loading with teas and sugars at $25 and $30 a ton for freight, they returned direct to the United States or England.
In the meantime Australia had been opened up, and the Australian packet lines, leaving London for Melbourne 12,000 miles away, were making 100-days voyages by way of the Cape, “with a chance of being drowned.” This line carried many passengers, but it was not until 1850 that this traffic began to assume such importance that vessels were run on regular schedules for its accommodation. Duringthe time of the Crimean war this trade was enormous, and the Liverpool packet lines between England and New York reaped a rich remuneration in spite of serious accidents. It is reported that in the year 1854 no less than nine emigrant ships foundered at sea.
The day of the sailing ship on short routes was now closing, for the steamship entering into competition, gradually absorbed the lucrative passenger traffic and much of the more valuable freight.
In looking over the history of the lines of the world, none is found to have exerted more influence upon subsequent progress than the old route between India and England. This route at first doubled the Cape of Good Hope—a distance of 14,000 miles, so long and uncertain that the East India Company frequently sent their despatches by way of the Persian Gulf and then overland between Bagdad and Constantinople. The successful crossing of the Atlantic Ocean by the steamship Savannah suggested the possibility of a like means of communication with India. Accordingly, the English side-wheel steamship Enterprise, of 470 tons, 122 feet long, bark-rigged, left Falmouth in the year 1825 and reached Calcutta, after a voyage of 13,700 miles, in 113 days, of which 64 were steaming days. This result, though unsatisfactory, stimulated efforts looking toward remunerative steam navigation in the East. The first steamship arrived at Macao, China, in 1830. As an inducement to people to choose this novel mode of travelling, a Canton paper contained the following notice of a steamer: “She carries a crew, a surgeon, a band of music, and has rooms elegantly fitted up for cards and opium smoking.”
The problem of a short route to Europe from India was practically solved in 1830, by sending a steamer from Bombay to Suez, a distance of 3,000 miles, in 25 days. In a few years a regular line was established between the two places, connecting with steamers at Alexandria by means of a camel service across the desert. The camel post was succeeded by four-horse vans, and later these were followed by the Suez Canal and the railway.
With the progress of time sailing-ships have given way to steamships, and the routes of communication which they, after years of navigation, did so much to establish, have become the highways of an enormous trade, along which large and swift steamships are constantly going to and fro with the certainty and regularity of railway trains. A steamer to-day leaves her wharf at the moment of time set forth in her schedule, and arrives at the terminus of her voyage—it may be many thousand miles away—with almost equal promptitude.
Like railway traffic, steamer traffic follows certain main routes or grand trunk lines, having numerous feeders or subsidiary lines. The great ocean thoroughfares of the world are:
1. The route across the Atlantic, through the Mediterranean Sea, Suez Canal, and Red Sea, to India, China, Australia, and eastern Africa.
2. The route by the Pacific Ocean to Japan, China, and Australia.
3. The route by the Atlantic Ocean down the east coast of South America, and around Cape Horn, to western America and Australasia; and
4. The route down the Atlantic and the west coast of Africa, around the Cape of Good Hope, to East Africa, Australasia, and the East. The number of steamers traversing these grand routes, and those tributary to them, is estimated to be more than 11,000. In order to emphasize the importance of ocean navigation, the appended table20of the number of steam vessels, their money value, and the value of the merchandise they carry, is given for the five greatest nations of the globe: