FIG. 19.—FERN (Pecopteris ligata) FROM UPPER SHALE, SCARBOROUGH.
FIG. 19.—FERN (Pecopteris ligata) FROM UPPER SHALE, SCARBOROUGH.
The great world of vegetation was thus destroyed, giving place to new forms of animal and vegetable life. The temperature, all this while sinking, had reached a degree somewhat resembling the hottest regions of the earth at the present day. The waters had changed their localities, new mountains and new continents had made their appearance, and again did the ever-active waters begin to demolish and wear down the asperities of the surface and deposit the results upon the strata below in the form of the new red sandstone and magnesian limestone, the former containing iron in great abundance, and the latter magnesia (an earth not met with before), both of which substances were probably ejected as volcanic products and afterwards combined with the carbonic acid of the air.
FIG. 20.—LABYRINTHODON.
FIG. 20.—LABYRINTHODON.
FIG. 21.—IMPRESSIONS OF FEET IN NEW RED SANDSTONE.
FIG. 21.—IMPRESSIONS OF FEET IN NEW RED SANDSTONE.
During the formation of these strata there appears to have been both birds and quadrupeds of many kinds, together with a reptile much resembling a frog, but of great size, beingfive or six feet long, called the "Labyrinthodon" (fig. 20). The oxide of iron, or some other agent appears to have prevented the fossilisation of the inhabitants of these strata, for but few of their organic remains have been preserved; but very curious evidences of their existence nevertheless remain,in the impressions of their feet upon the ground they trod (fig. 21), which appears to have been a moist clay or mud peculiarly adapted to receive impressions, and which having been in many places covered over with a stratum of fine sand, and then abandoned by the sea, the whole have hardened into stone, and being now separated, the one contains their footprints and the other perfect casts of them! Nor are these foot-marks all that these sandstones have to tell us of their day; for the ripples of the waves, and even the little pits made by drops of rain as they fell, are in this most marvellous manner preserved, forming objects of wonder and admiration for us mortals to contemplate, and themes whereon the devout mind may pour out its tribute of praise to their Great Author. How evident it is that the Creator designed beforehand that we should search for these hidden evidences of His handiwork, or for what purpose were they thus stored up and preserved? "Seek, and ye shall find, knock, and it shall be opened unto you," are the words of God, and they apply as fully to the material wonders of His works as to the mysteries of His revealed Word.
As the strata below the new sandstone formation was called the "Carboniferous" system, from its containing much carbon in the form both of coal and carbonic acid, so this has been called the "Saliferous" system, from the occurrence in many places of strata of "rock-salt" or crystallised chloride of sodium, and (where the rain finds its way down and dissolves it) of brine springs; these (in England) exist chiefly in Cheshire and Warwickshire, but in Poland and Hungary they exist on a much larger scale, the rock-salt being nearly a thousand feet thick. It has been said that these strata of salt were formed by the evaporation of salt lakes, but it is much more probable that salt is one of the natural materials of the earth, and that both salt lakes and oceans have become salt from dissolving out these strata wherever they have come into contact. The next sediment deposited over the new red sandstone is called the "Lias," a sort of limestone mixed with clay of a blueish-grey colour, and upon this lias is again deposited the various strata known as the "Oolite" (Roe-stone) system, from its appearance resemblingthe roe of a fish, it consists of small rounded particles of limestone set in a cement of the same substance worn down fine.
FIG. 22.—AMMONITE (Henlyi). FIG. 23.—PENTACRINITE.
FIG. 22.—AMMONITE (Henlyi). FIG. 23.—PENTACRINITE.
These strata furnish a great many organic remains, especially the shells of the conchiferous mollusca and cephalopods, as Ammonites (fig. 22), Belemnites, Nautili, and Pentacrinites (fig. 23), of which a great many varieties are found, also the remains of gigantic reptiles, as the Ichthyosaurus (fig. 24), Plesiosaurus (fig. 25), and others. New forms of animal existence seem to have been created in this period in great abundance, and the waters of the earth once again became the theatre of deposition for the shells and polypidomes of zoophytes and molluscs, which swarmed them in myriads, and another great group of rocks began to be formed, namely, the chalk or "Cretaceous" system, which form the cliffs and downs of our south coasts, and strata of great extent in nearly every part of the world; it differs from limestone only in not being so hard, which is supposed to arise from its not having undergone the changes caused by heat and pressure.
FIG. 24.—ICHTHYOSAURUS.
FIG. 24.—ICHTHYOSAURUS.
FIG. 25.—PLESIOSAURUS.
FIG. 25.—PLESIOSAURUS.
FIG. 26.—NAUTILUS INEQUALIS.
FIG. 26.—NAUTILUS INEQUALIS.
FIG. 27.—ORGANISMS FROM CHALK.
FIG. 27.—ORGANISMS FROM CHALK.
The chalk is interstratifìed with lines of sand, and the lower part is almost entirely sandy, forming the gault and greensand deposits; these each contain organic remains,and must have been the original sand of the sea-bottom before the chalk was deposited on it. These seas must have been the residence of a vast number of reptiles, for the gault contains an enormous number of nodules of what appears to be stone, but which upon closer examination, prove to be coprolites, or portions of the excrement of those creatures partly fossilised, but still retaining phosphate of lime enough to render them valuable manure, and these—like the coal—after being buried in the earth for thousands of years, arenow being brought into use. In these coprolites may be constantly seen the teeth and bones of fishes, together with portions of echini and crustaceans, which had passed through the intestines of these saurian reptiles. Fig. 26 is the shell of a small nautilus (Nautilus inequalis) thus found.
FIG. 28.—AMMONITE FROM THE CHALK.
FIG. 28.—AMMONITE FROM THE CHALK.
This chalk is of a white colour, very light and porous; under the higher powers of the microscope, it appears to be made up of organic forms, as "Foraminifera," and portions of various kinds of shells, crushed and broken into minute fragments (fig. 27). Dr. Carpenter, in his work on the microscope, says: "Many parts of it (the chalk) consist in a great measure of the minuter parts of the smaller kinds of Foraminifera, whose shells are imbedded in a mass of apparently amorphous particles, many of which nevertheless present indications of being the worn fragments of similar shells, or of larger calcareous organisms. In the chalk of some localities, Foraminifera constitute the principal part of the minute organisms which can be recognised with the microscope; in other instances the disintegrated prisms of Pinnæ, or other large shells of the like structure (as Inoceramus), constitute the great bulk." Thefossil remains in the chalk are very numerous and are all of a marine character, the ammonites (fig. 28), belemnites, and other cephalopods, were very prevalent, as were the various Echinodermata, as theHemicidarus intermedia(fig. 29), together with numerous univalve and bivalve mollusca, various crustacea, fish and reptiles. There was some considerable wonderment a few years ago expressed at the skeletons of men being found in the chalk at Guadaloupe; but it has been ascertained that this chalk is a modern formation, being produced by the sea washing and disintegrating the adjacent coral reefs, and depositing a fine white sediment of broken coral on the shore which can hardly be distinguished from ancient chalk; the same process is taking place at the Bermudas and other islands of the West Indies.
FIG. 29.—ECHINUS (Hemicidarus intermedia, Chalk).
FIG. 29.—ECHINUS (Hemicidarus intermedia, Chalk).
In many places the chalk strata contain single lines of flints, running for miles parallel to the layers of chalk; these flints consist of almost pure silica, and it has been a matter of wonder how they got there, but on considering how slowly the deposition of chalk must have taken place, from the formation and death of millions of minute creatures, and that it was once the bottom of a deep sea, the disposition ofthe flints in lines would be accounted for, supposing them to have been formed on that sea-bottom, and the source from which they have been derived is doubtless the petrifaction of sponges, madrapores, &c., there formed. Dr. Carpenter (in the work before referred to) says: "It may be stated, as a fact beyond all question, that nodular flint and other analogous concretions (such as agates) may generally be considered as fossilised sponges or alcyonian zoophytes, since not only are their external forms and their superficial markings often highly characteristic of those organisms, but when sections of them are made sufficiently thin to be transparent, a spongy texture may be most distinctly recognised in their interior."
FIG. 30.—TERTIARY FORMATION.
FIG. 30.—TERTIARY FORMATION.
During the deposition of these secondary strata in the hollows of the surface, but little alteration of the relative situations of sea and land could have taken place, as the deposits for the most part lie conformably to the same hollows or "basins" (fig. 30 will illustrate this); but after the deposition of these strata, there appears to have been a very great disturbance, many chains of mountains were cast up (as the Apennines), carrying upwards with them these deposits; some of the strata were so displaced that they were left in a perpendicular position, as may be seen in several places at the south side of the Isle of Wight. These disturbances, however, did not amount to so general a convulsion as those before described, nor is it known whether all the effects produced on these strata took place at or near the same period of time; they nevertheless appear to have produced an almost total change in the situation of the land and sea, for the "downs" of chalk (on the southern coast of England, for example) were, before these changes, the bedsof seas. This is the last of the great convulsions which the earth has undergone, for the tertiary strata which afterwards began to be deposited rest in the hollows or basins (chiefly in the chalk) then left; the alterations in and since these deposits appear to consist chiefly of the upheaval of certain localities, the depression of others, the evaporation of inland lakes, and the wear and tear of the land from these causes, which are still in continuous action (as from the washing down of cliffs by the sea, and the formation of mud deposits at the mouths of rivers), or the volcanic agencies which in some places (as in Ireland) have cast up basalt over the chalk.
The tertiary strata contain remains of most of the classes of animals now in existence, but yet differing greatly in species, and as the strata approach the surface those species become more and more general; the plants also approach more nearly to those of the present time, but still most parts of Europe possessed a climate almost tropical. The tertiary strata consist chiefly of marine and fresh water deposits in the form of sands and clays, as the "London clay," which extends under London, resting upon a basin of chalk. The last deposits, forming the superficial layer of earth, and the formation last deposited before the creation of man, are called the Diluvium and Alluvium, and contain numerous remains of mammalia, birds, reptiles, and fishes. One of the most extraordinary animals of this period was the Dinotherium, a sort of walrus, which is supposed to have been the largest of quadrupeds, if indeed it was one (fig. 31). The quadrupeds of this, the "Pliocene" formation, are thus described by Professor Owen in his "History of British Fossil Mammals."
FIG. 31.—SKULL OF THE DINOTHERIUM.
FIG. 31.—SKULL OF THE DINOTHERIUM.
FIG. 32.—MAMMOTH, TELEOSAURUS, AND GLYPTODON.
FIG. 32.—MAMMOTH, TELEOSAURUS, AND GLYPTODON.
"At the period indicated by these superficial stratified and unstratified deposits the Mastodon had probably disappeared from England, but gigantic elephants (fig. 32), nearly twice the bulk of the largest individuals that now exist in Ceylon and Africa, roamed here in herds, if one may judge from the abundance of their remains. Two horned rhinoceros, of at least two species, forced their way through the ancient forests or wallowed in the swamps. The lakes and rivers were tenanted by hippopotami, as bulky and with as formidable tusks as those of Africa. Three kinds of wild oxen, two of which were of colossal size and strength, and one of them maned and villous like the bonassus, found subsistence on the plains. Deer as gigantic, in proportion to existing species, were the contemporaries of the oldUriandBisontes, and may have disputed with them the pasturage of that ancient land. One of these extinct deer is well known as the Irish elk, by the enormous expanse of its broad-palmed antlers (fig. 33). Another herd proves more like those of the wapiti, but surpassed that great Canadian deer in bulk. A third extinct species more resembled the IndianHippelaphus, and with these were associated the red-deer,the rein-deer, the roebuck, and the goat. A wild horse, a wild ass or quagga, and the wild boar, entered also into the series of British pliocene hoofed animals. The carnivora, organised to enjoy a life of rapine at the expense of the vegetable feeders, to restrain their undue increase and abridge the pangs of the maimed and sickly, were duly adjusted in size and ferocity to the fell task assigned them in the organic economy of the pre-adamite world. Besides a British tiger, of larger size and with proportionately longer paws than that of Bengal, there existed a stronger feline animal (Machairodus) of equal size, which from the great length and sharpness of its sabre-shaped canines, was probably the most ferocious and destructive of its peculiarly carnivorous family. Of the smaller felines, we recognise the remains of a leopard, a large lynx, and of a wild cat. Troops of hyenas,larger than the Crocuta of South Africa, which they most resembled, craunched the bones of the carcases relinquished by the nobler beasts of prey, and doubtless often themselves waged the war of destruction on the feebler quadrupeds.
FIG. 33.—IRISH ELK.
FIG. 33.—IRISH ELK.
THE PALEOTHERIUM.
THE PALEOTHERIUM.
"A savage bear, surpassing theUrsus feroxof the Rocky Mountains, found its hiding-place, like the hyæna, in many of the existing limestone caverns of England. With theUrsus spœluswas associated another bear, more like the common European species, but larger than the present individuals of theUrsus Arctas. Wolves and foxes, the badger, the otter, the foumart, and the stoat, complete the category of known pliocene carnivora of Britain."
In the time of these the last of the tertiary strata, there appear evidences of a degree of cold much greater than at present exists; this seems to be pretty well proved by the "boulder formation," or prevalence of erratic blocks of stone, the progress of which have been traced from their sources of origin to hundreds of miles distant, and there is no conceivable power which could have carried them but the floating fields of ice or glaciers; both of these sources are capable of this removal, for it is not uncommon to find large pieces of rock and layers of gravel floating on masses of ice. Glaciers are formed by the snow on the sides of mountains becoming hardened by being partially melted and again frozen, and at every melting the fluid tends to descend, when it again becomes frozen, always adding to the lower part and carrying away from the upper. In this way whole glaciers of many miles extent become unfixed, and as fresh snows are added to their upper parts, they descend slowly, entangling with them and tearing away the rocks in their vicinity. When they arrive at the sea and float forth, these rocks are borne with them.
But there are as yet no traces of man, not one small fragment of his skeleton, not one minute relic of his constructive powers, although the bones of man are as capable of preservation as those of any other animal, being the same in structure and composition; the remains of hundreds of fragile insects, seeds, leaves, and all sorts of organic structures, are found perfectly preserved (fig. 34). The only way, therefore, of accounting for the absence of any organic remains of man, is the assumption that he was not then created; and this is confirmed by the fact that in the very uppermost layers of the earth's surface his bones and theworks of his hands are found in great abundance; it is therefore with good reason that we come to the conclusion, that he was the last creature formed by his Maker. That the creation of man was pre-intended by God, seems also almost proved by the numerous objects before created, capable of ministering to his use and happiness—capable of exercising his constructive and inquiring capabilities—suitable to his imagination and tastes, and his only, and which would serve no purpose of utility to the mere brutes. Of what use, to any creature but man, is coal—of what use the metals? Of what avail is it to any of the lower animals, that God has caused glass and other transparent substances to have the power of refracting the rays of light? but without which not one-half of our knowledge of His wondrous works would ever have been obtained, for it is upon this property alone that the powers of the telescope and microscope depend. Of what use to any but man are fire, artificial light, and galvanism? and yet all these were created long before man was.
FIG. 34.—FOSSIL LEAVES.
FIG. 34.—FOSSIL LEAVES.
FIG. 35.—SCULPTURE FROM NINEVEH.
FIG. 35.—SCULPTURE FROM NINEVEH.
It has often been asked, What does man gain by the study of the sciences? Besides the enlarged views which they give him of his Creator's goodness and power, they at this time are fast reaching towards the demonstration of many obscure passages of His Holy Word as revealed to us in the Scriptures. The study of truth can moreover never lead one into error, and a habit of drawing correct conclusions from the facts presented is useful to every one. Geology has confirmed one great truth in Scripture, and overthrown the greatestgroundwork of Deism, for it had been asserted by many that man (and indeed all other creatures) had risen to his present state by slow developments, and no proof to the contrary had ever been given. But geology has shown that at a certain era man was created, that (as is stated in Scripture) he was the last of God's works, and that neither before that time had he existed in an undeveloped form, nor since has he altered one jot from his original configuration; and the same may be said of all other creatures, whatever may be pretended to the contrary, for from the sculptures brought from the ruins of Nineveh (at least 3000 years old), there appears the same external form (fig. 35), both of man and what animals are there depicted, and his and their habits were described by the very earliest writers to be then as now. But with respect to the form of the earth's surface it is otherwise, there being a slow but continuous change. Those parts of the land exposed to the tides and action of the waves, are washed away, and the rivers are constantly bringing down soil to deposit it at their mouths, formingthose tracts of land known as "deltas;" every wind that blows takes away some dust from the higher and deposits it on the lower parts of the earth's surface, so that, to use the words of the Prophet Isaiah, "every valley shall be exalted and every mountain and hill shall be made low." But this alteration is so slow that it takes hundreds of years to make but a small difference, yet a difference there undoubtedly is, and a time must come when the alteration will be such as has been shown to have taken place in far-back times and recorded in the strata in evident language, for though the changes are slow the result is inevitable. It has been ascertained that the northern part of Sweden has been steadily rising and the southern part sinking to a corresponding degree for many centuries past, and that the west coast of Italy has been elevated for ages past, at the rate of not quite an inch yearly. Volcanic actions are raising some lands and depressing others (in the earthquakes of 1822 and 1835, the whole of Chili from the Andes to the sea, and probably the bed of the sea to an unknown extent, was elevated considerably), rain and the rivers carry away land into the sea, the beds of many seas are being filled up by coral polypes and protophytes, so that the beds of these seas must ultimately be the land whilst the lower parts of the land will become sea.
After these various changes upon the surface of the earth, from a climate hot beyond anything now existing, from a surface rocky and full of fissures and inequalities, studded with islands and continents, abounding in marshes and swamps—from a state of atmosphere in which the higher animals could not live—to the present division and separation of land and water, of oceans and seas, of islands and continents, well supplied with rivers to drain off the superfluous fluid and supply highways easy to traverse in boat or canoe, the world remains, a fitting habitation for the creatures God has placed upon it on every hand. Forests to shelter the wild animals from the rains and heat of the sun; waters for those who dwell or delight in them; metals, stone, earth, and wood for man to exercise his ingenuity upon, and other innumerable things contributingto his comfort or luxury—all freely given by the hand of his Heavenly Father for his well-being and delight, that he may lack no excuse to worship and adore Him, and this delightful earth, as Milton says:—
Brought forth the tender grass, whose verdure cladHer universal face with pleasant green,Then herbs of every leaf, that sudden flower'dOpening their various colours, and made gayHer bosom smelling sweet: and these scarce blown,Forth flourish'd thick the clustering vine, forth creptThe swelling gourd, up stood the corny reedEmbattled in her field, and the humble shrub,And bush with frizzled hair implicit: lastRose as in dance the stately trees, and spreadTheir branches hung with copious fruit, or gemmedTheir blossoms; with high woods the hills were crowned.With tufts the valleys, and each fountain side,With borders, long the rivers: that earth nowSeem'd like to heaven, a seat where gods might dwellOr wander with delight, and love to hauntHer sacred shades.
Brought forth the tender grass, whose verdure cladHer universal face with pleasant green,Then herbs of every leaf, that sudden flower'dOpening their various colours, and made gayHer bosom smelling sweet: and these scarce blown,Forth flourish'd thick the clustering vine, forth creptThe swelling gourd, up stood the corny reedEmbattled in her field, and the humble shrub,And bush with frizzled hair implicit: lastRose as in dance the stately trees, and spreadTheir branches hung with copious fruit, or gemmedTheir blossoms; with high woods the hills were crowned.With tufts the valleys, and each fountain side,With borders, long the rivers: that earth nowSeem'd like to heaven, a seat where gods might dwellOr wander with delight, and love to hauntHer sacred shades.
Brought forth the tender grass, whose verdure clad
Her universal face with pleasant green,
Then herbs of every leaf, that sudden flower'd
Opening their various colours, and made gay
Her bosom smelling sweet: and these scarce blown,
Forth flourish'd thick the clustering vine, forth crept
The swelling gourd, up stood the corny reed
Embattled in her field, and the humble shrub,
And bush with frizzled hair implicit: last
Rose as in dance the stately trees, and spread
Their branches hung with copious fruit, or gemmed
Their blossoms; with high woods the hills were crowned.
With tufts the valleys, and each fountain side,
With borders, long the rivers: that earth now
Seem'd like to heaven, a seat where gods might dwell
Or wander with delight, and love to haunt
Her sacred shades.
After all these various elevations and depressions, the land remains at this present time in the form of large tracts occupying about a third of the superficial area of our globe. The largest tract is made up of Europe, Asia, and Africa, which constitute one continuous area, Africa being almost severed from the others, but still united by the Isthmus of Suez; the tract next in size to this is made up of North and South America, these again are nearly severed, but still united by the Isthmus of Panama or Darien; next come Australia and Greenland, but these, although very large, are yet not to be compared in size with the former two; there are numerous other large islands, as Borneo, New Guinea, New Zealand, Madagascar, Iceland, England, Ireland, &c., and scores of smaller ones.
The temperature of the earth (as a general rule) is greatest on the equator and diminishes gradually towards each pole, but this is by no means invariable, for two places of the same latitude may be very different in climate, and a system of lines passing round the earth from east to west,would each pass through regions of various temperatures, or what is the same thing, lines made to follow the same temperature would have to make various curves and contortions; such lines have been constructed and are called "isothermal" lines. The causes of this are to be found in the various currents of the ocean, the tides and winds, and in the proximity to the ocean of snow-clad mountains and arid plains. The variation of latitude in these lines sometimes reaches as much as seven degrees.
Europe contains about 3,900,000 square miles of surface, and is separated from Asia by the Caucasus, Caspian Sea, River Ural, and Uralian Mountains. It is about 3000 miles long and 2400 broad, about two-thirds being plain and table-land and one-third mountain land. The chief mountain ranges are those which run through Norway and Sweden in a north-westerly direction, and the mountain system along the south part from Portugal to Turkey. This last includes the Pyrenees, which runs from the Bay of Biscay to the Mediterranean, the highest peak of which is Mont Maladeta (11,500 feet); the Alps, the highest point of which is Mont Blanc (15,748 feet); the Apennines, the highest point of which is Mont Viso (12,586 feet); the Carpathian Mountains, extending from Presburg in Hungary towards the sources of the Waag and March, the highest point being Mont Lemnitz (7962 feet); and the Balkan range, which may be considered a continuation of the Alps eastward, runs as far as the Black Sea, together with many inferior ranges and branches.
The climate of Europe embraces a range from the temperate to extreme cold. It is bounded by the Arctic Ocean on the north, Asia eastward, the Mediterranean Sea southward, and the Atlantic Ocean to the westward; it contains two great inland seas, the Black Sea and the Caspian Sea. There are three great volcanoes in Europe, Hecla, Vesuvius, and Etna, but the plains of Auvergne contain many which are extinct.
Asia contains the highest mountains and the most extensive table-lands in the world. It is somewhat square, being bounded northwards by the Arctic Ocean, westward byEurope, southward by the Indian Ocean, and eastward by the North Pacific, and contains about 17,500,000 square miles; the greater part is made up of two extensive tracts of elevated land called table-lands, although these are often varied by valleys and mountain chains of great extent, yet as a whole, they are from 5000 to 10,000 feet above the level of the sea. The eastern table-land is that of Thibet and the Great Desert Gobi, and the western that of Persia.
Asia contains many great mountain chains, the chief of which are the Himalaya Mountains, which run along the centre of its southern part and contain some of the highest peaks in the world; the Dhawalagiri is 28,072 feet high, but there are some others supposed to be as high.
The Altai or Gold Mountains, forming a boundary to the lowlands of Siberia, the highest peak of which is called the Katunia Pillars, and is 11,000 feet high.
The Thain-schan or Celestial Mountains, the Kuen Lun, and the Hindoo Coosh, all of which run pretty nearly east and west, while the ranges called Uralian, Bolor, Khingan, and Chinese chains run nearly north and south.
Africa is somewhat triangular, with its base towards Asia and its apex pointing southward. It is bounded northwards by the Mediterranean Sea, and at its east side by the Red Sea and Indian Ocean, while the Atlantic flows on its south-west side. In Africa is the largest desert in the world, the Great Desert of Sahara; it occupies nearly all the northern part, the southern has but few mountains of great extent, but from their elevation and the amount of waters brought down by rivers, it is supposed that the centre has very high table lands. At the north-western part is an extensive mountain system (the Atlas) covering with its branches nearly 500,000 square miles, and sending its slopes to bound the great Desert northwards.
The great tract of land comprising North and South America extends in a longitudinal direction pretty nearly north and south through 130 degrees of latitude, or nearly 8000 miles. This great tract is divided by a narrow neck of land (the Isthmus of Panama) into two pretty equal portions; the northern part is peculiar, from containinga number of lakes of immense extent, deserving well the name of inland seas, and both northern and southern divisions for the great number and extent of their water-courses. The whole of this great tract of land is traversed from end to end by an extensive chain of mountains, the longest in the world; at its southern part it forms the Andes, from which a range is continued through the Isthmus, and onwards to form the Rocky Mountains. In the southern division this immense chain passes on the west side of the land close to the sea, is of great elevation in some parts, has some of the highest mountain peaks in the world, and volcanoes also, the highest being in the Andes (Popocatapetl is about 16,000 feet high); but from the western side of the continent the land descends gradually to the eastern. In South America are some of the highest table-lands known, great elevated tracts in connection with the mountain ranges.
Australia in its interior is but little known, but the whole aspect of the island appears to be flat, and to have but little elevation, while Greenland and the great tracts of the northern regions beyond, deserve more the name of glaciers, being almost entirely a mass of barren rocks and snow.
The water-courses of these various great tracts of land are all determined by the formation of the surface, but the amount of water which is carried into the oceans by the rivers of any district is always in proportion to the amount of vegetation in that district; thus in Europe, Asia, and America, the number and extent of these correspond with the great fertility of the soil, while the northern and western part of Africa—the Great Desert—give off scarcely any of adequate extent, the Nile appearing to receive its supply from the central parts further south. The reason of it is this: wherever there is vegetation, either in the form of grassy prairies or forests, there is also a great reduction of temperature from the radiation and evaporation, and the consequent formation of rain, dew, or snow, which falling on the ground produces streams, &c.
Excepting the great tracts of land named, and islands too numerous to be mentioned, the whole surface of the earth iscovered with water, the great divisions of which (called Oceans) are, the Arctic Ocean, to the north of Europe, the Atlantic, between America, Europe, and Africa, the Pacific between Asia and America, and the Indian Ocean between Africa and Australia.
The foregoing is a very bare outline of the land and water covering the surface; it may suffice, however, to call to mind the main features of the earth as it is now disposed. There can be little doubt that the great variety of climate, whether hot or cold, moist or dry, is one of the greatest sources of happiness that can be well imagined; it stimulates to research, travel, and inquiry into the works of God; every change experienced tends to make man search for further change, every new scene makes him compare it with others; and the acquirement of a knowledge of places, and a general idea of the whole world, expands his mind, enables him to appreciate the good gifts he has received, and affords a source of satisfaction beyond almost any other kind of enjoyment.