The external part of B, previously heated, is then applied, and the joint subjected to a "general" heat and blown out. Very nice joints may be made by this method, and it is perhaps the better one where the external part of B is to be less in diameter than the inserted part. It was in this manner that the writer was taught to make glass velocity pumps, one of which, of a good design, is figured as an example.
In all cases good annealing should follow this operation. If the inserted part of the inner tube (B) is anything like an inch in diameter, and especially if it is of any length, as in some forms of ozone apparatus, or in a large Bunsen's ice calorimeter, the arrangements for supporting the inner part must be very good. A convenient way of proceeding when the inner tube is well supported is to make the mouth of A only very little larger than the diameter of B, so that B will only just slip in. Then the mouth of A and the zone of B may be heated together, and B blown out upon A. This, of course, must be arranged for, if necessary, by temporarily stopping the inner end of B.
images/Image59.gifThe inner support of B should be removed as soon as practicable after the joint is made, or, at all events, should not be perfectly rigid; a tightly-fitting cork, for instance, is too rigid. The reason is, of course, that in cooling there may be a tendency to set B a little to one side or the other, and if it is not free to take such a set, the joint most probably will give way. Good annealing both with flame and asbestos is asine qua nonin all inserted work.
Fig. 34.
§ 35. Bending Tubes. —
I have hitherto said nothing about bending tubes, for to bend a tube of a quarter of an inch in diameter, and of ordinary thickness, is about the first thing one learns in any laboratory, while to bend large tubes nicely is as difficult an operation as the practice of GLASS-BLOWING affords. However, even in bending a narrow tube it is possible to proceed in the wrong way. The wrong way is to heat a short length of the tube and then bend it rapidly, holding the plane of the bend horizontal. The right way,per contra, is to use a batswing burner to heat, say, two inches of the tube with constant turning till it is very soft, and then, holding the glass so that the bend will be in a vertical plane passing through one eye (the other being shut), to make the bend rather slowly.
If an exact angle is required, it is as well to have it drawn out on a sheet of asbestos board. In this case bend the glass as described till it is approximately right, and finish by laying it on the asbestos board and bringing it up to the marks. A suitable bit of wood may be substituted for the asbestos on occasion.
N.B. — The laboratory table is not a suitable piece of wood. A right-angled bend is often wanted. In this case the corner of a table will serve as a good guide to the eye, the glass being finished by being held just above it. If great accuracy is wanted, make a wooden template and suspend it by a screw from the side of the table, so that the vertex of the gauge for the interior angle projects downwards, then finish by bending the tube round it. The wood may be about half an inch thick.
If a sharp bend is required, heat the tube in the blow-pipe, and bend it rapidly, blowing out the glass meanwhile. The reason why a long bend should be held in a vertical plane is that the hot part tends to droop out of the plane of the bend if the latter be made in a horizontal position. To bend a tube above half an inch in diameter is a more or less difficult operation, and one which increases in difficulty as the diameter of the tube increases.
A U-tube, for instance, may be made as follows: Use the four blow-pipe arrangement so as to heat a fair length of tube, and get, say, two inches of tube very hot--almost fluid, in fact — by means of the carbon block supported from a stand. Remove the tube rapidly from the flame and draw the hot part out to, say, three inches. Then, holding the tube so as to make the bend in a vertical plane, bend it and blow it out together to its proper size.
This operation seems to present no difficulties to experienced glass-workers, even with tubes of about one inch in diameter, but to the amateur it is very difficult. I always look on a large U-tube with feelings of envy and admiration, which the complex trick work of an elaborate vacuum tube does not excite in the least. It will be noted that this method may, and often does, involve a preliminary thickening of the glass.
With tubes over an inch in diameter I have no idea as to what is the best mode of procedure — whether, for instance, a quantity of sand or gas coke might not be used to stuff out the tube during bending, but in this case there would be the difficulty of removing the fragments, which would be sure to stick to the glass.
Of course, if the bend need not be short, the tube could be softened in a tube furnace and bent in a kind of way. I must admit that with tubes of even less than one inch in diameter I have generally managed best by proceeding little by little. I heat as much of the glass as I can by means of a gigantic blow-pipe, having a nozzle of about an inch in diameter, and driven by a machine-blower.
When I find that, in spite of blowing, the tube begins to collapse, I suspend operations, reheat the tube a little farther on, and so proceed. If by any chance any reader knows a good laboratory method of performing this operation, I hope he will communicate it to me. After all, the difficulty chiefly arises from laboratory heating appliances being as a rule too limited in scope for such work.
The bending of very thin tubes also is a difficulty. I have only succeeded here by making very wide bends, but of course the blowing method is quite applicable to this case, and the effect may be obtained by welding in a rather thicker bit of tube, and drawing and blowing it till it is of the necessary thinness. This is, however, a mere evasion of the difficulty.
§ 36. Spiral Tubes. —
These are easily made where good heating apparatus is available. As, however, one constantly requires to bend tubes of about one-eighth inch in diameter into spirals in order to make spring connections for continuous glass apparatus, I will describe a method by which this is easily done. Provide a bit of iron pipe about an inch and a quarter in outside diameter. Cover this with a thick sheath of asbestos cloth, and sew the edges with iron wire. Hammer the wire down so that a good cylindrical surface is obtained. Make two wooden plugs for the ends of the iron pipe. Bore one to fit a nail, which may be held in a small retort clip, and fasten a stout wire crank handle into the other one. Support the neck of the handle by means of a second clip. In this way we easily get a sort of windlass quite strong enough for our purpose.
Fig.images/Image60.gif35.
Provide a large blow-pipe, such as the blow-pipe of a Fletcher crucible furnace, Select a length of tubing and clean it. Lash one end to the cylinder by means of a bit of wire, and hold the other end out nearly horizontally. Then start the blow-pipe to play on the tube just where it runs on to the asbestos cylinder, and at first right up to the lashing. Get an attendant to assist in turning the handle of the windlass, always keeping his eye on the tube, and never turning so fast as to tilt the tube upwards. By means of the blow-pipe, which may be moved round the tubing, heat the latter continuously as it is drawn through the flame, and lay it on the cylinder in even spirals.
If the tubing is thin, a good deal of care will have to be exercised in order to prevent a collapse. A better arrangement, which, however, I have not yet tried, would, I think, be to replace the blow-pipe by two bats-wing burners, permanently fastened to a stand, one of them playing its flame downwards on to the top of the flame of the other. The angle between the directions of the jets might be, say, 130°, or whatever is found convenient. In this way the glass would not be so likely to get overheated in spots, and better work would doubtless result. However, I have made numbers of perfectly satisfactory spirals as described. Three or four turns only make a sufficiently springy connection for nearly all purposes.
§ 37. On Auxiliary Operations on Glass:-
Boring Holes through Glass. — This is much more easily done than is generally supposed. The best mode of procedure depends on the circumstances. The following three cases will be considered:-
1. Boring holes up to one-quarter inch diameter through thick glass (say over one-eighth inch), or rather larger holes through thin glass.
2. Boring holes of any size through thick glass.
3. Boring round holes through ordinary window glass.
§ 38. Boring small Holes. —
Take a three-cornered file of appropriate dimensions, and snip the point off by means of a hammer; grind out most of the file marks to get sharp corners. Dip the file in kerosene, and have plenty of kerosene at hand in a small pot. Place the broken end of the file against the glass, and with considerable pressure begin to rotate it (the file) backwards and forwards with the fingers, very much as one would operate a bradawl against a hard piece of wood. The surface of the glass will shortly be ground away, and then the file bradawl will make much quicker progress than might be expected. Two or three minutes should suffice to bore a bit of sheet window-glass.
The following points require attention:
(1) Use any quantity of oil.
(2) After getting through the skin reduce the pressure on the file.
(3) Be sure to turn the file backwards and forwards through a complete revolution at least.
(4) When the hole is nearly through reduce the pressure.
(5) When the hole is through the glass be exceedingly careful not to force the file through too rapidly, otherwise it will simply act as a wedge and cause a complete fracture.
(6) In many cases it is better to harden the file in mercury before commencing operations; both files and glass differ so much in hardness that this point can only be decided by a trial. If it is found necessary to harden the file, use either a large blow-pipe and a coke or charcoal bed, or else a small forge. A small blowpipe, such as is generally found in laboratories, does more harm than good, either by burning the end of the file or raising it to an insufficient temperature.
(7) To sharpen the file, which is often necessary after passing through the "skin" of the glass, put it in a vice so that the point just protrudes clear of the jaws. Then, using a bit of waste iron as an intermediary anvil or punch, knock off the least bit from the point, so as to expose a fresh natural surface. The same result may be brought about by the use of a pair of pliers.
If several holes have to be bored, it is convenient to mount the file in the lathe and use a bit of flat hard wood to press up the glass by means of the back rest. A drilling machine, if not too heavy, does very well, and has the advantage of allowing the glass to remain horizontal so that plenty of oil can be kept in the hole.
Use a very slow speed in either case — much slower than would be used for drilling wrought iron. It is essential that the lubricant should flow on to the end of the file very freely, either from a pipette or from the regular oil-feed. If a little chipping where the file pierces the back surface is inadmissible, it is better, on the whole, to finish the bore by hand, using a very taper file. It is not necessary to use a special file for the lathe, for a well-handled file can be chucked very conveniently in a three-jaw chuck by means of the handle.
Mr. Shenstone recommends a lubricant composed of camphor dissolved in turpentine for general purposes. With the object of obtaining some decisive information as to the use of this lubricant, and to settle other points, I made the following experiments. Using an old three-cornered French file, I chipped off the point and adjusted the handle carefully. I also ground out the file marks near the point, without hardening the file in mercury. Using kerosene and turpentine and camphor, I began to bore holes in a hard bit of 3/32 inch window glass.
Each hole was bored to about one-eighth inch in diameter in four minutes with either lubricant. After hardening the file in mercury and using kerosene, I also required four minutes per hole. After mounting the file in a lathe which had been speeded to turn up brass rods of about one-half-inch diameter, and therefore ran too fast, I required one and a half minutes per hole, and bored them right through, using kerosene. On the whole, I think kerosene does as well as anything, and for filing is, I think, better than the camphor solution. However, I ought to say that the camphor-turpentine compound has probably a good deal to recommend it, for it has survived from long ago. My assistant tells me he has seen his grandfather use it when filing glass.
I beg to acknowledge my indebtedness to Mr. Pye, of the Cambridge Scientific Instrument Company, for showing me in 1886 (by the courtesy of the Company) the file method of glass-boring; it is also described by Faraday inChemical Manipulation, 1228.
It is not necessary, however, to use a file at all, for the twist drills made by the Morse Drill Company are quite hard enough in their natural state to bore glass. The circumferential speed of the drill should not much exceed 10 feet per minute. In this way the author has bored holes through glass an inch thick without any trouble except that of keeping the lubricant sufficiently supplied. For boring very small holes watchmaker's drills may be used perfectly well, especially those tempered for boring hardened steel. The only difficulty is in obtaining a sufficient supply of the lubricant, and to secure this the drill must be frequently withdrawn.
My reason for describing the file method at such length is to be found in the fact that a Morse drill requires to be sharpened after drilling glass before it can be used in the ordinary way, and this is often a difficulty.
I ought to say that I have never succeeded in boring thebarrel of a glass tapby either of these methods.[Footnote:I have been lately informed that it is usual to employ a splinter of diamond set in a steel wire holder both for tap boring and for drilling earthenware for riveting. The diamond must, of course, be set so as to give sufficient clearance for the wire holder.
For methods of using and setting diamond tools see § 55. It will suffice to say here that a steel wire is softened and filed at one end so as to form a fork; into this the diamond is set by squeezing with pliers. The diamond is arranged so as to present a point in the axis of the wire, and must not project on one side of the wire more than on the other. It is not always easy to get a fragment satisfying these conditions, and at the same time suitable for mounting. A drop of solder occasionally assists the process of setting the diamond.
In drilling, the diamond must be held against the work by a constant force, applied either by means of weight or a spring. I made many trials by this method, using a watchmaker's lathe and pressing up the work by a weight and string, which passed over a pulley. I used about 40 ounces, and drilled a hole 3/32 in diameter in flint glass at a speed of 900 revolutions per minute to a depth of one-eighth of an inch in eight minutes. I used soap and water as a lubricant, and the work was satisfactory.
Since this was set up, I have been informed by Mr. Hicks of Hatton Garden that it is necessary to anneal glass rod by heating it up to the softening point and allowing it to cool very slowly under red-hot sand or asbestos before boring. If this be done, no trouble will be experienced. The annealing must be perfect.]
§ 39. For boring large holes through thick glass sheets,
or, indeed, through anything where it is necessary to make sure that no accident can happen, or where great precision of position and form of hole is required, I find a boring tube mounted as shown in the picture (Fig. 36) is of great service. Brass or iron tube borers do perfectly well, and the end of the spindle may be provided once for all with a small tube chuck, or the tubes may be separately mounted as shown. A fairly high speed is desirable, and may be obtained either by foot, or, if power is available, is readily got by connecting to the speed cone of a lathe, which is presumably permanently belted to the motor.
Fig. 36.images/Image61.gif
After trying tubes armed with diamond dust, as will be presently explained, I find that emery and thin oil or turpentine, if liberally supplied below the glass, will do very nearly as well. The tube should be allowed to rise from the work every few seconds, so as to allow of fresh emery and oil being carried into the circular grooves. This is done by lifting the hinged upper bearing, the drill being lifted by a spiral spring between the pulley and the lower bearing shown at B. The glass may be conveniently supported on a few sheets of paper if flat, or held firm in position by wooden clamps if of any other shape. In any case it should be firmly held down and should be well supported. Any desired pressure upon the drill is obtained by weighting the hinged board A.
§ 40. The following method was shown to me by Mr. Wimshurst, but I have not had occasion to employ it myself. It is suitable for boring large holes through such glass as the plates of Mr. Wimshurst's Influence machines are usually made of. A diamond is mounted as the "pencil" of a compass, and with this a circle is drawn on the glass in the desired position. The other leg of the compass of course rests on a suitable washer.
To the best of my recollection the further procedure was as follows. A piece of steel rod about one-eighth inch in diameter was ground off flat and mounted in a vice vertically, so as to cause its plane end to form a small horizontal anvil. The centre (approximately) of the diamond-cut circle of the glass was laid on this anvil so as to rest evenly upon it, and the upper surface (i.e. that containing the cut) was then struck smartly with a hammer, completely pulverising the glass above the anvil. The hole was gradually extended in a similar manner right up to the diamond cut, from which, of course, the glass broke away.
A similar method has long been known to glaziers, differing from the preceding in that a series of diamond cuts are run across the circle parallel to two mutually perpendicular diameters. A smart tap on the back of the scored disc will generally cause the fragments to tumble out. I have never tried this myself, but I have seen it done.
Large discs may easily be cut from sheet glass by drawing a circular diamond cut, and gradually breaking away the outer parts by the aid of additional cuts and a pair of pliers or "shanks" (see Fig. 44).
§ 41. Operations depending on Grinding: Ground-in Joints. —
The process will be perfectly understood by reference to a simple case. Suppose it is desired to grind the end of a tube into the neck of a bottle. If a stoppered bottle is available, the stopper must be taken out and measured as to its diameter at the top and bottoM. Select a bit of tube as nearly as possible of the same diameter as the stopper at its thickest part. Draw down the glass in the blow-pipe flame rather by allowing it to sink than by pulling it out. After a few trials no difficulty will be experienced in making its taper nearly equal to that of the stopper, though there will in all probability be several ridges and inequalities. When this stage is reached anneal the work carefully and see that the glass is not too thin. Afterwards use emery and water, and grind the stopper into the bottle.
There are six special directions to be note
(1 )Turn the stopper through at least one revolution in each direction.
(2) Lift it out often so as to give the fresh emery a chance of getting into the joint.
(3) Rotate the bottle as well as the stopper in case there is any irregularity in the force brought to bear, which might cause one side of the neck to be more ground than another, or would cause the tube to set rather to one side or the other.
(4) Use emery passing a 50 sieve, i.e. a sieve with fifty threads to the inch run (see § 144) to begin with, and when the stopper nearly fits, wash this thoroughly away, and finish with flour emery, previously washed to get rid of particles of excessive size; the process of washing will be fully discussed in the chapter on glass-grinding, which see.
(5) Any degree of fineness of surface may be obtained by using graded emery, as will be explained, but, in general, it is unnecessary to attempt a finer surface than can be got with washed flour emery. A superficial and imperfect polish may be given by grinding for a short time with powdered pumice stone.
(6) If the proper taper is not attained by blowing, or if ridges are left on the tapered part, the process may be both hastened and improved by giving the taper a preliminary filing with a three-cornered file and kerosene, just as one would proceed with iron or brass. A little filing will often save a good deal of grinding and make a better job.
If a bottle without a tapered neck is to be employed, it is as well to do the preliminary grinding by means of a cone turned up from a bit of cast iron. This is put in the lathe and pushed into the mouth of the bottle, the latter being supported by the hands. Use about the same surface speed as would be employed for turning cast iron. In this case the emery is better used with kerosene.
If a cylindrical bit of cast iron about an inch in diameter is turned down conically nearly to a point, it will save a good deal of trouble in making separate cones. If it gets ground into rings, and it becomes necessary to turn it up, use a diamond tool until the skin is thoroughly removed; the embedded emery merely grinds the edge off any ordinary steel tool.
For diamond tools see § 55.
§ 42. Use of the Lathe in Glass-working. —
If it is necessary to remove a good deal of glass, time may be saved by actually turning the glass in a lathe. According to the direction given above for grinding a tube into the neck of a bottle, very little glass need be removed if the drawing down is well done, so that for this purpose turning is often unnecessary.
If the taper of the stopper be small and it is permissible to use a thick tube, or if a solid stopper only has to be provided, or an old stopper quickly altered to a new form, turning is very useful. The glass may be "chucked" in any suitable manner, and run at a speed not exceeding 10 feet per minute. Prepare a three-cornered file by mercury-hardening and by grinding the end flat so as to form a cutting angle of about 80°, and use a moderate amount of kerosene lubrication, i.e. enough to keep the glass damp, but even this is not essential. Use the file as an ordinary brass turning tool, and press much more lightly than for metal turning. The glass will be found to scrape off quite pleasantly.
By chucking glass tubes on wooden mandrells the ends may be nicely turned in this manner ready for accurate closing by glass plates.
The process of grinding also is made much more rapid — at all events in the earlier stages — by chucking either the stopper or the bottle and holding the other member in the fingers, or in a wooden vice held in the hands. The finishing touches are best given by hand.
I ought to say that I think a good deal of glass-grinding, as practised in laboratories, might be advantageously replaced by glass turning or filing and certainly will be by any one who will give these methods a trial.
If one tube is to be ground into another, as in grinding a retort into a receiver, the latter must be drawn down from a larger piece, few beginners being able to widen a tube by the method explained with sufficient ease and certainty. The other operations are similar to the operations above described.
§ 43. Funnels often require to be ground to an angle of 60°. For this purpose it is well to keep a cast-iron cone, tapering from nothing up to four inches in diameter. This may be mounted on a lathe, and will be found of great use for grinding out the inside of funnels. Care must be taken to work the funnel backwards and forwards, or it will tend to grind so as to form rings, which interfere with filtering. A rough polish may be given on the lines explained in the next section.
§ 44. A rough polish may be easily given to a surface which has been finished by washed flour emery, in the following manner. Turn up a disc of soft wood on the lathe, and run it at the highest wood-turning speed. Rub into the periphery a paste of sifted powdered pumice stone and water.
Any fairly smooth ground glass surface may be more or less polished by holding it for a moment against the revolving disc. Exact means of polishing will be described later on. Meanwhile this simple method will be found both quick and convenient, and is often quite sufficient where transparency, rather than figure, is required. I daresay a fine polish may be got on the same lines, using putty powder or washed rouge (not jewellers' rouge, which is too soft, but glass-polishers' rouge) to follow the pumice powder, but I have not required to try this.
§ 45. It is sometimes required to give to ground glass surfaces a temporary transparency. This is to be done by using a film of oil of the same refractive index as the glass. Cornu has employed a varnish consisting of a mixture of turpentine and oil of cloves, but the yellow-brown colour of the latter is often a disadvantage. It will be found that a mixture of nut oil and oil of bitter almonds, or of bromo-napthalene and acetone, can be made of only a faint yellow colour; and by exact adjustment of the proportions will have the same refractive index for any ray as crown glass (ordinary window glass).
Procure a sample of the glass and smash it up to small fragments in an iron mortar. Sift out the fine dust and the larger pieces; bits about as large as small beads — say one-sixteenth inch every way — do very well. Boil the sifted glass with strong commercial hydrochloric acid to remove iron, wash with distilled water and a few drops of alcohol, dry on blotting paper in the sun or otherwise. Put the dry glass into a bottle or beaker, and begin by adding almond oil (or bromo-napthalene), then add nut oil (or acetone) till the glass practically disappears when examined by sodium light, or light of any other wave-length, as may be required.
The adjustment of the mixture is a matter of great delicacy, one drop too much of either constituent, in, say, 50 cubic centimetres, makes all the difference. The final adjustment is best accomplished by having two mixtures of the oils, one just too rich in almond, the other in nut oil; by adding one or other of these, the required mixture is soon obtained.
It is to be noted
(1) That adjustment is only perfect for light of one wave-length.
(2) That adjustment is only perfect at one temperature.
On examining a bottle of rather larger fragments of glass immersed in an adjusted mixture by ordinary daylight, a peculiarly beautiful play of colours is seen.
Of course, if it is only desired to make ground glass fairly transparent, these precautions are unnecessary, but it seemed better to dispose of the matter once for all in this connection.
M. Cornu's object was to make a varnish which would prevent reflection from the back of a photographic plate on to the film. I have had occasion to require to do the same when using a scale made by cutting lines through a film of black varnish on a slip of glass. This succeeded perfectly by making the varnish out of Canada balsam stained with a black aniline dye.
Mr. Russell, Government Astronomer of New South Wales, finds that the "halation" of star photographs can be prevented by pouring over the back of the plate a film of collodion suitably stained.
§ 46. Making Ground Glass. —
This is easily done by rubbing the surface of polished glass with a bit of cast iron and washed "flour of emery." Of course, if the fineness of grain of the surface is of importance, appropriate sizes of emery must be employed. The iron may be replaced by a bit of glass cut with transverse grooves to allow the emery to distribute itself, or even by a bit of glass without such grooves, provided it does not measure more than one or two inches each way. If great speed is an object rather than the fineness of the surface, use a bit of lead and coarse emery, say any that will pass a sieve with fifty threads to the inch.
It may perhaps be mentioned here that it is a pity to throw away emery which has been used between glass and glass. In the chapter dealing with fine optical work the use of emery of various grades of fineness will be treated, and the finer grades can only be obtained (to my knowledge) from emery which has been crushed in the process of glass or metal grinding, especially the former. A large jam-pot covered with a cardboard lid does well as a receptacle of washings.
§ 47. Glass-cutting. —
This is an art about which more can be learned in five minutes by watching it well practised than by pages of written description. My advice to any one about to commence the practice of the art would be to make friends with a glazier and see it done. What follows is therefore on the supposition that this advice has been followed.
After some experience of cutters made of especially hardened steel, I believe better work can generally be got out of a diamond, provided the cost is not an objection. It is economy to pay a good price for a good diamond. As is well known, the natural angle of the crystal makes the best point, and a person buying a diamond should examine the stone by the help of a lens, so as to see that this condition is fulfilled. The natural angle is generally, if not always, bounded by curved edges, which have a totally different appearance from the sharp edges of a "splinter."
When a purchase is to be made, it is as well for the student to take a bit of glass and a foot-rule with him, and to test the diamond before it is taken away. When a good diamond has been procured, begin by taking cuts on bits of clean window glass until the proper angle at which to hold the tool is ascertained. Never try to cut over a scratch, if you value your diamond, and never press hard on the glass; a good cut is accompanied by an unmistakable ringing sound quite different from the sound made when the diamond is only scratching.
Perhaps the most important advice that can be given is,Never lend the diamond to anybody — under any circumstances.
The free use of a diamond is an art which the physicist will do well to acquire, for quite a variety of apparatus may be made out of glass strips, and the accuracy with which the glass breaks along a good cut reduces such an operation as glass-box-making to a question of accurate drawing.
§ 48.Cementing. —
One of the matters which is generally confused by too great a profusion of treatment is the art of cementing glass to other substances.
The following methods will be found to work, subject to two conditions:
(1) The glass must be clean;
(2) it must be hot enough to melt the cement.
For ordinary mending purposes when the glass does not require to be placed in water (especially if hot) nothing is better than that kind of glue which is generally called "diamond cement." This may be easily made by dissolving the best procurable isinglass in a mixture of 20 per cent water and 80 per cent glacial acetic acid — the exact proportions are not of consequence.
First, the isinglass is to be tightly packed into a bottle with a wide neck, then add the water, and let the isinglass soak it up. Afterwards pour in the acetic acid, and keep the mixture near 100°C. for an hour or two on the water bath — or rather in it. The total volume of acetic acid and water should not be more than about half of the volume of isinglass when the latter is pressed into the bottle as tightly as possible.
The proper consistency of the cement may be ascertained by lifting a drop out of the bottle and allowing it to cool on a sheet of glass. In ten minutes it ought not to be more than slightly sticky, and the mass in the bottle, after standing a few hours cold, should not be sticky at all, and should yield, jelly-like, to the pressure of the finger to only a slight degree. If the glue is too weak, more isinglass may be added (without any preliminary soaking).
A person making the mixture for the first time almost always gets it too weak. It is difficult to give exact proportions by weight, as isinglass and gelatine (which may replace it) differ greatly in quality. This cement is applied like glue, and will cement nearly anything as well as glass. Of course, as much cement as possible must be squeezed out of any joint where it is employed. The addition of gums, as recommended in some books, is unnecessary.
Ordinary glue will serve perfectly for cementing glass to wood.
"Chipped glass" ware is, I understand, made by painting clean glass with glue. As the glue dries and breaks by contraction, it chips off the surface of the glass. I have never seen this done. In nearly all cases where alcohol is not to be employed very strong joints may be made by shellac. Orange shellac is stronger than the "bleached" variety.
Asine qua nonis that the glass be hot enough to melt the shellac. The best way is to heat the glass surfaces and rub on the shellac from a bit of flake; the glass should not be so hot as to discolour the shellac appreciably, or its valuable properties will be partly destroyed. Both glass surfaces being thus prepared, and the shellac being quite fluid on both, they may be brought together and clamped tightly together till cool. Shellac that has been overheated, or dissolved in alcohol, or bleached, is of little use as compared with the pale orange flaky product. Dark flakes have probably been overheated during the preliminary refining.
For many purposes a cement is required capable of resisting carbon bisulphide. This is easily made by adding a little treacle (say 20 per cent) to ordinary glue. Since the mixture of glue and treacle does not keep, i.e. it cannot be satisfactorily melted up again after once it has set, no more should be made up than will be wanted at the time. If the glue be thick, glass boxes for carbon disulphide may be easily put together, even though the edges of the glass strips are not quite smooth, for, unlike most cements, this mixture remains tough, and is fairly strong in itself.
I have found by experiment that most fixed and, to a less degree, essential oils have little or no solvent action on shellac, and I suspect that the same remark applies to the treacle-glue mixture, but I have not tried. Turpenes act on shellac slightly, but mineral oils apparently not at all. The tests on which these statements are based were continued for about two years, during which time kerosene and mineral oils had no observable effect on shellac-fastened galvanometer mirrors.
§ 49. Fusing Electrodes into Glass. —
This art has greatly improved since the introduction of the incandescent lamp; however, up to the present, platinum seems to remain the only substance capable of giving a certainly air-tight result. I have not tried the aluminium-alumina method.
Many years ago it was the fashion to surround the platinum wire with a drop of white enamel glass in order to cause better adhesion between it and the ordinary glass.[Footnote:Hittorf and Geissler (Pogg. Ann. 1864, § 35; English translation, Phys. Soc. London, p. 138) found that it was impossible to make air-tight joints between platinum and hard potash glass, but that soft lead glass could be used with success as a cement.]However, in the case of flint glass, if one may judge from incandescent lamps, this is not essential — a fact which entirely coincides with my own experience.
On the other hand, when sealing electrodes into German glass I have often used a drop of enamel with perfect results, though this is not always done in Germany. In all cases, however, in which electrodes have to be sealed in — especially when they are liable to heat — I recommend flint glass, and in this have the support of Mr. Rain (The Incandescent Lamp and its Manufacture, p. 131). The exact details for the preparation of eudiometer tubes are given by Faraday (Chemical Manipulation, § 1200).
In view of what has preceded, however, I will content myself with the following notes. Make the hole through which the wire is to protrude only slightly larger than the wire itself, and be sure that the latter is clean. Allow the glass to cool sufficiently not to stick to the wire when the latter is pushed in. Be sure that, on heating, the glass does not get reduced, and that it flows up to the wire all round; pull and push the wire a little with a pair of pincers, to ensure this.
It is not a bad plan to get the glass exceedingly fluid round the wire — even if the lump has to be blown out a little afterwards--as it cools. The seal should finally be well annealed in asbestos, but first by gradually moving it into the hot air in front of the flame.
It was observed by Professor J. J. Thomson and the author some years ago (Proc. Roy. Soc. 40. 331. 1886) that when very violent discharges are taken through lightly sealed-in electrodes in lead-glass tubes — say from a large battery of Leyden jars — gas appears to be carried into the tube over and above that naturally given off by the platinum, and this without there being any apparent want of perfection in the seal. This observation has since been confirmed by others. Consequently in experiments on violent discharges in vacuo where certainty is required as to the exclusion of air, the seals should be protected by a guard tube or cap containing mercury; this must, of course, be put in hot and clean, on hot and clean glass, and in special cases should be boiled in situ.
A well-known German physicist (Warburg, I think) recommends putting the seals under water, but I cannot think that this is a good plan, for if air can get in, why not water? which has its surface tension in its favour. The same reasoning prevents my recommending a layer of sulphuric acid above the mercury-a method used for securing air-tightness in "mercury joints" by Mr. Gimingham, Proc. R. S. 1874.
Further protection may be attained for many purposes by coating the platinum wire with a sheath of glass, say half an inch long, fused to the platinum wire to a depth of one-twentieth of an inch all round.
In some cases the electrodes must be expected to get very hot, for instance, when it is desired to platinise mirrors by the device of Professor Wright of Yale. In this and similar cases I have met with great success by using "barometer" tubes of about one-twelfth of an inch bore, and with walls, say, one-tenth of an inch thick.[Footnote:"Barometer" tube is merely very thick-walled glass tubing, and makes particularly bad barometers, which are sold as weather glasses.]
This tube is drawn down to a long point — say an inch long by one-eighth of an inch external diameter, and the wire is fused in for a length, say, of three-quarters of an inch, but only in the narrow drawn-down part of the tube. At different times I have tried four such seals, and though the electrodes were red hot for hours, I have never had an accident — of course they were well annealed.
Fig.images/Image62.gif37.
For directions as to the making of high vacuum tubes, see the section dealing with that matter.
§ 50. As economy of platinum is often of importance, the following little art will save money and trouble. Platinum is easily caused to join most firmly to copper — with which, I presume, it alloys — by the following method. Hold the platinum wire against the copper wire, end to end, at the tip of the reducing flame of a typical blowpipe — or anywhere — preferably in the "reducing" part of the oxygas flame; in a moment the metals will fuse together at the point of contact, when they may be withdrawn.
Such a joint is very strong and wholly satisfactory, much better than a soldered joint. If the work is not carried out successfully so that a considerable drop of copper-platinum alloy accumulates, cut it off and start again. The essence of success is speed, so that the copper does not get "burned." If any considerable quantity of alloy is formed it dissolves the copper, and weakens it, so that we have first the platinum wire, then a bead of alloy, and then a copper wire fused into the bead, but so thin just outside the latter that the joint has no mechanical strength.
§ 51. The Art of making Air-light Joints. —
Lamp-manufacturers and others have long since learned that when glass is in question not only are fused joints made as easily as others, but that they afford the only reliable form of joint. An experimenter who uses flint glass, has a little experience, an oxygas blow-pipe and a blowing apparatus, will prefer to make his joints in this way, simply from the ease with which it may be done. When it comes to making a tight joint between glass and other substances the problem is by no means so easy. Thus Mr. Griffiths (Phil. Trans. 1893, p. 380) failed to make air-tight joints by cementing glass into steel tubes, using hard shellac, and the tubes fitting closely. These joints were satisfactory at first, but did not last; the length of the joint is not stated. The difficulty was finally got over by soldering very narrow platinum tubes into the steel, and fusing the former into the glass.
Mr. Griffiths has since used an alloy with success as a cement, but I cannot discover what it is made from. Many years ago Professor Hittorf prepared good high vacuum tubes by plugging the ends of glass tubes with sealing wax merely, though in all cases the spaces to be filled with wax were long and narrow (Hittorf, Pogg. Ann. 1869, § 5, English translation, Phys. Soc. p. 113). Again, Regnault habitually used brass ferules, and cemented glass into them by means of his mastic, which can still be procured at a low rate from his instrument-makers (Golan, Paris). Lenard also, in his investigations on Cathode Rays (Wied. Ann., vol. li. p. 224), made use of sealing wax covered with marine glue.
Surely in face of these facts we must admit that cement joints can be made with fair success. I do not know the composition of M. Regnault's mastic, but Faraday (Manipulations, § 1123) gives the following receipt for a cement for joining ferules to retorts, etc. —