CHAP. XVII.

Rod magnetized in the middle.

B is a loadstone, C D a long rod magnetized in the middle A; E being the Boreal pole; C is an Austral end or pole; in like manner also the end D is another Austral pole. But observe here the exactness with which a versorium touched by a pole, when a round plate is interposed, turns towards the same pole in the same*way as before the interposition, only weaker; the plate not standing in the way, because the vigour is diverted through the edges of the small plate, and passes out of its straight course, but yet the plate retains in the middle the same verticity, when it is in the neighbourhood of that pole, and close to it; wherefore the versorium tends towards the plate, having been touched by the same pole. If a loadstone is rather weak, a versorium hardly turns when a plate is put in between; for the vigour of the rather weak loadstone, being diffused through the extremities, passes less through the*middle. But if the plate has been touched in this way by a pole in the middle and has been removed from the stone outside its orbe of virtue, then you will see the point of the same versorium tend in the contrary direction and desert the centre of the small plate, which formerly it desired; for outside the orbe of virtue it has an opposite verticity, in the vicinity the same; for in the vicinity it is, as it were, a part of the loadstone, and has the same pole.

Magnetised plate.

A is an iron plate near the pole, B a versorium which tends with its point towards the centre of the small plate, which has been touched by the pole of the loadstone C. But if the same small plate beplaced outside the orbe of magnetick virtue, the point will not turn towards its centre, but the cross E of the same versorium does. But an iron globe interposed (if it is not too large) attracts the*point of the iron on the other side of the stone. For the verticity of that side is the same as that of the adjoining pole of the stone. And this turning of the cusp (that is, of the end touched by that pole) as well as of the cross-end, at a greater distance, takes place with an iron globe interposed, which would not happen at all if*the space were empty, because the magnetick virtue is passed on and continued through magnetick bodies.

Magnetick virtue passed on.

A is a terrella, B an iron globe; between the two bodies is F, a versorium whose point has been excited by the pole C. In the other figure A is a terrella, C its pole, B an iron globe; where the versorium tends towards C, the pole of the terrella, through the iron globe. So a versorium placed between a terrella and an iron globe vibrates more forcibly towards the pole of the terrella; because the loadstone sends an instantaneous verticity into the opposite globe. There is the same efficiency in the earth, produced from the same cause. For if a revolvable needle is shut up in a rather thick gold box (this metal indeed excels all others in density) or a glass or stone box, nevertheless that magnetick needle has its forces connected and united with the influences of the earth, and the iron will turn freely and readily (unhindered by its prison) to its desired points, North and South.*It even does this when shut up in iron caverns, if they are sufficiently spacious. Whatever bodies are produced among us, or are artificially forged from things which are produced, consist of matter of the terrestrial globe; nor do those bodies hinder the prime forces of nature which are derived from their primary form, nor can they resist them except by contrary forms. But no forms of mixed bodies are inimical to the primary implanted earth-nature, although some often do not agree[169]with one another. But in the case of all those substances which have a material cause for their inclining (as amber,jet, sulphur), their action is impeded by the interposition of a body (as paper, leaves, glass, or the like) when that way is impeded and obstructed, so that that which exhales[170]cannot reach the corpuscle to be allured. Terrestrial and magnetick coition and motion, when corporeal impediments are interposed, is demonstrated also by the efficiencies of other chief bodies due to their primary form. The moon (more than all the stars) agrees with internal parts of the earth on account of its nearness and similarity in form. The moon produces the movements of the waters and the tides of the sea; twice it fills up the shores and empties them whilst it moves from a certain definite point in the sky back to the same point in a daily revolution. This motion of the waters is incited and the seas rise and fall no less when the moon is below the horizon and in the lowest part of the heavens, than if it had been raised at a height above the horizon. So the whole mass of the earth interposed[171]does not resist the action of the moon, when it is below the earth; but the seas bordering on our shores, in certain positions of the sky when it is below the horizon, are kept in motion, and likewise stirred by its power (though they are not struck by its rays nor illuminated by its light), rise, come up with great force, and recede. But about the reason of the tides anon[172]; here let it suffice to have merely touched the threshold of the question. In like manner nothing on the earth can be hidden from the magnetick disposition of the earth or of the stone, and all magnetical bodies are reduced to order by the dominant form of the earth, and loadstone and iron show sympathy with a loadstone though solid bodies be interposed.

Conceive a small round plate, concave in shape, of the breadth of a digit to be applied to the convex polar surface of a loadstone and skilfully attached; or a piece of iron shaped like an acorn, rising from the base into an obtuse cone, hollowed out a little and fitted to the surface of the stone, to be tied to the loadstone. Let the iron be the best steel, smoothed, shining, and even. A loadstone with such an appliance, which before only bore four ounces of iron, will now raise twelve. But the greatest force of a combining or rather united nature is seenwhen two loadstones, armed with iron caps, are so joined by their concurrent (commonly called contrary) ends, that they mutually*attract and raise one another. In this way a weight of twenty ounces is raised, when either stone unarmed would only allure four ounces of iron. Iron unites to an armed loadstone more firmly than to a loadstone; and on that account raises greater weights, because the pieces of iron stick more pertinaciously to one that is armed. For by the near presence of the magnet they are cemented together, and since the armature[173]conceives a magnetick vigour from its presence and the other conjoined piece of iron is at the same time endued with vigour from the presence of the loadstone, they are firmly bound together. Therefore by the mutual contact of strong pieces of iron, the cohesion is strong. Which thing is also made clear and is exhibited by means of rods sticking together, Bk. 3, chap 4[174]; and also when the question of the concretion of iron dust into a united body was discussed. For this reason a piece of iron set near a loadstone draws away any suitable piece of iron from the loadstone, if only it touch the iron; otherwise it does not snatch it away, though in closest proximity. For magnetick pieces of iron within the orbe of virtue, or near a loadstone, do not rush together with a greater endeavour[175]than the iron and the magnet; but joined they are united more strongly and, as it were, cemented together, though the substance remain the same with the same forces acting.

Suppose there are two pieces of iron, one of*which has been excited by an armed loadstone, the other by one unarmed; and let there be applied to one of them another piece of iron of a weight just proportional to its strength, it is manifest that the remaining one in like manner raises the same and no more. Magnetick versoria also touched by an armed loadstone turn with the same velocity and constancy towards the poles of the earth as those magnetized by the same loadstone unarmed.

An armed magnet raises a greater weight, as is manifest to all; but a piece of iron moves towards a stone at an equal, or rather greater, distance when it*is bare, without an iron cap. This must be tried with two pieces of iron of the same weight and figure at an equal distance, or with one and the same versorium, the test being made first with an armed, then with an unarmed loadstone, at equal distances.

Armed Magnets cohære firmly.

*

Magnets armed cohære firmly when duly joined, and accord into one; and though the first be rather weak, yet the second one adhæres to it not only by the strength of the first, but of the second, which mutually give helping hands; also to the second a third often adheres and in the case of robust stones, a fourth to the third.

*

Observation has shown above that an armed loadstone does not attract at a greater distance than an unarmed one; yet raises iron in greater quantity, if it is joined to and made continuous with the iron. But if Paper be placed between, that intimate cohæsion of the metal is hindered, nor are the metals cemented together at the same time by the operation of the magnet.

Magneticks in conjunction make one magnetick.

*

If a cylinder be lying on a level surface, of too great a weight for an unarmed loadstone to lift, and (a piece of paper being interposed) if the pole of an armed loadstone be joined to the middle of it; if the cylinder were drawn from there by the loadstone, it would follow rolling; but if no medium were interposed, the cylinder would be drawn along firmly united with the armed loadstone, and in no wise rolling. But if the same loadstone be unarmed, it will draw the cylinder rolling with the same speed as the armed loadstone with the paper between or when it was wrapped in paper.

Armed loadstones of diverse weights, of the same ore vigour*and form, cling and hang to pieces of iron of a convenient size and proportionate figure with an equal proportion of strength. The same is apparent in the case of unarmed stones. A suitable piece*of iron being applied to the lower part of a loadstone, which is*hanging from a magnetick body, excites its vigour, so that the loadstone hangs on more firmly. For a pendent loadstone clingsmore firmly to a magnetick body joined to it above with a hanging piece of iron added to it, than when lead or any other non-magnetick body is hung on.

A loadstone, whether armed or unarmed,*joined by its proper pole to the pole of another loadstone, armed or unarmed, makes the loadstone raise a greater weight by the opposite end[177]. A piece of iron also applied to the pole of a magnet produces the same result, namely, that the other pole will carry a greater weight of iron; just as a loadstone with a piece of iron superposed on it (as in this figure) holds up a piece of iron below, which it cannot hold, if the upper one be removed.*Magneticks in conjunction make one magnetick. Wherefore as the mass increases, the magnetick vigour is also augmented.

An armed loadstone, as well as an unarmed*one, runs more readily to a larger piece of iron and combines more firmly with a larger piece than with a lesser one.

Magnetick fragments cohære within their strength well and harmoniously together. Pieces of iron in the presence of a loadstone (even if they are not*touching the loadstone) run together, seek one another anxiously and embrace one another, and when joined are as if they were cemented. Iron*filings or the same reduced to powder inserted in paper tubes, placed upon a stone meridionally or merely brought rather close to it, coalesce into one body, and so many parts suddenly are concreted*and combine; and the whole company of corpuscles thus conspiring together affects another piece of iron and attracts it, as if it constituted one integral rod of iron; and above the stone it is directed toward the North and South. But when they are removed a long*way from the stone, the particles (as if loosed again) are separated and move apart singly. In this way also the foundations of the world are connected and joined and cemented together magnetically. So let Ptolemy of Alexandria, and his followers, and those philosophers of ours, be the less terrified if the earth do move round in a circle, nor threaten its dissolution.

Iron filings, after being heated for a long time, are attracted by a loadstone, yet not so strongly or from so great a distance as when not heated. A loadstone loses some of its virtue by too great a heat; for its humour is set free, whence its peculiar nature is marred. Likewise also, if iron filings are well burnt in a reverberatory furnace and converted into saffron of Mars, they are not attracted by a loadstone; but if they are heated, but not thoroughly burnt, they do stick to a magnet, but less strongly than the filings themselves not acted upon by fire. For the saffron has become totally deformate, but the heated metal acquires a defect from the fire, and the forces in the enfeebled body are less excited by a loadstone; and, the nature of the iron being now ruined, it is not attracted by a loadstone.

Within the magnetick orbe a piece of iron moves towards the more powerful points of the stone, if it be not hindered by force or by the material of a body placed between them; either it falls down from above, or tends sideways or obliquely, or flies up above. But if the iron cannot reach the stone on account of some obstacle, it cleaves to it and remains there, but with a less firm and constant connection, since at greater intervals or distances the alliance is less amicable. Fracastorio, in the eighth chapter of hisDe Sympathia, says that a piece of iron is suspended in the air, so that it can be moved neither up nor down, if a loadstone be placed above which is able to draw the iron up just as much as the iron itself inclines downwards with equal force; for thus the iron would be supported in the air: which thing is absurd; because the force of a magnet isalways the stronger the nearer it is. So that when a piece of iron is raised a very little from the earth by the force of the magnet, it needs must be drawn steadily on towards the magnet (if nothing else come in the way) and cleave to it. Baptista Porta suspends a piece of iron in the air[178](a magnet being fixed above), and, by no very subtile process, the iron is detained by a slender thread from its lower part, so that it cannot rise up to the stone. The iron is raised upright by the magnet, although the magnet does not*touch the iron, but because it is in its vicinity; but when the whole iron on account of its greater nearness is moved by that which erected it, immediately it hurries with a swift motion to the magnet and cleaves to it. For by approaching the iron is more and more excited, and the coition grows stronger.

One loadstone far surpasses another in power, since one draws iron of almost its own weight, another can hardly stir some shreds. Whatever things, whether animals or plants, are endowed with life need some sort of nourishment, by which their strength not only persists but grows firmer and more vigorous. But iron is not, as it seemed to Cardan and to Alexander Aphrodiseus, attracted by the loadstone in order that it may feed on shreds of it, nor does the loadstone take up vigour from iron filings as if by a repast on victuals. Since Porta had doubts on this and resolved to test it, he took a loadstone of ascertained weight, and buried it in iron filings of not unknown weight; and when he had left it there for many months, he found the stone of greater weight, the filings of less. But the difference was so slender that he was even then doubtful as to the truth. What was done by him does not convict the stone of voracity, nor does it show any nutrition; for minute portions of the filings are easily scattered in handling. So also a very fine dust is insensibly born on a loadstone in some very slight quantity, by which something might have been added to the weight of the loadstone but which is only a surface accretion and might even be wiped off with no great difficulty. Some think that a weak and sluggish stone can bring itself back into better condition, and that a very powerful one also might present it with the highest powers. Do they acquire strength like animals whenthey eat and are sated? Is the medicine prepared by addition or subtraction? Is there anything which can re-create this primary form or bestow it anew? And, certes, nothing can do this which is not magnetical. Magneticks can restore a certain soundness to magneticks (when not incurable); some can even exalt them beyond their proper strength; but when a body is at the height of perfection in its own nature, it is not capable of being strengthened further. So that that imposture of Paracelsus, who affirms that the force and virtue can be increased and transmuted tenfold, turns out to be the more infamous. The method of effecting this is as follows, viz., you make it semi-incandescent in a fire of charcoal (that is, you heat it very hot), so that it does not become red-hot, however, and immediately slake it, as much indeed as it can imbibe, in oil of saffron of Mars, made from the best Carynthian steel. "In this way you will be able so to strengthen a loadstone that it can draw a nail out of a wall and accomplish many other like wonderful things, which are not possible for a common loadstone." But a loadstone thus slaked in oil not only does not gain power, but suffers also a certain loss of its inborn strength. A loadstone is improved if polished and rubbed with steel. Buried in filings of the best iron or of pure steel, not rusty, it preserves its strength. Sometimes also a somewhat good and strong one gainsLoadstones combined.some strength when it is rubbed on the pole of another, on the opposite part, and receives virtue. In all these experiments it is an advantage to observe the pole of the earth, and to adjust according to magnetick laws the stone which we wish to strengthen; which we shall set forth below. A somewhat powerful and fairly large loadstone increases the strength of a loadstone as it does of iron. A loadstone being placed over the boreal pole of a loadstone,*the boreal pole becomes stronger, and an iron rod (like an arrow) sticks to the boreal pole A, but not at all to the pole B. The pole A also, when it is at the top in a right line with the axis of both loadstones joined in accordance with magnetick laws, raises the rod to the perpendicular, which it cannot do if the large loadstone be removed, on account of its own weaker strength. But as a small iron globe, when placed above the pole of a terrella, raises the rod to the*perpendicular, so, when placed at the side, the rod is not directed towards the centre of the globe, but is raised obliquely and cleaves anywhere, because the pole in a round piece of iron is always the point which is joined most closely to the pole of the terrella and is not constant as in a smaller terrella. The parts of the earth, as of all magneticks, are in agreement and take delight in their mutual proximity; if placed in the highest power, they do not harm their inferiors, nor slight them; there is a mutual love among them all, a perennial good feeling. The weaker loadstones are re-created by the more powerful, and the less powerful cause no harm to the stronger. But a powerful one attracts and turns a somewhat strong one more than it does an impotent one. Because a strenuous one confers a stronger activity, and itself hastens, flies up to the other, and solicits it more keenly; therefore there is a more certain and a stronger co-action and cohærency.

Magnet attracts magnet, not in every part and on every side with equal conditions, as iron, but at one and a fixed point; therefore the poles of both must be exactly disposed, otherwise they do not cleave together duly and strongly. But this disposition is not easy and expeditious; wherefore a loadstone seems not to conform to a loadstone, when nevertheless they agree very well together. A piece of iron by the sudden impression of a loadstone is not only allured by the stone, but is renewed, its forces being drawn forth; by which it follows and solicits the loadstone with no less impulse, and even leads another piece of iron captive. Let there be a small iron spike above a loadstone clinging firmly to it; if you apply an unmagnetized rod of iron to the spike, not, however,so that it touches the stone, you will see the spike when it has touched the iron, leaving the loadstone, follow the rod, try to grasp it by leaning toward it, and (if it should touch it) cleave firmly to it: for a piece of iron, when united and joined to another piece of iron placed within the orbe of virtue of the loadstone, draws it more strongly than does the loadstone itself. The natural magnetick virtue, confused and dormant in the iron, is aroused by the loadstone, is linked to the loadstone, and rejoices with it in its primary form; then smelted iron becomes a perfect magnetick, as robust as the loadstone itself. For as the one imparts and stirs, so the other conceives, and being stirred remains in virtue, and pours back the forces also by its own activity. But since iron is more like iron than loadstone, and the virtue in both pieces of iron is exalted by the proximity of the loadstone, so in the loadstone itself, in case of equal strength, likeness of substance prevails, and iron gives itself up rather to iron, and they are united by their very similar homogenic powers. Which thing happens not so much from a coition, as from a firmer unition; and a knob or snout of steel, fixed skilfully on the pole of the stone, raises greater weights of iron than the stone of itself could. When steel or iron is smelted from loadstone or iron ore, the slag and corrupt substances are separated from the better by the fusion of the material; whence (in very large measure) that iron contains the nature of the earth, purified from alien flaw and blemish, and more homogenic and perfect, though deformed by the fusion. And when that material indeed is provoked by a loadstone, it conceives the magnetick virtues, and within their orbe is raised in strength more than the weaker loadstone, which with us is often not free from some admixture of impurities.

*

Rays of magnetick virtue spread out in every direction in an orbe; the centre of this orbe is not at the pole (as Baptista Porta reckons, Chap. 22), but in the centre of the stone and of the terrella. So also the centre of the earth is the centre of the magnetick motions of the earth; though magneticks are not borne directly toward the centre by magnetical motion, except when they are attracted by the true pole. For since the formalpower of the stone and of the earth does not promote anything but the unity and conformity of disjoined bodies, it comes about that everywhere at an equal distance from the centre or from the circumference, just as it seems to attract perpendicularly at one place, so at another it is able even to dispose and to turn, provided the stone is not uneven in virtue. For if at the distance C from the pole D the stone is able to allure a versorium,*at an equally long interval above the æquator at A that stone can also direct and turn the versorium. So the very centre and middle of the terrella is the centre of its virtue, and from this to the circumference of the orbe (at equal intervals on every side) its magnetick virtues are emitted.

Magnetick virtues emitted to an orbe.

Coitions are always more powerful when poles are near poles, since in them by the concordancy of the whole there exists a stronger force; wherefore the one embraces the other more strongly. Places declining from the poles have attractive forces, but a little weaker and languid in the ratio of their distance; so that at length on the æquinoctial circle they are utterly enervated and evanescent. Neither do even the poles attract as mathematical points; nor do magneticks come into conjunction by their own poles, only on the poles of a loadstone. But coitionis made on every part of the periphery, both Northern and Southern, by virtue emanating from the whole body; magneticks nevertheless incline languidly towards magneticks in the parts bordering on the æquator, but quickly in places nearer the pole. Wherefore not the poles, not the parts alone nearest to the pole allure and invite magneticks, but magneticks are disposed and turned round and combine with magneticks in proportion as the parts facing and adjoined unite their forces together, which are always of the same potency in the same parallel, unless they are distributed otherwise from causes of variation.

Quite similar in potency are those stones which are of the same mine, and not corrupted by adjacent ores or veins. Nevertheless that which excels in size shows greater powers, since it seizes greater weights and has a wider orbe of virtue. For a loadstone weighing one ounce does not lift a large nail as does one weighing a pound, nor does it rule so widely, nor extend its forces; and if from a loadstone of a pound weight a portion is taken away, something of its power will be seen to go also; for when a portion is abstracted the virtue is lessened. But if that part is properly applied and united to it, though it is not fastened*to nor grown into it, yet by the application it obtains its pristine power and its vigour returns. Sometimes, however, when a part is taken away, the virtue turns out to be stronger on account of the*bad shape of the stone, namely, when the vigour is scattered through inconvenient angles. In various species the ratio is various, for one stone of a drachm weight draws more than another of twenty pounds. Since in very many the influence is so effete that it can hardly be perceived, those weak stones are surpassed by prepared pieces of clay. But, it may be asked[179], if a stone of the same species and goodness weighing a drachm would seize upon a drachm of iron, would a stone of an ounce weight seize on an ounce, a pound on a pound, and so on? And this is indeed true; for it both strains and remits its strength proportionately, so that if a loadstone, one drachm of which would attract one drachm of iron, were in equal proportion applied either to a suitably large obelisk or to an immense pyramid of iron, it would lift it directly in suchproportion and would draw it towards itself with no greater effort of its nature or trouble than a loadstone of a drachm weight embraces a drachm. But in all such experiments as this let the vigour of the magnets be equal; let there be also a just proportion in all of the shapes of the stones, and let the shape of the iron to be attracted be the same, and the goodness of the metal, and let the position of the poles of the loadstones be most exact. This is also no less true in the case of an armed loadstone than of an unarmed one. For the sake of experiment, let there be given a loadstone of eight ounces weight, which when armed lifts twelve ounces of iron; if you cut off from that loadstone a certain portion, which when it has been*reduced to the shape of the former whole one is then only of two ounces, such a loadstone armed lifts a piece of iron applied to it of three ounces, in proportion to the mass. In this experiment also the piece of iron of three ounces ought to have the same shape as the former one of twelve ounces; if that rose up into a cone, it is necessary that this also in the ratio of its mass should be given a pyramidal shape proportioned to the former.

Observation has shown above that the shape and mass of the loadstone have great influence in magnetick coitions; likewise also the shape and mass of the iron bodies give back more powerful and steady forces. Oblong iron rods are both drawn more quickly to a loadstone and cleave to it with greater obstinacy than round or square pieces, for the same reasons which we have proven in the case of the loadstone. But, moreover, this is also worthy of observation, that a smaller piece of iron, to which is hung a weight of another material, so that it is altogether in weight equal to another large whole piece of iron of a right weight*(as regards the strength of the loadstone), is not lifted by the loadstone as the larger piece of iron would be. For a smaller piece of iron does not join with a loadstone so firmly, because it sends back less strength, and only that which is magnetick conceives strength; the foreign material hung on cannot acquire magnetick forces.

Pieces of iron join more firmly with a long stone than with a round one, provided that the pole of the stone is at the extremity and end of its length; because, forsooth, in the case of a long stone, a magnetick is directed at the end straight towards the body in which the virtue proceeds in straighter lines and through the longer diameter. But a somewhat long stone has but little power on the side, much less indeed than a round one. It is demonstrable[180], indeed, that at A and B the coition is*stronger in a round stone than at C and D, at like distances from the pole.

Long and Round Stones.

Equal loadstones come together with equal incitation.*

Also magnetick bodies of iron, if alike in all respects,*come together when excited with similar incitation.

Furthermore, bodies of iron not excited by a*loadstone, if they are alike and not weighed down by their bulk, move towards one another with equal motion.

Two loadstones, disposed on the surface of some water insuitable skiffs, if they are drawn up suitably within their orbes of virtue, incite one another mutually to an embrace. So a proportionate*piece of iron in one skiff hurries with the same speed towards the loadstone as the loadstone itself in its boat strives towards the iron. From their own positions, indeed, they are so borne together, that they are joined and come to rest at length in the middle of the space. Two iron wires magnetically excited, floating in water by means of*suitable pieces of cork, strive to touch and mutually strike one another with their corresponding ends, and are conjoined.

Coition is firmer and swifter than repulsion and separation in*equal magnetick substances. That magnetick substances are more sluggishly repelled than they are attracted is manifest in all magnetical experiments in the case of stones floating on water in suitable skiffs; also in the case of iron wires or rods swimming (transfixed through corks) and well excited by a loadstone, and in the case of versoria. This comes about because, though there is one faculty of coition, another of conformation or disposition, repulsion and aversion is caused merely by something disposing; on the other hand, the coming together is by a mutual alluring to contact and a disposing, that is, by a double vigour.

A disponent vigour is often only the precursor of coition, in order that the bodies may stand conveniently for one another before conjunction; wherefore also they are turned round to the corresponding ends, if they can [not][181]reach them through the hindrances.


Back to IndexNext