Chapter 7

Approximate coefficient of linear expansion of quartz per degree between 80° C. and 30° C. is 0.0000017 (Threlfall = loc. cit.).

This must be regarded with some suspicion, as the data were not concordant. There is no doubt, however, about the extreme inexpansibility of quartz.

Temperature coefficient of modulus of torsional rigidity per degree centigrade, 22° to 98° C., 0.000133

Ditto, absolute simple rigidity, 0.000128 (Threlfall).

Limit of allowable rate of twist in round numbers is, one-third turn per centimetre, in a fibre 0.01 cm. diameter.

The limiting rate is probably roughly inversely as the diameter.

Attention must be called to the rapid increase in the torsional rigidity of these threads as the temperature rises. A quartz spiral spring-balance will be appreciably stronger in hot weather.

§ 89. In the majority of instances in which quartz threads are applied in the laboratory, it is desirable to keep the coefficient of torsion as small as possible, and hence threads are used as fine as possible.

It is convenient to remember that a thread 0.0014 cm. or 0.0007 inch in diameter breaks with a weight of about ten grammes, and may conveniently be employed to carry, say, five grammes. With threads three times finer the breaking strength per unit area increases, say, 50 per cent. In ordinary practice — galvanometric work for instance — where it is desirable to use a thread as fine and short as possible to sustain a weight up to, say, half a gramme, it will be found that fibres five centimetres long or over give no trouble through defect of elastic properties. A factor of safety of two is a fair allowance when loading threads.

No difficulty will be experienced in mounting threads having a diameter of 0.0002 inch or over. With finer threads it is necessary to employ very dark backgrounds (Mr. Boys uses the darkness of a slightly opened drawer), or the threads cannot be sufficiently well seen.

In the case of instruments in which threads remain highly twisted for long periods of time, the above rule as to the safe limit of twist does not allow of a sufficient margin; it is only applicable to galvanometric and similar purposes.

The cause of the increase in tenacity as the diameter diminishes is at present unknown. It is due neither to an effect of annealing (annealed threads are rotten), nor is it a skin effect, nor is it due to the cooling of the thread under higher capillary pressure. It is, however, possible that it may be associated with some kind of permanent set taken by the fibres during the stage of passage from the liquid to the solid state.

§ 90. On the Attachment of Quartz Fibres. —

For many purposes it is sufficient to cement the fibres in position by means of ordinary yellow shellac, but where very great accuracy is aimed at, the shellac (being itself imperfectly elastic and exposed to shearing stress) imposes its imperfections on the whole system. This source of error can be got over by soldering the threads in position. Attempts were made by the writer in this direction, with fair success, in 1889, but as Mr. Boys has carried the art to a high degree of perfection, I will suppress the description of my own method and describe his in preference. It has, of course, been frequently repeated in my laboratory.

In many cases, however, if not in all, it may be replaced by Margot soldering, as already described, a note on the application of which to this purpose will follow.

A thread of the proper diameter having been selected, it is cut to the right length. With fine threads this is not always a perfectly easy matter. The best way is for the operator to station himself facing a good light, not sunlight, which is too tiring to the eye, but bright diffused light. The thread will be furnished with bits of paper stuck on with paraffin at both ends, as already described.

A rough sketch of the apparatus — or, at all events, two lines showing the exact length which the free part of the thread must have — are marked on a smooth board, and this is supported with its plane vertical. The thread is held against the board, and the upper piece of paper is stuck lightly to the board with a trace of soft wax, so that the lower edge of the paper is at any desired height above the upper mark. This distance is measured, and forms the length of thread allowed to overlap the support. A second bit of paper is attached below the lower mark, a margin for the attachment of the lower end being measured and left as before. The thread will be most easily seen if the board is painted a dead black.

If it is desired to attach the thread to its supports merely by shellac, this is practically all that needs to be done. The supports should resemble large pins. The upper support will be a brass wire in most cases, and will require to be filed away as shown in the sketch (Fig. 71). It is then coated with shellac by heating and rubbing upon the shellac. As previously noted, the shellac must not be overheated.

The thread is cut off below the lower slip of paper, and the upper support being conveniently laid in a horizontal position on another dead-black surface, the thread is carried to it and laid as designed against the shellac, which is now cold. When the thread is in place, a soldering iron is put against the brass wire, and the shellac gradually melted till it closes over the thread.

images/Image114.gifFig. 71.

The iron is then withdrawn and the thread pulled away from the point for one-twentieth of an inch or less. This ensures that the thread makes proper contact with the cement, and also that it is free from kinks; of course, it must leave the cement in the proper direction. A similar process is next carried out with respect to the lower attachment, and the ends of the thread are neatly trimmed off.

Both ends of the thread being secured, the next step is to transfer the upper support to a clip stand, the suspended parts being held by hand, so that the weight comes on the thread very gradually. In this way it will be easily seen whether the thread is bent where it enters the shellac, and should this be the case, a hot iron must be brought up to the shellac and the error rectified.

When both the support and the suspended parts are brought nearly to the required bearing, the hot iron is held for a moment close up to each attachment, the hand being held close below but not touching the suspended parts, and both attachments are allowed to straighten themselves out naturally.

These details may appear tiresome, and so they are when written out at length, but the time occupied in carrying them out is very short, and quartz threads break easily, unless the pull upon them is accurately in the direction of their length at all points.

In the event of its being decided to attach the thread by soldering, the process is rather more expensive in time, but not otherwise more troublesome.

images/Image115.gifFig. 7images/Image116.gif2. Fig. 73.

The thread being cut as before to the proper length, little bits of aluminium foil are smeared all over with melted shellac and suspended from the thread replacing the paper slips before described. It is important that no paraffin should be allowed to touch the thread anywhere near a point intended to be soldered. The thread is hung up from a clip stand by one of the bits of foil, and the lower end is washed by dipping it into strong nitric acid for a moment and thence into water. The object of smearing the foils all over with shellac is to prevent them being acted upon by the acid. The threads are not very easily washed acid free, but the process may be assisted by means of a fine camel's-hair pencil.

Some silvering solution made as described (§ 65) is put into a test tube; the thread, after rinsing with distilled water, is lowered into the solution so far as is required, and is allowed to receive a coating of silver. It has been observed that the coating of silver must not be too thick — not sufficiently thick to be opaque. A watch may be kept on the process by immersing a minute strip of mica alongside the thread.

The silvered thread is rinsed with distilled water and allowed to dry.

Meanwhile the other end of the thread may be silvered. When both ends are silvered the process of coppering by electro deposit is commenced. A test tube is partially filled with a ten per cent solution of sulphate of copper, and several copper wires are dipped into it to form an anode. The thread is lowered carefully into the solution so as not to introduce air bubbles, and the silvered part is allowed to project far enough above the surface of the solution to come in contact with a fine copper wire. The circuit is closed through a Leclanché cell and a resistance box.

It is as well to begin with a fair resistance, say 100 ohms out in the box, and the progress of the deposit is watched by means of a low-power microscope set up in front of the thread. If the copper appears to come down in a granular form, the resistance is too small and must be increased; if no headway appears to be made, the resistance must be diminished.

As soon as a fair coat of copper has come down, i.e. when the diameter of the thread is about doubled, the process is interrupted. The thread is withdrawn, washed, dipped in a solution of chloride of zinc, and carefully tinned by dragging it over a small clean drop of solder on a soldering bit.

During this part of the process the shellac is apt to get melted if the iron is held too close, so that it is advisable to begin by making the thread somewhat over long. The end of the thread must only be trimmed off at the conclusion of the operation, i.e. after the thread is soldered up. The thread is attached to the previously tinned supports much in the same way as has been described under the head of shellac attachments. It does not very much matter whether both ends are coppered before one is soldered up or not. At the conclusion of the whole process the superfluous copper and silver are dissolved off by a little hot strong nitric acid applied on a glass hair pencil. This is best done by holding the thread horizontally with the assistance of clip stands.

If the thread is too delicate to bear brushing, the nitric acid may be applied by pouring out a big drop into a bit of platinum foil and holding this below the thread so as to touch it lightly. The dissolving of the copper and silver is, of course, followed by copious washing with hot water. This process is more laborious than might be imagined, but it may be shortened by heating the platinum foil supporting the water (Fig. 74).

Fig.images/Image117.gif74

The washing part of the process is, in the opinion of the writer, the most difficult part of the whole business, and it requires to be very thorough, or the thread will end by drawing out of the solder. In many cases it is better to try to do without any application of nitric acid at all, but, of course, this involves silvering and coppering to exact distances from the ends of the thread — at all events, in apparatus where the effective length of the thread is narrowly prescribed.

It is important not to leave the active parts of the thread appreciably silvered, for the sake of avoiding zero changes due to the imperfect elasticity of the silver. In this soldering process ordinary tinman's solder may be employed; it must be applied very free from dust or oxide.

§ 91. Other Modes of soldering Quartz. —

Thick rods of quartz may be treated for attachment by solder in the same way as glass was treated by Professor Kundt to get a foundation for his electrolytically deposited prisms.[Footnote:See Appendix at end of book.]

The application of a drop of a strong solution of platinum tetrachloride to the rod will, on drying, give rise to a film of the dry salt, and this may be reduced in the luminous gas flame. During the process, however, the quartz is apt to get rotten, especially if the temperature has been anything approaching a full red heat. The resulting platinum deposit adheres very strongly to the quartz, and may be soldered to as before. This method has been employed by the writer with success since 1887, and may even be extended to thick threads.

It was also found that fusible metal either stuck to or contracted upon clean quartz so as to make a firm joint. In the light of M. Margot's researches (already described), it occurred to me that perhaps my experience was only a special case of the phenomena of adhesion investigated with so much success by M. Margot. I therefore tried whether the alloy of tin and zinc used for soldering aluminium would stick to quartz, and instantly found that this was indeed the case.

Adhesion between the alloy and perfectly clean quartz takes place almost without rubbing. A rod of quartz thus "tinned" can be soldered up to anything to which solder will stick, at once. On applying the method to thick quartz threads, success was instantaneous (the threads were some preserved for ordinary galvanometer suspensions); but when the method was applied to very fine threads, great difficulty in tinning the threads was experienced. The operation is best performed by having the alloy on the end of an aluminium soldering bit, and taking care that it isperfectly free from oxidebefore the thread is drawn across it. There was no difficulty in soldering a thread "tinned" in this manner to a copper wire with tinman's solder, and the joint appeared perfect, the thread breaking finally at about an inch away from the joint.

I allow Mr. Boys' method to stand as I have written it, simply because I have not had time as yet to make thorough tests of the durability of "Margot" joints on the finest threads; but I have practically no doubt as to its perfect applicability, provided always that the solder can be got clean enough when melted on the bit. Very fine threads will require to be stretched before tinning, in order to enable them to break through the capillary barrier of the surface of the melted solder.

§ 92. Soldering. —

It is almost unfair to the arts of the glass-blower or optician to describe them side by side with the humble trade of soldering. Nevertheless, no accomplishment of a mechanical kind is so serviceable to the physicist as handiness with the soldering bit; and, as a rule, there is no other exercise in which the average student shows such lamentable incapacity. The following remarks on the subject are therefore addressed to persons presumably quite ignorant of the way in which soldering is carried out, and do not profess to be more than of the most elementary character.

For laboratory purposes three kinds of solder are in general sufficient. One is the ordinary tinman's solder composed of lead and tin. The second is "spelter," or soft fusible brass, and the third is an alloy of silver and brass called silver solder.

Tinman's solder is used for most purposes where high temperatures are not required, or where the apparatus is intended to be temporary. The "spelter," which is really only finely granulated fusible brass, is used for brazing iron joints. The silver solder is convenient for most purposes where permanency is required, and is especially suited to the joining of small objects.

§ 93. Soft tinman's solder is made by melting together two parts of grain tin and one of soft lead — the exact proportions are not of consequence — but, on the other hand, the purer the constituents the better the solder. Within certain limits, the greater the proportion of tin the cleaner and more fusible is the solder. It is usually worth while to prepare the solder in the laboratory, for in this way a uniform and dependable product is assured. Good soft lead is melted in an iron ladle and skimmed; the temperature is allowed to rise very little above the melting-point. The tin is then added little by little, the alloy stirred vigorously and skimmed, and sticks of solder conveniently cast by sweeping the ladle over a clean iron plate, so as to pour out a thin stream of solder. If the solder be properly made it will have a mat and bright mottled surface, and will "crackle" when held up to the ear and bent.

Perhaps the chief precaution necessary in making solder is to exclude zinc. The presence of a very small percentage of this metal entirely spoils the solder for tinman's work by preventing its "running" or flowing smoothly under the soldering bit.

Fig.images/Image118.gif75.

Fig.images/Image119.gif76.

Fig.images/Image120.gif77.

§ 94. Preparing a Soldering Bit. —

The wedge-shaped edge of one of the forms of bit shown in the sketch is filed to shape and the bit heated in a fire or on a gas heater. A bit of rough sandstone, or even a clean soft brick, or a bit of tin plate having some sand sprinkled over it, is placed in a convenient position and sprinkled with resin.

As soon as the bit is hot enough to melt solder it is withdrawn and a few drops of solder melted on to the brick or its equivalent. The iron or bit is then rubbed to and fro over the solder and resin till the former adheres to and tins the copper head. It will be found advisable to tin every side of the point of the bit and to carry the tinning back at least half an inch from the edge.

If the solder obstinately refuses to adhere, the cause is to be sought in the oxidation of the copper, or of the solder, or both — in either case the result of too high a temperature or too prolonged heating. The simple remedy is to get the iron hot, and then to dress it with an old file, so as to expose a bright surface, which is instantly passed over the resin as a means of preserving it from oxidation. If the process above described be now carried out, it will be found that the difficulty disappears.

Before using the iron, wipe off any soot or coke or burned resin by means of an old rag. An iron tinned in this way is much to be preferred to one tinned by means of chloride of zinc.

A shorter and more usual method is carried out as follows: The solution of chloride of zinc is prepared by adding bits of zinc to some commercial hydrochloric acid diluted with a little (say 25 per cent) of water. The acid may conveniently be placed in a small glazed white jar (a jam pot does excellently), and this should only be filled to about one-quarter of its capacity. An excess of zinc may be added.

It may be fancy, but I prefer a soldering solution made in this way to a solution of chloride of zinc bought as a chemical product. The jar is generally mounted on a heavy leaden base, so as to avoid any danger of its getting knocked over, for nothing is so nasty or bad for tools as a bench on which this noxious liquid has been upset (Fig. 78).

Fig.images/Image121.gif78.

To tin a soldering bit, a little of the fluid is dipped out of the jar on to a bit of tin plate bent up at the edges--a few drops is sufficient — and the iron is heated and rubbed about in the liquid with a drop of solder. If the iron is anything like clean it will tin at once and exhibit a very bright surface, but quite dirty copper may be tinned by dipping it for a moment in the liquid in the pot and then working it about over the solder. An iron so tinned remains covered with chloride of zinc, and this must be carefully wiped off if it is intended to use the iron with a resin or tallow flux in lead soldering.

One disadvantage of this process is that the copper bit soon gets eaten into holes and requires to be dressed up afresh. On the other hand, an iron so tinned always presents a nice clean solder surface until the next time it is heated, when it generally becomes very dirty and requires to be carefully wiped before using.

In my experience also an iron so tinned is more easily spoiled as to the state of its surface, "detinned," in fact, by overheating than when the tinning is carried out by resin and friction. When this happens, the shortest way out of the difficulty is the application of the old file so as to obtain a perfectly fresh surface. No one who knows his business ever uses an iron that is not perfectly clean and well tinned.

The iron may be cleaned from time to time by heating it red hot and quenching it in water to get rid of the oxide, which scales off in the process.

§ 95. Soft Soldering. —

In the laboratory the chief application of the process is to copper soldering during the construction of electrical apparatus and to zinc soldering for general purposes.

In ninety-nine cases out of every hundred where difficulties occur their origin is to be traced to dirt. There seems to be some inexplicable kink in the human mind which renders it callous to repeated proofs of the necessity for cleaning surfaces which it is intended to solder. The slightest trace of albuminous or gelatinous matter or shellac will prevent solder adhering to most metals and the same remark applies in a measure to the presence of oxides, although these may be removed by chloride of zinc or prevented from forming by resin or tallow. A touch with an ordinarily dirty hand — I refer to a solderer's hand — will often soil work sufficiently to make the adherence of solder difficult.

The fluxes most generally employed are tallow for lead, resin or Venice turpentine for copper, chloride of zinc for anything except lead, which never requires it. The latter flux has the property (also possessed by borax at a red heat) of dissolving any traces of oxide which may be formed, as well as acting as a protecting layer to the metal.

We may now turn to the consideration of a simple case of soldering, say the joining of two copper wires. The wires are first cleaned either by dipping in a bath of sulphuric and nitric acids — a thing no laboratory should be without — or by any suitable mechanical means. The cleaned wires are then twisted together — there is a regulation way of doing this, but it presents no advantage in laboratory practice — and the joint is sprinkled over with resin, or painted with a solution of resin in alcohol.

The iron, being heated and floated with solder, is held against the joint, the latter being supported on a brick, and the solder is allowed to "sweat" into the joint. Enough solder must be present to penetrate right through the joint. Nothing is gained by rubbing violently with the iron. If the copper is clean it will tin, and if it is dirty it won't, and there the matter ends.

Beginners generally use too small or too cold a bit, and produce a ragged, dirty joint in consequence. If the saving of time be an object, the joint may be twisted together on ordinarily dirty oxidised wires and heated to, say, 200° C. It is then painted with chloride of zinc and soldered with the bit.

There is a difference of opinion as to the relative merits of chloride of zinc and of resin as a flux in soldering copper. Thus the standing German practice is, or was, to employ the former flux in every case for soldering electric light wires, while in England the custom used to be to specify that soldering should be done by resin, and this custom may still prevail; it lingers in Australia at all events.

However, it is agreed on all hands that when chloride of zinc is used it must be carefully washed off. I have known of an electrical engineer insisting on his workmen "licking" joints with their tongues to ensure the total removal of chloride of zinc; it has a horrible taste; and I have occasionally pursued the same plan myself when the soldering of fine wires was in question.

In any case, it is very certain that chloride of zinc left in a joint will ruin it sooner or later by loosening the contact between copper and solder.

Very often it is requisite to solder together two extensive flat surfaces — for instance, in "chucking" certain kinds of brass work. The surfaces to be soldered must be carefully tinned, most conveniently by the help of the blow-pipe and chloride of zinc. After tinning, the surfaces are laid together and heated so as to "sweat" them together; the phrase, though inelegant, is expressive.

96.Soldering Tin Plate.—

If the plate be new and clean, a little resin or its solution in alcohol is all that is necessary as a flux. If the tin plate is rusty the rust must be removed and the clean iron, or rather mild steel, surface exposed. The use of chloride of zinc is practically essential in this case. Tin plate is often spotted with rust long before it becomes rusty as a whole, when, of course, it may be regarded as worn out, and such rust spots are most conveniently removed by means of the plumber's shave-hook. The shave-hook is merely a peculiarly shaped hard steel scraping knife on a handle (Fig. 79).

Fig.images/Image122.gif79

With tin plate the soldering of long joints is often necessary. The plate must be temporarily held in position either by binding with iron wire, fastening by clamps, or holding by an assistant. The flux is applied and the iron run slowly along the joint. Enough solder is used to completely float the tip of the iron. By arranging the joint so that it slopes downward slightly, and commencing at the upper end, the solder may be caused to flow after the iron, and will leave a joint with the minimum permissible amount of solder in it. By regulating the slope, heat of iron, etc., any desired quantity of solder may be run into the joint.

§ 97. Soldering Zinc. —

Zinc alloys with soft solder very easily, and by so doing entirely spoils it, making, it "crumbly," dirty, and preventing it running. Consequently, in soldering up zinc great care must be taken to prevent the solder becoming appreciably contaminated by the zinc. To this end the zinc surfaces are cleaned by means of a little hydrochloric acid, which is painted on instead of chloride of zinc. Plenty of solder is melted on to the work, and is drawn along over the joint by a single slow motion of the soldering bit. The iron must be just hot enough to make the solder flow freely, and it must never be rubbed violently on the zinc or allowed to linger in one spot; the result of the latter action will be to melt a hole through the zinc, owing to the tendency of this metal to form an easily fusible alloy with the solder.

The art of soldering zinc is a very useful one in the laboratory. The majority of physicists appear to overlook the advantages of zinc considered as a material for apparatus construction. It is light, fairly strong, cheap, easily fusible, and yet hard and elastic when cold. It may be worked as easily as lead at a temperature of, say, 150° to 200° C., and slightly below the melting-point (423° C.) it is brittle and may & powdered. The property of softening at a moderate temperature is invaluable as a means of flattening zinc plate or shaping it in any way. During the work it may be held by means of an old cloth. Zinc sheet which has been heated between iron plates and flattened by pressure retains its flatness very fairly well after cooling.

§ 98. Soldering other Metals —

Iron. —

The iron must be filed clean and then brushed with chloride of zinc solution. Some people add a little sat ammoniac to the chloride of zinc, but the improvement thus made is practically inappreciable. If the iron is clean it tins quite easily, and the process of soldering it is perfectly easy and requires no special comment.

Brass. —

The same method as described for iron succeeds perfectly. The brass, if not exceedingly dirty, may be cleaned by heating to the temperature at which solder melts (below 200° C.), and painting it over with chloride of zinc, or dipping it in the liquor. If now the brass be heated again in the blow-pipe flame, it will be found to tin perfectly well when rubbed over with solder.

German Silver, Platinoid, Silver, and Platinum

are treated like iron. With regard to silver and platinum the same precautions as recommended in the case of zinc must be observed, for both these metals form fusible alloys with solder.

Gold

when pure requires no flux. Standard gold, which contains copper, solders better with a little chloride of zinc.

Lead

must be pared absolutely clean and then soldered quickly with a hot iron, using tallow as a flux. Since solder if over hot will adhere to lead almost anywhere, plumbers are in the habit of specially soiling those parts to which it is not intended that solder shall adhere. The "soiling" paint consists of very thin glue, called size, mixed with lampblack; on an emergency a raw potato may be cut in half, and the work to be soiled may be rubbed over with the cut surface of the potato.

Hard Carbon or gas coke

may be soldered after coating with copper by an electrolytic process, as will be described.

§ 99.Brazing.

Soldering at a red heat by means of spelter is called brazing. Spelter is soft brass, and is generally made from zinc one part, copper one part; an alloy easily granulated at a red heat; it is purchased in the granular form.

The art of brazing is applied to metals which will withstand a red heat, and the joints so soldered have the strength of brass.

The pieces to be jointed by this method must be carefully cleaned and held in their proper relative positions by means of iron wire. It is generally necessary to soften iron wire as purchased by heating it red hot and allowing it to cool in the air; if this is not done the wire is usually too hard to be employed satisfactorily for binding.

Very thin wire--i.e. above No. 20 on the Birmingham wire gauge — does not do, for it gets burned through, and perhaps allows the work to fall apart at a critical moment.

The work being securely fastened, the next step is to cover the cleaned parts with flux in order to prevent oxidation. For this purpose "glass borax" is employed. "Glass" borax is simply ordinary borax which has been fused for the purpose of getting rid of water of crystallisation. The glass borax is reduced to powder in an iron mortar, for it is very hard, and is then made up into a cream with a little water. This cream is painted on to the parts of the work which are destined to receive the solder.

The next step is to prepare the spelter, and this is easily done by mixing it with the cream, taking care to stir thoroughly with a flattened iron wire till each particle of spelter is perfectly covered with the borax. The mixture should not be too wet to behave as a granular mass, and may then be lifted on to the work by means of the iron spatula.

Care must be taken to place the spelter on those parts only which are intended to receive it, and when this is done, the joint may be lightly powdered over with the dry borax, and will then be ready for heating.

If the object is of considerable size it is most conveniently heated on the forge; if small the blowpipe is more convenient. In the latter case, place the work on a firebrick, and arrange two other bricks on edge about it, so that it lies more or less in a corner. A few bits of coke may also be placed on and about the work to increase the temperature by their combustion, and to concentrate the flame and prevent radiation. The temperature is gradually raised to a bright red heat, when the spelter will be observed to fuse or "run," as it is technically said to do.

If the cleaning and distribution of flux has been successful, the spelter will "run" along the joint very freely, and the work should be tapped gently to make sure that the spelter has really run into the joint. The heating may be interrupted when the spelter is observed to have melted into a continuous mass. As soon as the work has fallen below a red heat it may be plunged into water, a process which has the effect of cracking off the glass-like layer of borax.

There is, however, some risk of causing the work to buckle by this violent treatment, which must of course be modified so as to suit the circumstances of the case. If the joint is in such a position that the borax cannot be filed off, a very convenient instrument for its removal by scraping is the watchmaker's graver, a square rod of hard steel ground to a bevelled point (Fig. 80).

Fig.images/Image123.gif80.

Several precautions require to be mentioned. In the first place, spelter is merely rather soft brass, and consequently it often cannot be fused without endangering the rest of the work. A good protection is a layer of fireclay laid upon the more delicate parts, such for instance as any screwed part.

Gun-metal and tap-metal do not lend themselves to brazing so readily as iron or yellow brass, and are usually more conveniently treated by means of silver solder.

Spelter tends to run very freely when it melts, and if the brass surface in the neighbourhood of the joint is at all clean, may run where it is not wanted. Of course some control may be exercised by "soiling" with fireclay or using an oxidising flame; but the erratic behaviour of spelter in this respect is the greatest drawback to its use in apparatus construction. The secret of success in brazing lies in properly cleaning up the work to begin with, and in disposing the borax so as to prevent subsequent oxidation.

§ 100. Silver Soldering. —

This process resembles that last described, but instead of spelter an alloy of silver, copper, and zinc is employed. The solder, as prepared by jewellers to meet special cases, varies a good deal in composition, but for the laboratory the usual proportions are —

For soft silver solder

Fine silver 2 partsBrass wire 1 part

Fine silver 2 parts

Brass wire 1 part

For hard silver solder

Sterling silver 3 partsBrass wire 1 part

Sterling silver 3 parts

Brass wire 1 part

The latter is, perhaps, generally the more convenient.

Silver solders may, of course, be purchased at watchmakers' supply shops, and as thus obtained, are generally in thin sheet. This is snipped fine with a pair of shears preparatory to use.

As odds and ends of silver (from old anodes and silver residues) generally accumulate in the laboratory, it is often more convenient to make the solder one's self. In this case it must be remembered in making hard solder by the second receipt that standard silver contains about one-twelfth of its weight of copper — exactly 18 parts copper to 220 silver.

The silver is first melted in a plumbago crucible in a small furnace together with a little borax; if any copper is required this is then added, and finally the brass is introduced. When fusion is complete, the contents of the crucible are poured into any suitable mould.

The quickest and most convenient way of preparing the alloy for use is to convert it into filings with the assistance of a coarse file, or by milling it, if a milling machine is available.

Equal volumes of filings and powdered glass borax are made into a thin paste with water, and applied in an exactly similar manner to that described under the head of "brazing." In fact all the processes there described may be applied equally to the case under discussion, the substitution of silver for spelter being the only variation.

The silver solder is more manageable than spelter, and does not tend to run wild over the work: a property which makes it much more convenient both for delicate joints and in cases where it is desired to restrict the solder to a single point or line. Small objects are almost invariably soldered with silver solder, and are held by forceps or on charcoal in the pointed flame of an ordinary blow-pipe.

§ 101. On the Construction of Electrical Apparatus - Insulators. —

It is not intended to deal in any way with the design of special examples of electrical apparatus, but merely to describe a rather miscellaneous set of materials and processes constantly required in its construction.

It is not known whether there is such a thing as a perfect insulator, even if we presuppose ideal circumstances. Materials as they exist must be regarded merely as of high specific resistance, that is if we allow ourselves to use such a term in connection with substances, conduction through which is neither independent of electromotive force per unit length, nor of previous history.

Even the best of these substances generally get coated with a layer of moisture when exposed to the air, and this as a rule conducts fairly well. Very pure crystalline sulphur and fused quartz suffer from this defect less than any other substances with which the writer is acquainted, but even with them the surface conductivity soon grows to such an extent as totally to mask the internal conduction.

It is proposed to give a brief account of the properties of some insulating substances and their application in electrical construction, and at the same time to indicate the appliances and methods requisite for working them.

With regard to the specific resistances which will be quoted, the numbers must not be taken to mean too much, partly for the reason already given. It is also in general doubtful whether sufficient care has been taken to distinguish the body from the surface conductivity, and consequently numerical estimates are to be regarded with suspicion. The question of "sampling" also arises, for it must be remembered that a change in composition amounting to, say, 1/10000 per cent may be accompanied by a million-fold change in specific resistance.

§ 102. Sulphur. —

This element exists in several allotropic forms, which have very different electric properties. After melting at about 125° C., and annealing at 110° for several hours, the soluble crystalline modification is formed. After keeping for some days — especially if exposed to light — the crystals lose their optical properties, but remain of the same melting-point, and are perfectly soluble in carbon bisulphide. The change is accompanied by a change in colour, or rather in brightness, as the transparency changes.

The "specific resistance" of sulphur in this condition is above 1028C.G.S.E.M. units, or 1013megohms per cubic centimetre for an electric intensity of say 12,000 volts per centimetre. This is at ordinary temperatures. At 75° C. the specific resistance falls to about 1025under similar conditions as to voltage.

In all cases the conductivity appears to increase with the electric intensity, or at all events with an increase in voltage, the thickness of the layer of sulphur remaining the same.

The specific inductive capacity is 3.162 at ordinary temperatures, and increases very slightly with rise of temperature.[Footnote:March 1897. — It is now the opinion of the writer that though the specific inductive capacity of a given sample of a solid element is perfectly definite, yet it is very difficult to obtain two samples having exactly the same value for this constant, even in the case of a material so well defined as sulphur.]

The total residual charge, after ten minutes' charging with an intensity of 12,000 volts per centimetre, is not more than 4 parts in 10,000 of the original charge. In making this measurement the discharge occupied a fraction of a second. The electric strength for a homogeneous plate of crystalline sulphur is not less than 33,000 volts per centimetre, and probably a good deal more. If the sulphur is contaminated with up to 3 per cent of the amorphous variety, as is the case if it is cooled fairly quickly from a temperature of 170° C. or over, the specific resistance falls to from 10^25 to 10^26 at ordinary temperatures; and the specific inductive capacity increases up to 3.75, according to the amount of insoluble sulphur present.

The residual charge under circumstances similar to those described above, but with an intensity of about 4000 volts per centimetre is, say, 2 per cent of the initial charge. So far as the writer is aware sulphur is the only solid non-conductor which can be easily obtained in a condition of approximate purity and in samples sufficiently exactly comparable with one another; it is the only one, therefore, that repays any detail of description.

Very pure sulphur can be bought by the ton if necessary from the United Alkali Company of Newcastle-on-Tyne. It is recovered from sulphur waste by the Chance process, which consists in converting the sulphur into hydrogen sulphide, and burning the latter with insufficient air for complete combustion. The sulphur is thrown out of combination, and forms a crystalline mass on the walls and floor of the chamber.

The sulphur which comes into the market consists of this mass broken up into convenient fragments. In order to purify it sufficiently for use as an insulator, the sulphur may be melted at a temperature of 120° to 140° C., and filtered through a plug of glass wool in a zinc funnel; as thus prepared it is an excellent insulator. To obtain the results mentioned in the table it is, however, necessary to conduct a further purification (chiefly from water) by distillation in a glass retort.

The sulphur thus obtained may be cast of any desired form in zinc moulds, the castings and moulds being immediately removed to an annealing oven at a temperature of from 100° to 110° C., where they are left for several hours. If the sulphur is kept melted for some time at 125° C. the annealing is not so important.

The castings may be removed from the mould by slightly heating the latter, but many breakages result. Insulators made on this plan are much less affected by the condensation of moisture from the air than anything except fused quartz. They are, however, very weak mechanically, and apt to crack by exposure to such changes of temperature as go on from day to day. It is clear, however, that in spite of this their magnificent electrical properties fit them for many important uses.

If the sulphur be cooled rapidly from 170° C. or over, a mixture of the crystalline and amorphous varieties of sulphur is obtained. This mixture is very much stronger and tougher than the purely crystalline substance, and may be worked with ordinary hardwood tools into fairly permanent plates, rods, etc. Sheets of pure thick filter paper may also be dipped into sulphur at 170° C., at which temperature air and moisture are mostly expelled, and such sheets show a very considerable insulating power. The sulphur does not penetrate the paper, which therefore merely forms a nucleus.

Cakes of the crystalline or mixed varieties may be made by grinding up some purified sulphur, moistening it with redistilled carbon bisulphide, or toluene, or even benzene (C6H6), and pressing it in a suitable mould under the hydraulic press. The plates thus formed are porous, but are splendid insulators, especially if made from the crystalline variety of sulphur, and they appear to keep their shape very well, and do not crack with ordinary temperature changes.

The metals which resist the action of sulphur best are gold and aluminium; while platinum and zinc are practically unacted upon at temperatures below a red heat — in the former case, — and below the boiling-point of sulphur in the latter.

A very convenient test of the purity of sulphur is the colour assumed by it when suddenly cooled from the temperature at which it is viscous. Quite pure sulphur remains of a pale lemon yellow under this treatment, but the slightest trace of impurity, such as arises from dust containing organic matter, stains the sulphur, and renders it darker in colour.

§ 103.Fused Quartz. —

This is on the whole the most reliable and most perfect insulator for general purposes. No exact numerical data have been obtained, but the resistivity must certainly be of the same order as that of pure sulphur at its best. The influence of the moisture of the air also reaches its minimum in the case of quartz, as was originally observed by Boys.

As yet, however, the material can only be obtained in the form of rods or threads. For most purposes rods of about one-eighth of an inch in diameter are the most convenient. These rods may be used as insulating supports, and succeed perfectly even if they interpose less than an inch of their length to electrical conduction. The sketch (Figs. 81 and 81A) shows (to a scale of about one-quarter full size) a complete outfit for elementary electrostatic experiments, such as has been in use in the writer's laboratory for five years. With these appliances all the fundamental experiments may be performed, and the apparatus is always ready at a moment's notice.

Fig.images/Image124.gif81.

Though quartz does not condense moisture or gas to form a conducting layer of anything like the same conductivity as in the case of glass or ebonite, still it is well to heat it if the best results are to be obtained. For this purpose a small pointed blow-pipe flame may be used, and the rods may be got red-hot without the slightest danger of breaking them. They then remain perfectly good and satisfactory for several hours at least, even when exposed to damp and dusty air.

The rods are conveniently held in position by small brass ferrules, into which they are fastened by a little plaster of Paris. Sealing-wax must be avoided, on account of the inconvenience it causes when the heating of the rods is being carried out.

One useful application of fused quartz is to the insulation of galvanometer coils (Fig. 82), another to the manufacture of highly insulating keys (Fig. 83); while as an insulating suspension it has all the virtues. If it is desired to render the threads conducting they may be lightly silvered, and will be found to conduct well enough for electrometer work before the silver coating is thick enough to sensibly impair their elastic properties.

Fig.images/Image125.gif81A.

Fig. 82 is a full-size working drawing of a particular form of mounting for galvanometer coils. The objects sought to be attained are

(1) high insulation of the coils,

(2) easy adjustment of the coils to the suspended system.

The first object is attained as follows. The ebonite ring A is bored with four radial holes, through which are slipped from the inside the fused quartz bolt-headed pins B. The coil already soaked in hard paraffin is placed concentrically in the ring A by means of a special temporary centering stand. The space between the coil and the ring is filled up with hard paraffin, and this holds the quartz pins in position. The system of ebonite ring, coil, and pins is then fastened into the gun-metal coil carrier, which is cut away entirely, except near the edges, where it carries the pin brackets C. These brackets can swivel about the lower fastening at E before the latter is tightened up.

The coil is now adjusted in the adjusting stand to be concentric with the axis of symmetry of the coil carrier, and the supporting pins are slipped into slot holes cut in the brackets, the brackets being swivelled as much as necessary to allow of this. When the pins are all inserted the brackets are screwed up by the screws at E. The pins are then cemented firmly to the brackets by a little plaster of Paris. The coil carrier can now be adjusted to the galvanometer frame by means of screws at D, which pass through wide holes in the carrier and bold the latter in position by their heads. In the sectional plan the parts of the galvanometer frame are shown shaded. The front of the frame at F F is of glass, and the back of the frame is also made of glass, though this is not shown in the section.

A represents an ebonite ring into which the wire coil is cemented by means of paraffin. B B B B are quartz pins, with heads inside the ebonite ring. C C C are slotted brackets adjustable to the pins and capable of rotation by releasing the screws E E. D D are the screws holding the coil carriage to the galvanometer framework. These screws pass through large holes in the carriage so as to allow of some adjustment.

Fig.images/Image126.gif82.

Fig.images/Image127.gif83.

§ 104.Glass.—

When glass is properly chosen and perfectly dry it has insulating properties possibly equal to those possessed by quartz or crystalline sulphur. For many purposes, however, its usefulness is seriously reduced by the persistence with which it exhibits the phenomena of residual charge, and the difficulty that is experienced in keeping it dry.

The insulating power of white flint glass is much in excess of that of soft soda glass, which is a poor insulator, and of ordinary green bottle glass. The jars of Lord Kelvin's electrometers, which insulate very well, are made of white flint glass manufactured in Glasgow, but it is found that occasionally a particular jar has to be rejected on account of its refusing to insulate, and this, if I understand aright, even when it exhibits no visible defects.

A large number of varieties of glass were tested by Dr. Hopkinson at Messrs. Chance Bros. Works, in 1875 and 1876 (Phil. Trans., 1877), and in 1887 (Proc. Roy. Soc. xli. 453), chiefly with a view to the elucidation of the laws regulating the residual charge; and incidentally some extraordinarily high insulations were noted among the flint glasses. The glass which gave the smallest residual charge was an "opal" glass; and flint glasses were found to insulate 105times as well as soda lime glasses. The plates of Wimshurst machines are made of ordinary sheet window glass, but as the insulating property of this material appears to vary, it is generally necessary to clean, dry, and test a sheet before using it. With regard to hard Bohemian glass, this is stated by Koeller (Wien Bericht) to insulate ten times as well as the ordinary Thuringian soft soda glass.

On the whole the most satisfactory laboratory practice is to employ good white flint glass. The only point requiring attention is the preparation of the glass by cleaning and drying. Of course all grease or visible dirt must be removed as described in an earlier chapter (§ 13), but this is only a beginning. The glass after being treated as described and got into such a state as to its surface that clean water no longer tends to dry off unequally, must be subjected to a further scrub with bibulous paper and a clear solution of oleate of soda. The glass is then to be well rinsed with distilled water and allowed to drain on a sheet of filter paper.

A very common cause of failure lies in the contamination of the glass with grease from the operator's fingers. Before setting out to clean the glass the student will do well to wash his hands with soap and water, then with dilute ammonia and finally with distilled water.

In the case of an electrometer jar which has become conducting but is not perceptibly dirty, rubbing with a little oleate of soda and a silk ribbon, followed, of course, by copious washing, does very well. If there is any tin-foil on the jar, great care must be taken not to allow the glass surface to become contaminated by the shellac varnish or gum used to stick the tin-foil in position.

Finally, the glass should be dried by radiant heat and raised to a temperature of 100° C. at least, and kept at it for at least half an hour. Before drying it is of course advisable to allow the water to drain away as far as possible, and if the water is only the ordinary distilled water of the laboratory, the glass is preferably wiped with a clean bit of filter paper; any hairs which may be left upon the glass will brush off easily when the glass is dry.

In order to obtain satisfactory results the glass must be placed in dry air before it has appreciably cooled. This is easily done in the case of electrometer jars, and so long as the air remains perfectly dry through the action of sulphuric acid or phosphorus pentoxide, the jar will insulate. The slightest whiff of ordinarily damp air will, however, enormously reduce the insulating power of the glass, so that unvarnished glass surfaces must be kept for apparatus which is practically air-tight.

For outside or imperfectly protected uses the glass does better when varnished. It is a fact, however, that varnished glass is rarely if ever so good as unvarnished glass at its best. Too much care cannot be taken over the preparation of the varnish; French polish, or carelessly made shellac varnish, is likely to do more harm than good.

The best orange shellac must be dissolved in good cold alcohol by shaking the materials together in a bottle. The alcohol is made sufficiently pure by starting with rectified spirit and digesting it in a tin flask over quick-lime for several days, a reversed condenser being attached. A large excess of lime must be employed, and this leads to a considerable loss of alcohol, a misfortune which must be put up with.

After, say, thirty hours' digestion, the alcohol may be distilled off and employed to act on the shellac. In making varnish, time and trouble are saved by making a good deal at one operation — a Winchester full is a reasonable quantity. The bottle may be filled three-quarters full of the shellac flakes and then filled up with alcohol; this gives a solution of a convenient strength.

The solution, however, is by no means perfect, for the shellac contains insoluble matter, and this must be got rid off.`' One way of doing this is to filter the solution through the thick filtering paper made by Schleicher and Schuell for the purpose, but the filtering is a slow process, and hence requires to be conducted by a filter paper held in a clip (not a funnel) under a bell jar to avoid evaporation.

Another and generally more convenient way in the laboratory is to allow the muddy varnish to settle — a process requiring at least a month — and to decant the clear solution off into another bottle, where it is kept for use. The muddy residue works up with the next lot of shellac and alcohol, which may be added at once for future use.

The glass to be varnished is warmed to a temperature of, say, 50° C., and the varnish put on with a lacquering brush; a thin uniform coat is required. The glass is left to dry long enough for the shellac to get nearly hard and to allow most of the alcohol to evaporate. It is then heated before a fire, or even over a Bunsen, till the shellac softens and begins to yield its fragrant characteristic smell.

If the coating is too heavy, or if the heating is commenced before the shellac is sufficiently dry, the latter will draw up into "tears," which are unsightly and difficult to dry properly. On no account must the shellac be allowed to get overheated. If the varnish is not quite hard when cold it may be assumed to be doing more harm than good.

In varnishing glass tubes for insulating purposes it must be remembered that the inside of the tube is seldom closed perfectly as against the external air, and consequently it also requires to be varnished. This is best done by pouring in a little varnish considerably more dilute than that described, and allowing it to drain away as far as possible, after seeing that it has flooded every part of the tube.

During this part of the process the upper end of the tube must be closed, or evaporation will go on so fast that moisture will be deposited from the air upon the varnished surface. Afterwards the tube may be gently warmed and a current of air allowed to pass, so as to prevent alcohol distilling from one part of the tube to another. The tube is finally heated to the softening point of shellac, and if possible closed as far as is practicable at once.

§ 105. Ebonite or Hard Rubber. —

This exceedingly useful substance can be bought of a perfectly useless quality. Much of the ebonite formerly used to cover induction coils for instance, deteriorates so rapidly when exposed to the air that it requires to have its surface renewed every few weeks.

The very best quality of ebonite obtainable should be solely employed in constructing electric works. It is possible to purchase good ebonite from the Silvertown Rubber Company (and probably from other firms), but the price is necessarily high, about four shillings per pound or over.

At ordinary temperatures ebonite is hard and brittle and breaks with a well-marked conchoidal fracture. At the temperature of boiling water the ebonite becomes somewhat softened, so that it is readily bent into any desired shape; on cooling it resumes its original hardness.

This property of softening at the temperature of boiling water is a very valuable one. The ebonite to be bent or flattened is merely boiled for half an hour or so in water, taken out, brought to the required shape as quickly as possible, and left to cool clamped in position.

The sheet ebonite as it comes from the makers is generally far from flat. It is often necessary to flatten a sheet of ebonite, and of course this is the more easily accomplished the smaller the sheet. Consequently a bit of ebonite of about the required size is first cut from the stock sheet by a hack-saw such as is generally used for metals. This piece is then boiled and pressed between two planed iron plates previously warmed to near 100° C.

With pieces of ebonite such as are used for the tops of resistance boxes, measuring, say, 20 X 8 X 11 inches, very little trouble is experienced. The sheets when cold are found to retain the flatness which has been forced upon them perfectly well. It is otherwise with large thin sheets such as are used for Holtz machines. I have succeeded fairly, but only fairly, by pressing them in a "gluing press," consisting of heavy planed iron slabs previously heated to 100° C.

I do not know exactly how best to flatten very thin and large sheets. It is easy to make large tubes out of sheet ebonite by taking advantage of the softening which ebonite undergoes in boiling water. A wooden mandrel is prepared of the proper size and shape. The ebonite is softened and bent round it; this may require two or three operations, for the ebonite gets stiff very quickly after it is taken out of the water. Finally the tube is bound round the mandrel with sufficient force to bring it to the proper shape and boiled in water, mandrel and all. The bath and its contents are allowed to cool together, so that the ebonite cools uniformly.

Tubes made in this way are of course subject to the drawback of having an unwelded seam, but they do well enough to wind wire upon if very great accuracy of form is not required. If very accurate spools are needed the mandrel is better made of iron or slate and the spool is turned up afterwards. The seam may be strapped inside or at the ends by bits of ebonite acting as bridges, and the seam itself may be caulked with melted paraffin or anthracene.

Working Ebonite.—

Ebonite is best worked as if it were brass, with ordinary brass-turning or planing tools. These tools should be as hard as possible, for the edges are apt to suffer severely, and blunt tools leave a very undesirable woolly surface on the ebonite. In turning or shaping ebonite sheets it is as well to begin by taking the skin off one side first, and then reversing the sheet, finishing the second side, and then returning to the first. This is on account of the fact that ebonite sometimes springs a little out of shape when the skin is removed.

Turned work in ebonite, if well done, requires no sand-papering, but may be sufficiently polished by a handful of its own shavings and a little vaseline. The advantage of using a polished ebonite surface is that such a surface deteriorates more slowly under the influence of light and air than a surface left rough from the tool. If very highly polished surfaces are required, the ebonite after tooling is worked with fine pumice dust and water, applied on felt, or where possible by means of a felt buff on the lathe, and finally polished with rouge and water, applied on felt or cloth.

Ebonite works particularly well under a spiral milling cutter, and sufficiently well under an ordinary rounded planing tool, with cutting angle the same as for brass, and hardened to the lightest straw colour.

It is not possible, on the other hand, to use the carpenter's plane with success, for the angle of the tool is too acute and causes the ebonite to chip.

In boring ebonite the drill should be withdrawn from the hole pretty often and well lubricated, for if the borings jam, as they are apt to do, the heat developed is very great and the temper of the drill gets spoiled. Ebonite will spoil a drill by heating as quickly as anything known; on the other hand, it may be drilled very fast if proper precaution is taken.

It is advisable to expose ebonite to the light as little as possible, especially if the surface is unpolished, for under the combined action of light and air the sulphur at the surface of the ebonite rapidly oxidises, and the ebonite becomes covered with a thin but highly conducting layer of sulphurous or sulphuric acid or their compounds. When this happens the ebonite may be improved by scrubbing with hot water, or washing freely with alcohol rubbed on with cotton waste in the case of apparatus that cannot be dismounted.

A complete cure, however, can only be effected by scraping off the outer layer of ebonite so as to expose a fresh surface. For this purpose a bit of sheet glass broken so as to leave a curved edge is very useful, and the ebonite is then scraped like a cricket bat. In designing apparatus for laboratory use it is as well to bear in mind that sooner or later the ebonite parts will require to be taken down and scraped up. Rods or tubes are, of course, most quickly treated on the lathe with rough glass cloth, and may be finished with fine sandpaper, then pumice dust and water, applied on felt. After cleaning the pumice off by means of water and a rag, the final touch may be given by means of vaseline, applied on cloth or on ebonite shavings.

§ 106.Mica. —

A great variety of minerals go under this name. Speaking generally, the Russian micas coming into commerce are potash micas, and mica purchased in England may be taken to be potash mica, especially if it is in large sheets.

At ordinary temperatures "mica" of the kind found in commerce is an excellent insulator. Schultze (Wied. Ann. vol. xxxvi. p. 655) comes to the conclusion that both at high and at low temperatures mica (of all kinds?) is a better insulator than white "mirror glass," the composition of which is not stated. The experiments of the author referred to were apparently left unfinished, and altogether too much stress must not be laid on the results obtained, one of which was that mica conducts electrolytically to some extent at high temperatures.

Bouty (Journal de Physique, 1890 [9], 288) and J. Curie (Thèse de Doctorat, Paris, 1888) agree in making the final conductivity of the mica used in Carpentier's condensers exceedingly small — at all events at ordinary temperatures. Bearing in mind that for such substances the term specific resistance has no very definite meaning, M. Bouty considers it is not less than 3.19 x 1028E.M. units at ordinary temperatures. M. Bouty gives a note or illustration of what such numbers mean — a precaution not superfluous in cases where magnitudes are denoted logarithmically. Referring to the value quoted, viz. 3.19 x 1028, M. Bouty says, "Ce serait la resistance d'une colonne de mercure de 1mmqde section et de longueur telle que la lumière se propageant dans le vide, mettrait plus de 3000 ans A se transmettre d'une extrémité à I'autre de la colonne."

M. Bouty returns to the study of mica (muscovite) in theJournal de Physiquefor 1892, p. 5, and there deals with the specific inductive capacity, which for a very small period of charge he finds has the value 8 — an enormous value for such a good insulator, and one that it would be desirable to verify by some totally distinct method. This remark is enforced by the fact that M. Klemencic finds the number 6 for the same constant. The temperature coefficient of this constant was too small for M. Bouty to determine. The electric intensity was of the order of 100 volts per centimetre, and the experiments seem to indicate that the specific inductive capacity would be only slightly less if referred to a period of charge indefinitely short.

I have found that the residual charge in a mica condenser, made according to Carpentier's method (to be described below), is about 1 per cent of the original charge under the following circumstances.

Voltage 300 volts on a plate 0.2 mm. thick, duration of charge ten minutes, temperature about 20° C. To get this result the mica must be most carefully dried. This and other facts indicate that the so-called residual charge on ordinary condensers is, to a very large extent, due to the creeping of the charge from the armatures over the more or less conducting varnished surfaces of the mica, and its slow return on discharge.

This source of residual charge was carefully guarded against by Rowland and Nichols (Phil. Mag. 1881) in their work on quartz, and is referred to by M. Bouty, who adduces some experiments to show that his own results are not vitiated by it. On the other hand, M. Bouty shows that a small rise in temperature enormously affects the state of a mica surface, and that the surface gets changed in such a way as to become very fairly conducting at 300° C. Also anybody can easily try for himself whether exposing a mica condenser plate which has been examined in presence of phosphorus pentoxide to ordinary air for five minutes will not enormously increase the residual charge, as has always been the case in the writer's experience, and if so, it is open to him to suggest some cause other than surface creeping as an explanation.

M. Bouty, using less perfectly dried mica, did not get so good a result as to smallness of residual charge as the one above quoted.

The chief use of mica for laboratory purposes depends on the ease with which it can be split, and also upon the fact that it may be considerably crumpled and bent without breaking. It therefore makes an excellent dielectric in so far as convenience of construction is concerned in the preparation of condensers, and lends itself freely to the construction of insulating washers or separators of any kind. Its success as a fair insulator at moderate temperatures has led to its use in resistance thermometers, where it appears to have given satisfaction up to, at all events, 400° C.

It is worth a note that according to Werner Siemens, who had immense experience (Wied. Ann. vol. clix.), soapstone is the only reliable insulator at a red heat, but, no doubt, a good deal depends on the particular specimen investigated.

§ 107. Use of Mica in Condensers. —

If good results are desired it is essential to select the mica very carefully. Pieces appreciably stained, — particularly if the stain is not uniformly distributed, — cracked pieces, and pieces tending to flake off in patches should be rejected. The best samples of mica that have come under the writer's observation are those sheets sold for the purpose of giving to silver photographic prints that hideous glazed surface which some years ago was so popular.

Sheets of mica about 0.1 to 0.2 mm. thick form good serviceable condenser plates, and will certainly stand a pressure of 300 volts, and most likely a good deal more. The general practice in England seems to have been to build up condensers of alternate sheets of varnished or paraffined-mica and tin-foil.

This practice is open to several objections. In the first place, the capacity of a condenser made in this way varies with the pressure binding the plates together. In the second place, the amount of mica and tin-foil required is often excessive in consequence of the imperfect contact of these substances. Again, the inevitable air film between the mica and tin-foil renders condensers so made unsuitable for use with alternating currents, owing to the heating set up through air discharges, and which is generally, though often (if not always) wrongly, attributed to dielectric hysteresis.

These imperfections are to a great extent got over by M. Carpentier's method of construction, which is, however, rather more costly both in material and labour. On the other hand, wonderful capacities are obtained with quite small amounts of mica. M. Bouty mentions a condenser of one microfarad capacity weighing 1500 grms. and contained in a square box measuring 12 centimetres on the side, and about 3 centimetres thick.


Back to IndexNext