One of the first discoveries of fluorescence was made by Sir John Herschel—certainly the first who observed the property in a liquid. He found that the blue light which emanates from all parts of a solution of the sulphate of quinine, especially from its surface, is fluorescent, and that the light transmitted through the liquid, though sensibly like the incident white light, is no longer capable of producing fluorescence; it has been deprived of its chemical rays by absorption.
The chemical rays having been rendered visible by an increase in the length of the periods of vibration, unsuccessful attempts have been made to change the periods of the rays of heat beyond the red end of the spectrum so as to bring them within the limits of vision. The idea of effecting such a change by employing a substance opaque to light, but pervious to heat, is due to Dr. Akin; but it has since been accomplished by Dr. Tyndall, who, in the course of his experiments on radiant heat, found that a solution of iodine in the bisulphide of carbon excludes the most dazzling light, but transmits the rays of heat freely. He employed a mirror, lined in front with silver, to concentrate the rays emitted from the charcoal points of the electric lamp, and interposed a vessel containing the solution in question, so that the rays of heat alone were brought to a focus almost undiminished. When the solar spectrum was examined, the point of maximum heat was found to be as far beyond the extreme red on one side as the green rays on the other. In the spectrum of the electrical light the point of maximum heat was alsofound to lie beyond the extreme red, but the augmentation of intensity was so sudden and enormous as far to exceed the maximum heat of the sun previously determined by Professor Müller. Aqueous vapour powerfully absorbs radiant heat; so a solar spectrum beyond the earth’s atmosphere might probably exhibit as great intensity as the electrical light. With the apparatus described oxidizable substances burst into the flame of common combustion when put into the focus; but when the chemical action of the oxygen of the atmosphere was excluded by igniting substances in vacuo by the invisible rays of heat, their periods of vibration were so changed as to bring them within the limits of vision. When the electric light is very powerful, a plate of platinized platinum in vacuo is raised to white heat at the focus of invisible rays; and when the incandescent platinum is looked at through a prism, its light yields a complete and brilliant spectrum. ‘In all these cases we have a perfectly invisible image of the charcoal points formed by the mirror; and no experiment illustrates the change of heat into light’ more strongly than the following:—When the plate of platinum or one of charcoal is placed in the focus, the invisible image raises it to incandescence, and thus prints itself visibly on the plate. On drawing the coal points of the lamp apart, or causing them to approach each other, the thermograph follows their motion. By cutting the plate of carbon along the boundary of the thermograph, a second pair of coal points may be formed of the same shape as the original ones, but turned upside down; and thus by the rays of the one pair of coal points which are incompetent to excite vision, we may cause a second pair to emit all the rays of the spectrum. Fluorescence and calorescence act in contrary directions. Fluorescence causes the molecules of a fluorescent substance to oscillate in slower periods than the incidentlight, while calorescence causes the molecules of a substance to oscillate in longer periods than the incident light. The refrangibility of the rays is lowered in the first case, and raised in the second.
Substances differ as much in their transmission of the chemical rays as those of light and heat. Glass is impervious to the most highly refrangible chemical rays, while rock crystal transmits them with the greatest facility; and on that account the absolute length of the spectrum was not known till the light was refracted by prisms of rock crystal. Besides, the number, position, and intensity of the chemical rays vary with the source of light. Some flames have scarcely any chemical rays; that of the oxy-hydrogen blowpipe, though intensely hot, has very few, and even the solar light is inferior in that respect to electricity. The electric spark from the prime conductor of a common electrifying machine, or the discharge of a Leyden jar, emits rays of very high refrangibility, far surpassing those which emanate from the sun. For, when the electric light from a highly charged Leyden jar was refracted by two quartz prisms and thrown by Professor Stokes on a plate of uranium glass, the chemical spectrum was highly luminous, and six or eight times as long as the visible spectrum. An equally extensive spectrum was obtained from the voltaic arc taken between copper points; it consisted entirely of bright lines. The long spectrum also appeared on the uranium glass when the spark refracted by quartz prisms was obtained from the secondary terminals of an induction coil in connection with the coatings of a Leyden jar. It consisted of bright lines, but was not so luminous as that from a powerful voltaic battery. On changing the metals of the points between which the sparks passed, the bright lines were changed, which showed that they were due to the particular metals.
The heat of the electric spark volatilizes the metals which form the points of the conducting wires; and all volatilized metals give characteristic spectra, both visible and chemical. The visible part differs from that of the solar spectrum in being crossed by bright lines instead of dark ones; but the number, intensity, and position of both the visible and invisible lines change with each metal. The changes in the invisible part under consideration may be readily observed by throwing the spectra either on a fluorescent or collodion plate. For example: in the spectrum from the spark between thallium points thrown on the latter, Dr. Miller found that there were two strong groups of lines in the least refrangible part of the spectrum; at a little distance from these there were three groups, the two first less intense than the third; several rows of feeble dots followed, and the chemical spectrum terminated rather abruptly with four nearly equidistant groups. This spectrum bears a resemblance to those of zinc and cadmium, less strongly to that of lead. Dr. Miller found that the photographic spectra of iron, cobalt, and nickel, also have a strong analogy, but that the metals arsenic, antimony, and tin showed as great a difference in the invisible as in the visible part of their spectrum.
The fluorescent spectra of seventeen metals were examined by Professor Stokes of Cambridge; several of them showed luminous lines of extraordinary strength, especially zinc, cadmium, magnesium, aluminium, and lead, which in a spectrum not generally remarkable contains one line surpassing perhaps all other metals in brilliancy. Some other metals exhibit in certain parts of their spectra lines that are both bright and numerous; on the whole some parts of the spectra are strong and tolerably continuous, while in others they are weak. This grouping of the lines is most remarkable in copper, nickel, cobalt, iron, and tin. Of all the metals examined,magnesium gave the shortest spectrum, ending in a very bright line, beyond which however excessively faint light extended to a distance equal to that of the long spectra. Aluminium, on the other hand exceeded all the other metals in richness of the rays of the very highest refrangibility. All the strong lines mentioned lie in that part of the spectra.
In the course of these experiments Professor Stokes observed that even quartz of a certain thickness is not transparent to invisible lines of the highest refrangibility, for the highest aluminium line, which is double, could only be seen by rays passing through the edge of the prism. This leads to another branch of the subject, namely, the absorption of the invisible rays by solids, liquids and gases. Mr. Wm. Allen Miller has shown from his own experiments that bodies pervious to the chemical rays in the solid form, are so also in the liquid and gaseous form; that colourless transparent solids which absorb the photographic rays, absorb them more or less also in their liquid and gaseous states. He has moreover found that the following substances have the same maximum transparency:—rock crystal, ice, and fluor spar among solids, water among liquids, the three elementary gases and carbonic acid among gaseous substances. The most opaque to the invisible rays are, nitrate of potash, bisulphide of carbon, and sulphuretted hydrogen. It appears that a thin plate of mica is intensely opaque to all the invisible rays except a small portion of them of the lowest refrangibility.
The absorptive property however is partial: an absorptive substance either cuts off a portion of the light of a fluorescent spectrum or stripes it with dark lines: each substance absorbs rays peculiar to itself. Those employed by Professor Stokes were the alkaloids and glucosides, and he assumed the spectrum of tin for their examination because it has a long interval of continuity.
The fluorescent property of yellow uranite was discovered by Professor Stokes some years ago, and now he has added another fluorescent mineral in adularia or moonstone; from its natural faces and planes of cleavage alike a beautiful blue fluorescence emanated under the induction spark. As the same was observed in colourless felspars generally, Professor Stokes concluded that fluorescence is an inherent property in the silicate of alumina and potash constituting the crystal of moonstone. The blue fluorescence extended to a very sensible though small depth within the substance.
A particular variety of fluor spar found at Alston Moor in Cumberland, which is very pale by transmitted light, shows a strong blue fluorescence, and is eminently phosphorescent on exposure to the electric spark. It is the same kind of crystal in which Sir David Brewster originally discovered the property of fluorescence. On presenting such a crystal to the spark passing between aluminium terminals, besides the usual blue fluorescence, there was another of a reddish colour extending not near so far into the crystal, produced by the rays belonging to the strong lines of aluminium of extreme refrangibility.
The cube of fluor spar which showed these effects was externally colourless to the depth of1⁄20of an inch; then came one or two strata parallel to the faces of the cube showing the ruddy fluorescence, while the blue fluorescence extended to a much greater depth and had a stratified appearance. This crystal was eminently phosphorescent, its blue phosphorescence being arranged in strata parallel to the face of the cube like the blue fluorescence, but it was not perceptible beyond a very moderate distance below the surface at which the exciting cause entered, that cause being the photographic rays of extremely high refrangibility of the electric spark—taken, as in all these experiments, betweenthe secondary terminals of an induction coil in connection with the coatings of a Leyden jar, and refracted by quartz prisms.
Mr. Stokes has employed fluorescence as a means of tracing substances in impure chemical solutions. When a pure fluorescent substance is examined in a pure spectrum it is found that on passing from the extreme red to the violet and beyond, the fluorescence commences at a certain point of the spectrum, varying from one substance to another, and continues from thence onwards more or less strongly in one part or another according to the particular substance. The colour of the fluorescent light is found to be nearly constant throughout the spectrum. ‘Hence when in a solution examined in a pure spectrum we notice the fluorescence taking as it were a fresh startwith a different colour, we may be pretty sure that we have to deal with a mixture of two fluorescent substances.’
Experience as well as theory shows that rapid absorption is accompanied by copious fluorescence. But experience has hitherto also shown what could not have been predicted, and may not be universally true, that conversely absorption is accompanied in the case of a fluorescent substance by fluorescence.
The phosphorescent light of insects, fish, and plants is owing to chemical action, which produces many luminous phenomena; but a great number of inorganic and organic substances shine in the dark with a phosphorescence which is nearly allied to fluorescence. It is produced by exposure to the sun, by heat, electricity, insulation, cleavage, friction, and motion. For if a bottle containing nitrate of uranium be shaken, it shines spontaneously with a vivid light; even the hand shows phosphorescence in the dark after being exposed to the sun.
The essential difference between fluorescence andphosphorescence consists in the time during which the light lasts. Fluorescence ceases almost immediately after the exciting cause is withdrawn, while a phosphorescent body whether excited by heat, solar light, or electricity, lasts a much longer time; besides, the fluorescent rays are generally of lower refrangibility. Light and heat are temporarily absorbed and given out again by every body on the surface of the earth, more or less, that are exposed to the sun’s light. The nights would be much darker even when illuminated by the stars were it not for earth light, for the molecules restore to the ether, in the form of phosphorescence, the undulations they have received from the sun’s light during the day. The snow and ice blink of the sailors is a striking instance; generally, however, it is of much shorter duration. The phosphorescent property is nearly allied to electricity, for bodies that are bad conductors are apt to become phosphorescent, while good conductors of electricity rarely if ever show it. Ozone must be phosphorescent, for oxygen exhibits persistent light when electric discharges are sent through it, and Mr. Faraday saw a flash of lightning leave a luminous trace on a cloud which lasted for a short time.
In the solar spectrum the chemical or actinic rays produce phosphorescence, which the red rays have the power to extinguish. M. Nièpce de St-Victor found that solar light impresses its vibrations so strongly on substances exposed for a short time to its influence that they not only shine in the dark, but that the phosphorescent light they radiate has chemical energy enough to decompose substances in unstable equilibrium, and leave daguerreotype impressions of great delicacy and beauty.
The polarization of light and heat affords a remarkable instance of the elective power of matter. Light and heat are said to be polarized, which, having beenonce reflected, are rendered incapable of being again reflected at certain angles. For example, a ray incident on a plate of flint glass at an angle of 57° is rendered totally incapable of being reflected at that same angle from another plate of flint glass in a plane at right angles to the first. At the incidence of 57° the whole of the ray is polarized: it is the maximum of polarization for flint glass, but there is a partial polarization for every other angle; the portion of the ray polarized increases gradually up to the maximum, as the incidence approaches to 57°. All reflecting surfaces are capable of polarizing light and heat, but the angle of incidence at which the ray is totally polarized is different in each substance. Thus, the angle of incidence for the maximum polarization of crown glass is 56° 55ʹ, and no ray can be totally polarized by reflection from the surface of water unless the angle of incidence is 53° 11ʹ. As each substance has its own maximum polarizing angle, the effect is evidently owing to the action of the molecules of matter, and not to any peculiarity in the light or heat.[8]
Light and heat are also polarized by refraction, for certain substances, especially irregularly crystallised minerals like Iceland spar, possess the property of dividing a ray of light or heat passing through them in certain directions into two pencils, namely, the ordinary and extraordinary rays. The first of these is refracted according to the same law as in glass or water, never quitting the plane perpendicular to the refracting surface, while the second does quit that plane, being refracted according to a different and more complicated law. Hence, if a crystal of Iceland spar be held to the eye, two images of the same object will generally be seen of equal brightness. But when they are viewedthrough a plate of tourmaline it will be found that while the spar remains in the same position the images vary in relative brightness as the tourmaline is made to revolve in the same plane; one increases in intensity till it arrives at a maximum, at the same time that the other diminishes till it vanishes, and so on alternately at each quarter revolution of the tourmaline, proving both rays to be polarized. For in one position the tourmaline transmits the ordinary ray and reflects the extraordinary, and after revolving 90°, the extraordinary ray is transmitted and the ordinary ray is reflected.
The undulations of the ethereal medium which produce the sensation of common light, are performed in every plane at right angles to the direction in which the ray is moving, but the case is very different after the ray has been polarized by passing through a substance like Iceland spar, for the light then proceeds in two parallel pencils whose undulations are still indeed transverse to the direction of the rays, but they are accomplished in planes at right angles to one another. The ray of common light is like a round rod, whereas the parallel polarized rays resemble two long flat rulers, one of which lies on its broad surface, and the other on its edge. By a simple mechanical law, each vibratory motion of the common light is resolved into vibratory motions at right angles to one another.
The polarization of light and heat by refraction is not owing to the chemical composition, but to a want of homogeneity in the molecular structure of the substances through which they pass; for regular crystals and substances which are throughout of the same temperature, density, and structure, are incapable of double refraction. The effect of molecular structure is strikingly exhibited by the circular polarisation in the dimorphic crystals of quartz. In one form the plane of polarization revolves from right to left, and in theother that plane revolves from left to right, although the crystals themselves differ apparently by a very slight and often almost imperceptible variety of forms.
Thus polarization forms the most admirable connection between light, heat, and crystalline structure; showing peculiar arrangements of the molecules in regions otherwise unapproachable, and too refined for our perceptions. Besides, the gorgeously coloured images displayed by depolarization are splendid examples of the power of matter in decomposing light.
The perfect correspondence of the properties of the symmetrical, elastic, and optical axes of crystals with light and heat is another instance of the connection between the latter and crystalline form.
The axis of symmetry is that direction or imaginary line within a crystal, round which all the parts or particles are symmetrically arranged. A medium is said to be elastic which returns to its original form with a resilient force after being relieved from compression, and the axis of elasticity of a crystal is that direction in which it is most elastic. The optic axis is that line or direction through which light passes in one beam according to the law of ordinary refraction. Crystals may have one, two or more optical axes according to their form. Doubly refracting crystals such as Iceland spar have only one principal optic axis in which the whole beam passes according to the ordinary law; in every other direction the beam of light is divided into two polarized rays, one of which called the ordinary ray passes according to the ordinary law, while the other, known as the extraordinary ray, traverses the crystal in a different direction, with more rapidity and according to a different and more complicated law. The velocity of this extraordinary ray is a maximum when at right angles to the principal optical axis, and a minimum when parallel to it.
In perfectly regular crystals like the cube or die, the octohedron, &c., there are three axes of symmetry and of equal elasticity at right angles to one another. In these regular crystals all the axes are optical, so that they have no double refraction.
Right square prisms have two equal rectangular axes of symmetry, two axes of equal elasticity, and one optical axis.
All crystals of the pyramidal and rhomboidal systems have one axis of symmetry, two axes of elasticity, one optical axis; and form coloured circular rings traversed by a black cross when viewed by depolarized light.
Lastly oblique prismatic crystals which have three unequal axes of symmetry have three axes of unequal elasticity, two optical axes; and by depolarization give coloured lamnescata, that is coloured figures having the form of the figure 8 which are traversed by a black cross in two opposite quadrants, and when the crystal is made to revolve, the same figure, but in the complementary colours and traversed by a white cross, appears in the other two quadrants.
The right and left-handed circular polarization of quartz, according as certain facettes of the crystal are turned to the right or left, and the property of double refraction being exclusively possessed by crystals of the rhomboidal form, are striking instances of the connection between the geometrical arrangement of the molecules of matter and the optical and thermal forces, for the polarization of heat and all its consequences are in every respect analogous to those of light, and similar phenomena would be seen were heat visible.
Heat changes the position of the optical axes of crystals. When applied to a crystal of sulphate of lime, the two optical axes gradually approach to each other and at last coincide; if the heat be continued and increased, the axes open again, but in a direction atright angles to their former position. Thus the force of heat throws every molecule in the body into correlative motion. The angles of all crystals that are not of the octohedral group are changed by heat and vary with the intensity; the difference between the length of the greatest and least optic axes in such crystals diminishes as the temperature is raised, increases when it is lowered, and is constant at a given heat. In Iceland spar heat indirectly affects the doubly refracting power, for the expansion of the crystal in the direction of its axis is accompanied by contraction at right angles to it, which brings the crystal nearer to the cubical form, and consequently diminishes its doubly refracting power.
According to the researches of M. Angström, in crystals with different axes of elasticity the velocity of the molecular vibrations is different in different directions when they are heated. In rock crystal and tourmaline the heat radiates from a surface cut parallel to the axis of the crystal; in felspar the radiating surface is at right angles to the symmetrical axis.
The optical axes of crystals are also affected by pressure. Doubly refracting crystals with one principal axis acquire two when the pressure is perpendicular to it. The new principal axis coincides with the line of pressure or is at right angles to it according as the crystal is positive or negative, that is, according as the extraordinary ray is refracted to or from the optic axis of the crystal. The colours produced by polarization are affected by compression and dilatation according as the crystal is positive or negative.
Sir David Brewster is of opinion that all the properties of double refraction and the gorgeous phenomena of polarization, whether by crystals or produced in various substances permanently or transiently by heat, cold, rapid cooling, compression, dilatation, and induration,are wholly the result of the forces by which the atoms are held together; but these phenomena may rather be said to depend upon a reciprocal action between an irregular molecular structure and the agency of light and heat: which indeed seems to be confirmed by the transit of these two forces through right and left-handed quartz, for there is no reason to believe that there is any difference in the form of the particles in these two crystalline substances.
The experiments of M. Becquerel show that electricity is a power which makes the atoms of matter aggregate in crystalline forms; for he has succeeded in forming crystals of gold, silver, cobalt, nickel, platinum, and a variety of the gems undistinguishable from those in nature, by exposing saturated solutions of these substances for a very long time to feeble voltaic electricity; and crystals of earthy matter have been obtained in the same manner. The electric and magnetic state of mineral veins in mines which contain a vast variety of crystals, metallic and non-metallic, strongly favours this view of the origin of crystalline form.
M. Regnault has proved that the ratio between the specific heat and the weight of the atoms of matter is intimately connected with the mode of their aggregation; and indeed if it be considered that the atoms have not only specific heat and weight, but specific affinity, electricity, magnetism, consequently polarity, and probably specific forms, these peculiar forces must necessarily influence the structure of crystals according as they combine with or oppose the natural or artificial forces acting upon them, or upon their dissimilar faces, and this may be the cause of the great variety of forms that matter appears under. Carbonate of lime alone assumes more than 1,200 different modifications of its primitive type, but whatever be the variety of forms which any one substance may take, they are found tobe all compatible with and derivative from a common type. The circumstances which have caused dimorphous crystals to deviate from the general law have not yet been explained.
It is very singular that when chlorate of soda is dissolved in water the solution does not possess the property of circular polarization, but when evaporated and allowed to crystallise, some of the crystals turn light to the right, and others to the left. Now if all the crystals that have the same property be picked out and dissolved in water a second time, the liquid will still have no circular polarization, but when allowed to crystallise, some of the crystals make light revolve through them to the right and others to the left as before. From this it is supposed that the atoms of liquids, which are free to move in every direction, already possess part of the characters which the change to solidity renders evident and permanent.
Although the relations between the force of magnetism and the atoms of matter do not exhibit such brilliant phenomena as light does, they are nevertheless most interesting and wonderful. Mr. Faraday discovered that all substances, whether solid, liquid, or aëriform, are either magnetic like iron, or diamagnetic like bismuth, the latter being by far the most numerous. Thus if a bar of iron be freely suspended between the poles of an extremely powerful magnet or electro-magnet, it will be attracted by both poles and will rest or sit axially, that is, with its length between the poles or in the line of magnetic force; whereas an equal and similar bar of bismuth so suspended will be repelled by both poles and will rest or sit equatorially, that is with its length perpendicular to the line of magnetic force. Magnetism and diamagnetism are both dual forces, but they are in complete antithesis to one another, which is strikingly illustrated by their action on crystalline matter.
A sphere of amorphous substance freely suspended under magnetic influence is indifferent, that is to say it has no tendency to set one way more than another; but a sphere cut out of a crystal whether magnetic or diamagnetic, is more powerfully attracted or repelled in one direction than in any other, which shows a connection between the magnetic forces and crystalline structure.
Crystals of carbonate of iron and carbonate of lime are isomorphous, that is, they have exactly the same crystalline form, but the carbonate of iron being highly magnetic is most powerfully attracted in the direction of its greatest optical axis which therefore sets axially, that is, in the line of magnetic force; while the principal optic axis of the carbonate of lime, which is diamagnetic, is most powerfully repelled and therefore sets equatorially. In both cases the antithetic forces follow the same law of decrease in intensity from the greatest optical axis to the least.
A bar of soft iron sets with its longest dimensions axially, but a bar of highly compressed iron-dust, whose shortest dimensions coincide with the line of pressure, sets equatorially, because it is most powerfully attracted in the line of greatest density. A bar of bismuth sets equatorially, but a bar of highly compressed bismuth dust, whose shortest dimensions coincide with the line of pressure, sets with its length axially, because it is most strongly repelled in the direction of its greatest density. Hence the action of magnets upon matter is most powerful in the line of maximum density, the force being attractive or repulsive according to the kind of magnetism possessed by the atoms. It follows therefore that the density is greatest in the line of the principal optical axis, and gradually decreases to the least optical axis, where it is a minimum.
The position which crystals take with regard to the magnetic force depends also upon their natural joints ofcleavages, and upon their power of transmitting electricity. The diamagnetic force is inversely as the conducting power of bodies, and the conducting power of crystals is a maximum in the planes of their principal natural joints. Hence the action of the diamagnetic power is least in the natural joints, and conversely the magnetic force is greatest. In fact, the magnetic phenomena of crystals depends upon unequal conductibility in different directions, and their set is determined by the difference between the forces of attraction and repulsion of the poles, for one pole of the magne-crystallic axis is attracted and the other repelled. It is unnecessary to give more examples to show the action of the magnetic forces upon the atomic structure of crystals.[9]
Magnetism changes the relations and distances between the ultimate atoms of matter, a circumstance which probably depends upon their polarity. It changes steel permanently, iron temporarily, and it elongates a bar of iron, which loses in breadth what it gains in length; and as heat is developed in one direction and absorbed in the other, the temperature of the bar remains the same. Heat being an expansive force, diminishes the magnetism of iron and nickel in proportion as it increases the distance between their atoms, till at length they lose their cohesive force altogether. But there seems to be a temperature at which the magnetic force is a maximum, above and below which temperature it diminishes. Thus the magnetism of cobalt increases with the temperature up to a certain point; it then decreases as the temperature increases, and it loses its magnetism altogether when the heat amounts to 1996°.
Sir Humphry Davy and M. Arago noticed that the voltaic arc takes a rotatory motion on the approach of amagnet; and the effect of magnetism on the stratified appearance of the electric light in highly rarefied air shows how powerful its action is. In the year 1858, Mr. Gassiot published a series of observations on stratified light; subsequently various publications appeared on the subject both by Mr. Gassiot and by Professor Plücker, who made a series of very interesting observations on the nature of the stratifications, but more especially on the effects produced when they are under the influences of magnetism. Since that time, Mr. Gassiot has published several papers on the subject, and still continues his experiments on the stratifications of electric light, which give a visible proof of the connection between electricity and magnetism. He first showed that the stratified character of the electric discharge through highly attenuated media is remarkably developed in the Torricellian vacuum; latterly he has made his experiments by passing electricity through closed glass tubes of various lengths and internal diameters, filled with highly attenuated gases and vapours.[10]Two among the many brilliant experiments of this gentleman may be selected as illustrations of the property of electric light.
One of these closed glass tubes containing a highly attenuated gas was 38 inches long with an internal diameter of about an inch, and had the extremities of two platinum wires fused into the same side 32 inches apart. When these wires were put in connection with the wires of an induction battery and brought into contact, and the electricity passed through the tube, the luminous appearances at the extremities or poles of the platinum wires were very different, but simultaneous.A glow surrounded the negative pole, and in close approximation to the glow, a well defined black space appeared, while from the positive pole there issued in rapid succession a series of alternate dark and brilliantly luminous curved strata, which formed a column of stratified light, the concavities of the strata being turned to the positive pole. The stratifications do not extend to the black band round the negative wire or ball, which is quite different to the dark intervening space between the stratified discharge and the luminous negative glow. On making and breaking the electric circuit, the stratified discharge emanates from each pole alternately, the concavities of the strata turning alternately in different directions; in fact the whole phenomena are reversed, but not changed. ‘The stratified discharge arises from the impulses of a force acting on highly attenuated but resisting media,’ a new proof of the wonderful power inherent in highly attenuated gases; the number of stratifications given out at each discharge, depending upon the intensity of the electricity and rarity of the gas.
Fig. 1.
Fig. 1.
Fig. 1.
Fig. 1represents the form which the stratified discharge assumes in a vacuum tube one inch diameter and 38 inches in length, + and - representing platinum wires attached to the terminals of a Ruhmkorff’s induction coil.
When the tube, with its stratifications just described, was laid horizontally on the pole of a magnet, thestratified column showed a tendency to rotate as a whole round it. According to the theory of Ampère, the polarity of a magnet is owing to a superficial current of electricity perpetually circulating in a direction perpendicular to its axis; and he also showed that currents of electricity flowing in the same direction attract one another, while currents flowing in opposite directions repel each other. Hence, since the currents of electricity in the magnet and tube were flowing in the same direction on one side of the magnet, and in opposite directions on the other side, the stratified column was attracted at one end and repelled at the other, so as to take the formsideways S, in consequence of its tendency to rotate as a whole round the pole of the magnet.
When narrow bands of tin foil wrapped round the glass tube near the platinum wires were put in communication with the poles of the induction battery, brilliant stratifications filled the whole tube between the tin coatings every time the electric circuit was broken or renewed; and when the tube was placed horizontally on the pole of a magnet, the stratifications no longer showed a tendency to rotate as a whole, they were divided into two parts tending to rotate in opposite directions; when the tube was placed between the poles of a powerful electro-magnet, one half of the stratifications were repelled and the other half attracted. When the tube was placed on the north pole, the divided stratifications arranged themselves on each side of the tube, changing their respective positions when placed on the south pole, but in every case each half was concave in opposite directions.
Fig. 2(p. 81) represents the form which the induced stratified discharges assume when the vacuum tube is placed on or between the poles of a powerful electro-magnet—the tin foil coatings C+ C- being attached by wires to the terminals of an induction coil.
Fig. 2.
Fig. 2.
Fig. 2.
If a vacuum tube with or without wires or tin coatings be laid upon the induction coil of a battery, or upon the prime conductor of an electrifying machine, stratifications are produced by induction which are divided by a magnet. Thus there are two distinct forms of the stratified discharge, one direct, the other induced.
When Professor Plücker of Bonn sent an induced current of electricity from Ruhmkorff’s coil through a vacuum tube having a platinum wire fused into each extremity, and extending a little way into the interior of the tube, electric light radiated from every point of the negative wire, and when exposed to the action of an electro-magnet the whole tube was filled with a luminous atmosphere. But when all the negative platinum wire except its extreme point was insulated by a coating of glass, the rays of electric light which radiated from the point were united into one single and perfectly regular magnetic curve, upon the approach of an electro-magnet; when the negative platinum wire was partially insulated by glass coating, electric light emanated from every exposed part, and assumed the form of magnetic curves under electro-magnetic action. Whence Professor Plücker concluded that the luminous atmosphere in the first experiment was the locus of an infinite number of magnetic curves, and consequentlythat magnetic light emanates from the negative or warmth pole, and electric light from the positive or light pole. These magnetic curves of light are precisely similar to those assumed by iron filings from magnetic action.
The most remarkable of these experiments is the absolute extinction of a powerful electric discharge by magnetic action. Mr. Gassiot sent a discharge from a voltaic water battery, containing 3,520 insulated cells, into a tube filled with attenuated carbonic acid gas. The discharge was so strong that it was capable of passing through more than six inches of the gas, yet, on the approach of a very powerful electro-magnet, the stratifications were arrested as soon as they appeared, as if blown out, and finally extinguished. A stratified discharge, in vacuo, from 400 insulated cells of a nitric acid battery, was extinguished by the large electro-magnet of the Royal Institution; the luminous strata rushed from the positive pole of the battery, but under the magnetic force they retreated; cloud followed after cloud with deliberate motion, appearing as if swallowed up by the positive terminal. The amount of electricity that passed through the tube appeared to be materially increased by exciting the electro-magnet; the discharge was so intense on one occasion as to fuse half an inch of the positive terminal. A very powerful magnet is also capable of extinguishing a stratified discharge. In fact, according to the law of the reciprocal action of magnetism, the forces are equal in intensity and opposite in direction.
The electric discharge from an induction coil is discontinuous, or eruptive sparks of high tension are given out producing stratified discharges.
The discharge of the voltaic battery had hitherto been considered absolutely continuous; and so it is for chemical action, whether of analysis or combination;nevertheless certain phenomena gave reason to doubt its continuity. Mr. Gassiot has proved that the tension of a single cell of a galvanic battery increases in force according to the chemical energy of the exciting liquid, and in all his experiments he found that ‘the higher the chemical affinities of the elements used, the greater was the development of evidence of tension.’ These observations induced him to institute a series of experiments with galvanic batteries of different chemical affinities, and to compare the resulting phenomena with those produced by the induction coil, whose sparks are of high tension. The same carbonic acid vacuum tubes were made use of in all the experiments; a copper wire formed the positive terminal, and a copper plate was fixed at the extremity of the negative terminal. In other tubes platinum terminals extended into the interior, coated with glass, except the points, to which charcoal balls were fixed. One end of the tubes was of small diameter and contained caustic potash.
When a discharge from an induction coil was sent through these tubes, there were either minute luminous spots, narrow stratifications, or a well defined cloud-like discharge at the positive pole, according to the size and structure of the terminal, but the characteristic phenomenon in all the tubes was a large cloud-like luminosity or circular glow on the brass plate or charcoal ball at the negative terminal.
With 512 insulated cells of copper and zinc of Daniell’s constant battery, the exciting liquid being dilute sulphuric acid, a brilliant glow appeared round the charcoal ball of the negative terminal on the passage of the electric discharge through the tube, with very trifling luminosity of the positive pole.
Two copper plates that could be separated or closed by a screw, were placed between the poles of a nitric acid battery, so that the circuit could be made orbroken gradually, and spark discharges were obtained between them. The vacuum tubes were placed between one of these plates and a pole of the battery; one of these tubes was 24 inches long, 18 in circumference, and had a circular copper disc 4 inches in diameter on its negative terminal. On completing the circuit, the discharge of the battery passed with a display of magnificent strata of dazzling brightness; on separating the plates by the screw, the luminous discharges presented the same appearance as when taken from an induction coil, but brighter. On the copper disc within the vacuum tube, there was a white layer, then a dark space about an inch broad, and then a bluish atmosphere curved like the disc, evidently three negative envelopes on a great scale. When the disc was made the positive pole, the effect was feeble.
In vacuum tubes 6 inches long and 1 inch diameter, with carbon balls on the terminals, the discharge of the nitric acid battery elicits extreme heat. In one of these the discharge presented a stream of light of intolerable brightness, but when viewed through a plate of green glass strata could be seen. This soon changed to a sphere of light on the positive ball, which became red hot, the negative being surrounded by magnificent envelopes; with a horse-shoe magnet the positive light was drawn out into strata. The needle of a galvanometer in circuit was violently deflected and the polarity reversed. When the caustic potash was heated, the discharge burst into a sunlike flame, subsequently subsiding into three or four large strata of a cloud-like shape, but intensely bright. This is called the arc discharge: it occurs in vacuum tubes with charcoal balls; when the potash is heated intensely, dazzling stratifications suddenly emanate from the positive ball, and powerful chemical action takes place in the battery, after which the discharge ceases.
This process facilitates the discharge and assists the disintegration of the carbon particles, and these in a minute state of division are subsequently found attached to the sides of the glass. It is these particles which produce the arc discharge with its intense vivid light so suddenly observed with far more brilliant effects than the usual stratified discharge. During its passage the conducting power of the vacuum tube is greatly enhanced.
It was already mentioned that a stratified discharge was obtained from 3,520 insulated cells of a water battery, which differs but little in intensity from 400 cells of the nitric acid battery. On one occasion the electricity seemed to pass through the vacuum tubes in a continuous stream, but when examined with Mr. Wheatstone’s revolving mirror it was decidedly stratified. Mr. Gassiot never could obtain a continuous discharge in air, whether between the points or metallic plates of the water battery. The discharge was invariably in the form of minute clearly defined and separate sparks.
Thus it was proved by the preceding experiments that a spark discharge could be obtained in air from both the nitric acid and water battery; and that when these discharges were passed through the highly attenuated matter contained in carbonic acid vacua, the same luminous and stratified appearance was produced as by an induction coil; a proof that whatever may be the cause of the phenomena it could not arise from any peculiar action of that apparatus.
Mr. Gassiot finally concludes that the cause of the stratified discharge arising from the impulses of a force acting upon highly attenuated but resisting media is also applicable to the discharge of the voltaic battery in vacuo; while the fact of this discharge even in its full intensity having been now ascertained to bealso stratified leads to the conclusion that the ordinary discharge of the voltaic battery, under every condition, is not continuous but intermittent, that it consists of a series of pulsations or vibrations of greater or less velocity, according to the resistance in the chemical or metallic elements of the battery or the conducting media through which the discharge passes.
Caustic potash absorbs the carbonic acid gas by degrees, and at last so completely exhausts a vacuum tube that electricity cannot be conducted. Air is a non-conductor, and an electric discharge that will not pass through an inch of air, will pass through more than 30 or 40 inches of attenuated gas.
It has already been mentioned that the stratified discharge can be obtained by a single discharge of the primary current of an inductive coil, however long may be the vacuum tube through which the discharge is passed. If no addition be made to the battery and no alteration be made in the arrangement of the coil so as to increase or diminish the intensity of the discharge, the stratifications will always present the same appearance and form, occupying the same spaces and positions in the vacuum tube; but if any change be made so as to alter the intensity, then a corresponding alteration will appear in the discharge, the striæ assuming a different shape, and the bright and dark divisions occupying different positions.
In order to try what effect a change of intensity would produce, three separate insulated voltaic batteries, in which the exciting liquid was brine, formed an electric circuit which was completed by two long wires. It was so arranged that the discharge of one, two, or all the three batteries could be separately employed. In order to vary the resistance at pleasure, two tubes 18 inches long containing distilled water and connected at their base were introduced into the circuit. By varying thedepth to which the terminal wires of the circuit were plunged into the water, the resistance could be regulated at pleasure, and it was immaterial in what part of the circuit the vacuum tube was introduced provided the circuit was completed.
The first experiments were made with a carbonic acid vacuum tube 20 inches long and 4 inches in diameter. The negative terminal at one extremity of the tube was of aluminium, cup-shaped, about 3 inches in diameter; the positive terminal was a wire of the same metal fused into the other extremity of the tube; the point of the wire and cup were about four inches and a half apart. With this tube and 2,240 cells of the battery the discharge when the resistance was introduced had the appearance of a positive and negative discharge, impinging on and intermingling with each other, without any dark space intervening. Around the negative terminal the luminosity extends to the sides of the tube and tapers to the point of the positive wire. The light round the negative terminal becomes brighter, a dark space appears next to it when the resistance is diminished, and increases as the resistance decreases, by the rolling back of the light in bright clouds to the point of the positive terminal. These changes can be perfectly regulated by the resistance, and various luminous phenomena occur at each stage.
With 2,240 cells distinct sounds were heard in the tube; with the whole battery of 3,360 series the sounds were not heard till a magnet was applied to the striæ, when they again became audible and the striæ were spread over the surface of the tube.
A carbonic acid vacuum tube with platinum terminals fused into the same side far apart was now put into the circuit, the part of the wires that penetrated within the tube being coated with glass up to the carbon balls in which they terminated. When a discharge from all thethree batteries passed through the tube, changes occurred in the form and number of the striæ corresponding to the greater or less amount of the resistance offered in the circuit.
At the commencement of the experiments there were 18 inches of water in each of the tubes, which formed the maximum resistance. The wires attached to the terminal wires of the battery were placed inside of these tubes, and as soon as they touched the surface of the water a faint luminous discharge was seen at each ball in the vacuum tube. As the wire attached to the negative end of the battery was slowly depressed, the two luminous discharges appeared to travel towards or attract each other, and at times a portion of the positive luminosity passed over and mingled with the negative; in this state the discharge was extinguished by a magnet.
When the wire was pressed farther into the water a dark space about an inch in length divided the light into two parts, the positive glow being sharply defined, the negative glow having an irregular edge. When the wire had been about three inches deep in the water, the positive and negative glows became more brilliant, and a single clearly defined luminous disc burst from the positive side and occupied the middle of the dark space. When the wire was pressed down till 13 inches of it were in the water, a second luminous disc travelled from the positive side, and then the two luminous discs or striæ occupied the dark space at a little distance from one another. As the wire was pressed more into the water, three parallel luminous striæ appeared, then four, then five, and so on till as many as thirteen or fourteen striped the dark central space. With the full power of the battery, the adjacent disc impinged on the glow that surrounded the negative ball. This disc was of a pale green, those adjacent were reddish, while the negative glow was of a bluish white; minute bright scintillationsemanated from the negative ball, while distinct luminous flash discharges took place through the striæ. Thus by the amount of resistance introduced into the circuit, the number of striæ can be regulated, their position fixed, separating or closing up the dark space between the luminous glows round the balls.
In these experiments there is indication of a force emanating from the negative wire. The actual disruption of the particles from the negative terminal also indicates a force, and the disruption is as freely obtained by the continuous discharge of the battery as it is by the intermittent discharge of the induction coil. Besides, when Mr. Gassiot sent discharges from the induction coil through Torricellian vacua, he several times observed that while a cloud-like discharge issued from the positive terminal, a long tongue of the most brilliant blue phosphorescent light emanated from the upper part of the negative terminal, and a brilliant white tongue of light was also seen close to the negative wire: so there is reason to believe that force emanates from both terminals.
Some of the preceding striated discharges ‘present an appearance somewhat analogous with the stationary undulations (or nodes) which exist in a column of air when isochronous progressive undulations meet one another from opposite directions, and on the surface of water by mechanical impulses similarly interfering with each other.’[11]
‘May not the dark bands be the nodes of undulations arising from similar impulses proceeding from positive and negative discharges? or can the luminous stratifications which we obtain in a close circuit of the secondary coil of an induction apparatus, and in the circuit of a voltaic battery, be the representations ofpulsations which pass along the wire of the former, and through the battery of the latter, impulses probably generated by the action of the discharge along the wires?’
The action of magnetism and electricity on light is similarly illustrated by the rotation of the plane of polarization. Sir John Herschel was the first who tried to rotate the plane of polarization of a ray of light by surrounding it with a spiral wire electrized by the great battery of two enormous plates of copper and zinc at the London Institution, but he obtained no evidence of any such action. Long afterward Professor Faraday succeeded by sending a ray of light through a piece of silico-borate of lead, which formed the core of a magnetic helix. The silico-borate took on a quasi-crystallised state during the passage of the electric current round it, giving it for the moment the property of circular polarization, analogous to that of glass in a state of tension or compression.
Substances vary exceedingly in the facility with which they transmit electricity; even the same substance under another form differs remarkably in that property: charcoal, which next to the metals is the best conductor known, when under the form of diamond is quite impervious to electricity. In general, substances that are the best conductors of heat are also the best conductors of electricity, as for example the metals, which however, possess the transmissive property in very different degrees. Silver and copper are the best conductors, lead one of the worst; its resistance to the passage of electricity is twelve times greater than that of silver and copper, consequently it becomes twelve times as hot, for when a current of electricity is impeded it is changed into heat. So great is the resistance offered by a fine platinum wire, that the heat amounts to 3280° and the wire is melted, a strikinginstance of the correlation of electricity and heat, and of the power of the cohesive force.
When electricity is passing through conducting substances or when it is static, it induces an electric state in bodies at a distance by transmission through non-conducting substances or air, for it gives polarity and tension to the adjacent atoms, and these to the next, and the next in succession, throughout the whole intervening mass,—a strong proof of the individuality and polarity of the atoms of matter.
Motion, which is the result of all the physical powers, has itself a strong action upon the ultimate elements of matter; in cases of unstable equilibrium it accelerates and even determines their chemical union. Some substances will remain merely mixed as long as they are at rest, but no sooner is their inertia disturbed by a slight motion than they rush into permanent combination. In newly sublimed iodide of mercury the vibration impressed by the scratch of a pin is so rapidly transmitted through the mass that its colour is immediately changed from yellow to bright red. By a new arrangement of the molecules their action on light is altered.
Catalysis or the chemical decomposition and composition of substances by the contact of a foreign body, is well illustrated by the chloride of nitrogen, that explodes when touched by substances which at ordinary temperatures would neither combine with the chlorine nor with the nitrogen. The iodide of nitrogen explodes if touched by a feather, and M. Becquerel decomposed the iodide of nitrogen by the vibrations of sound. When substances only exist in consequence of the inertia of their atoms, the instability of their chemical attractions and repulsions is only increased by an external agent, so that a great effect is produced by a slight cause, as in an avalanche, the snowy mass is on the point of falling, and the smallest motion, a breath of wind, hurlsit down. In such cases the potential energy of the unstable mass is in a moment changed into vis viva or impetus. Daguerreotype impression shows the power of the chemical rays on substances in unsteady equilibrium, and the length of time required to make the impression under the same circumstances is a measure of the instability.
Most of the fulminates are compounds of nitrogen; of that the fulminate of aniline is a recent instance, since it is formed by the slow action of nitrous acid on aniline. Explosion takes place on the sudden evolution of gas, or the sudden change of a solid into vapour. In these cases fire or percussion are the foreign causes of change. They are all particular instances of the general principle of catalysis, which is the chemical combination of heterogeneous atoms by the action of a substance that does not participate in the change. Thus it has long been known that when platinum is plunged into a mixture of oxygen and hydrogen it combines these gases into water. Acids in some cases seem to have the same effect; for when rags or starch are dissolved in an acid the starch is changed to dextrine and the liquid has acquired the power of turning the plane of polarised light to the right. The acid has undergone no alteration, but it has changed the properties of the starch though not its chemical composition. After a time, a second transformation takes place, the liquid ceases by degrees to turn the plane of polarisation to the right, and ends by turning it to the left. The acid is still unchanged, but the dextrine has now disappeared: it has combined with the water and is transformed into glucose or sugar of grapes.
The quantity of the physical powers, active and latent, is inappreciably great. The quantity of heat or potential energy generated by chemical combination alone is enormous.