TERRESTRIAL MAGNETISM.

Fig. 21

Let S represent the centre of the sun, and the circle a vertical section of the sun, cutting; through the centre,—SJ being in the equatorial plane of the vortex, of which ZZ′ represents the axis. As the ether descends the poles or axis at Z, it is met by the current down the opposite pole, and is thence deflected in radii along the equatorial plane to J. But on the side S, the ether is opposed by the body of the sun; its direction is consequently changed, and cross currents are produced, assuming it as a principle, that the ethereal fluid is permeable by other currents of similar matter, and that it tends always to move in right lines. This granted, it is evident that, in passing the sun, the quick moving ether forms a conical shell, (the sun being at the apex,) so that the strongest current of ether is in this conical shell, or at the surface of this conical space. As the plane of the ecliptic is not much inclined to the sun’s equator, and this last probably not much inclined to the plane of the vortex, should the earth have the sameheliocentriclongitudeat the time, (or nearly the same,) she would be in an eddy, as respects the radial stream, and be protected from its full force by the body of the sun.

Now, the ether comes down the axis with the temperature of space, and may possibly derive alittleadditional temperature in passing over the body of the sun; so that in this position the earth is protected from the chilling influence of the radial stream, by being protected by the body of the sun. And although, from the immense velocity of the ether, it cannot derive much additional temperature, there may still be an appreciable difference, due to this cause.

It is the chilling influence of the ethereal stream which originated the idea among philosophers, offrigorific impressions, darted from a clear sky. In some years the sun will be nearly in the centre of the system; in other years the axis of the vortex will not come near the sun. And as the sun’s longitude may vary through the entire circle, it may happen that the earth’s longitude shall coincide in winter or summer, or spring or autumn. When, however, the earth emerges from the protection of the sun, and enters the conical shell, considered as a space of considerable depth, she will again be exposed to the full force of the radial stream, rendered more active by the previous deflection, and by the numerous cross currents pervading it; so that a mild and calm winter may be succeeded by a cold and stormy spring. The present season, (1853) the earth’s longitude coincided with the sun’s longitude in about 135°, and consequently was in the conical space spoken of, during February and March; but the radiusvectorof the sun’s centre, being then less than 300,000 miles, the protection was not as complete as it is sometimes. Still, the general fineness of these months was remarkable; yet in April and May, when the earth became again exposed to the action of the solar stream, the effect was to retard the spring, and disappoint the prognostications of the weather-wise. In applying these principles, wemust consider the effect in those latitudes which are more readily affected,—that is, in the temperate zone, midway between the two extreme zones of heat and cold.

In 1837 and 1838, the longitude of the sun’s centre corresponded with the earth’s, in August and September, when there was neither rain nor electrical excitement; and consequently those seasons were sickly over the whole country. Now, there is another cause which renders the months of August, September, and October, deficient in electrical energy, and consequently more prone to be sickly. If, therefore, the two causes unite their influence, the autumnal months will be more sickly at those times. This last cause, however, only affects thenorthern latitudesin autumn, and consequently,ceteris paribus, the autumnal months should not be so proverbially sickly in the southern hemisphere. This is, however, only suggestive.

Again, in 1843, the winter was very mild in January and February; but in March it turned cold and stormy, and continued through April. In this year the longitude of the sun was nearly the same as in 1853,—the two longitudes of the earth and sun corresponding about the last of January; but in March, the earth forsook the comparative calm produced by the sun’s position, and hence the greater cold.[25]

Thus it appears at every step we take, that the different members of the solar system do indeed belong to the same family, whose least motions have their influence on the rest. Who could have anticipated that the position of Jupiter in his orbit had anything to do with the health of this remote planet, or with the mildness of its seasons? In this we have a clue to the origin of that astrological jargon about planetary aspects being propitious or malign. Philosophers are even yet too prone to wrap themselves in their mantle of academic lore, and despise the knowledge of the ancients, while there is reason tobelieve that the world once possessed a true insight into the structure of the solar system. As war became the occupation of mankind, under the despotic rule of ambition, so truth retired, and ignorance seizing upon her treasures, has so mutilated and defaced them, that their original beauty no longer appears. Let us hope that the dawn of a better day is approaching.

There is yet another cause (just alluded to) which modifies the action of the vortices.

We have shown that, if the periodic times of the planets are approximately equal to the periodic times of the contiguous parts of the solar vortex, the density of the ether is directly as the square roots of the distances from the centre. As the earth is at her perihelion about the first of January, the density of the surrounding ether is then less than in other parts of the orbit; consequently, if we suppose that there is a continual tendency to equilibrium, the ether of space must press inwards, during the time between the perihelion and aphelion, (i.e.from January to July,) lowering the temperature and increasing the electrical action of those months. As the distance from the sun is most rapidly augmenting about the first of April, and the effective power of the sun’s radiation is most rapidly increasing in May; by combining the two we shall find, that about the first of May we shall have considerable electrical action, and cold weather. This explains also, in part, the prevalent tradition of certain days in May being very cold.[26]When the earth leaves the aphelion, a reaction takes place, being most rapid in September. There is then anescapeof ether from the earth, which keeps up the temperature, and causes these months to be sickly, from the negative electrical state of the atmosphere. In the southern hemisphere, the effects in the same season willbe reversed, which may partly account for the greater degree of cold in that hemisphere, and for accelerating the approach of both summer and winter, while in the north they were both retarded.

We must now advert to another cause, which of all others is probably the most important, at least to the other members of the solar system.

In every part of the solar vortex the ether is continually pressing outwards. We are not now speaking of the radial stream, but of the slower spiral motion of the ether around the axis of the vortex, whose centrifugal force is bearing the whole body of the ether outwards, thus rarefying the central parts, and thus giving rise to the polar influx, from which arises the radial stream. This may be made more intelligible, by reflecting that the polar current is comparatively dense ether, and that the length of the axis of the vortex prevents this influx current coming in sufficient quantities to restore an equilibrium in the density of the medium. Yet, what does come down the poles, is distributed rapidly along the equatorial plane, leaving the space still rarefied. Now we perceive, that in order for the radial stream to continue in action, requires the whole medium of the vortex to be also moving outward; it is therefore continually condensed as it proceeds. This condensation necessarily converts much of the specific heat of the ether into sensible heat; so that thetemperatureof the medium is continually increasing, as the distance from the sun increases.

When we contemplate the solar system as the emanation of one Great Mind, we naturally seek for evidence of the wisdom of a supreme intelligence inallthe arrangements of that system. But, however humbly and reverently we may speak of these arrangements, we can scarcely avoid the wish, that the planetary distances had been differently arranged, if Newton’s doctrine be true, that space is a vacuum, and that the heat of a planet, is inversely as the squares of the distances from the sun.For, to speak of the temperature of space, except as dependent on this law, is one of those many incomprehensible inconsistencies with which philosophers are chargeable. If the Newtonian philosophy is literally true, space hasno temperature, and the surface heat of the planet Neptune is nearly 1,000 times less than on our own globe. Again, on Mercury it is seven times greater, which heat would scorch and consume every organic substance on the earth, and speedily envelope the boiling ocean in a shroud of impermeable vapor. Granting even that space may not be a vacuum, and yet the law of gravitation be true, we may still be allowed to consider both Saturn and Uranus and Neptune, as inhospitable abodes for intelligent creatures; and, seeing the immensity of room in the system, there is no reason why these planets might not have been permitted to revolve nearer the great source of light and life and cheering emanations. To suggest the resources of Omnipotence is no argument. He has surrounded us with analogies which are seen, by which we may attain a knowledge of those which are not seen; and we have every reason to suppose that the great Author of nature is not indifferent to the aspects under which his works reveal him unto his creatures. Yet there is (on the above hypothesis) an apparent want of harmony in the planetary distances; and if frail mortality may be permitted to speak out, an explanation is needed to obviate this seeming anomaly in the economy of the world. The more we learn of the physical arrangements of the universe, the more do they correspond with our experience of the nice adaptation of the means to the end which obtains in our own globe, and we can only judge of other planets by the analogies around us. Here, there, are extremes of temperature it is true: it is necessary there should be, and we can see and understand the necessity in all such cases, and how they conduce to the general average of good. But, astronomers can give no reason why it is necessary that some planets of our system should be placed soremote that the sun is frittered down to a star, whose heatless light is but a mockery to those frigid realms.

Now, according to this theory, the temperature of Neptune may be far more uniform and conducive to life than that of our own globe. The chilling influence of the solar stream at that planet being nearly null, and the temperature of the surrounding space far greater. So also Mercury, instead of being the burning planet of the schools, may suffer the most from cold.

The planet Mars is generally considered, of all the members of the system, most nearly to resemble our own world. The telescope not only reveals seas and continents, but the snowy circles round his poles, which appear to increase and diminish, as his winter is beginning or ending. This planet’s ecliptic is similar to our own in inclination or obliquity, his distance, also, is far greater, and his winter longer; yet, for all this, his snow zones are less than on our own globe. This anomalous fact has, we believe, never been noticed before; but it is explicable on the theory, and therefore confirms it. Mars has no satellite, and therefore his centre will be coincident with the centre of the marsial vortex. There will be nolateral vorticesto derange his atmosphere, and if the axis of his vortex coincides also with the axis of the planet, the central vortex will be continually over the poles,and there will be no storms on the planet Mars. A capital fact connected with this, is the want of belts, as in Jupiter and Saturn; for these planets have satellites, and iftheyare not massive enough, the belts may be produced by an obliquity in the axis of the Jovial and Saturnial vortices. If Mars had an aurora like the earth, it is fair to presume the telescope would ere this have shown it. He is, therefore, in equilibrium. In applying this reasoning to the earth, we perceive that a certain influence is due to the difference of temperature of the ethereal medium surrounding the earth, at perihelion and aphelion, being least at the former, and greatest at the latter.

As a modifying and interfering cause in the action of the vortices, we must mention the great natural currents of the atmosphere, due to the earth’s rotation.

It is considered that the sun is the principal cause of these great currents. By elevating the surface atmosphere of the equator, a lateral current is induced from the north and south; but on account of the enlarging circles of latitude, their direction tends more from the north-east and south-east. These currents are usually called the trades. Without disputing the correctness of this, it may be doubted whether the whole effect is due to the sun. As this principle affects the ocean likewise, it is necessary to look into it; and in order to simplify the question, we will first suppose our globe covered entirely by the ocean, without any protuberant land.

Let us assign a uniform depth of ten miles to this ocean. In theFig. following, the two circles will represent the surface and bottom of the ocean respectively. The axis of rotation is thus represented by the line PP′. Let us consider two particles of water atmandn, as feeling the influence of this rotation; they will, of course, be both urged towards the equator by the axifugal force. Now, every particle in the ocean being also urged by the same force, it might be supposed thatafter a protuberant mass of water had accumulated at the equator EE′, the whole ocean would be in equilibrium. This would not follow. The particle atmis urged by a greater force than n; consequently the particle atnis overborne by the pressure atm. Considering both in the same direction, yet the particle atnmust give way, and move in the opposite direction. Just as the heaviest scale of the balance bears up the lightest, although both gravitate towards the same point. This is so self-evident that it would seem unnecessary to dwell upon it, had not the scientific world decided that the rotation of the earth can cause no currents either in the atmosphere or in the ocean.

Fig. 22

The axifugal forces of the two particlesmandnare directly as the lines Mmand Nn, and if the gravitating forces were also as the radii Tmand Tn, no motion would be produced. Admitting even the Newtonian law to be rigidly exact, the earth cannot be considered a homogeneous globe, but, on the contrary, the density of the central parts must be nearly thirty times greater than the density of the surface of the ocean. The ratio of the gravitating forces of these two particles is, therefore, less than the ratio of their respective radii, and the axifugal tendency of the particle atnis more than proportionally restrained by the central gravitation; and hencemwill move towards the equator, andntowards the poles, as represented in theFig.

It is on account of the overwhelming momentum of the surface waters of the South Pacific over the North, that the Pacific, at Panama, stands six or seven feet higher than the Atlantic. We shall again allude to this interesting fact.

According to newspaper reports of a lecture, delivered in New York, by Lieut. Maury, U. S. N., this gentleman endeavors to explain the currents of the ocean, by referring them to evaporation in the tropics. The vapor leaves the salt of the water behind, and thus, by continual accumulation, the specific gravity of the tropical waters is greater than that of the superficialwaters nearer the poles; the lighter water, therefore, passes towards the equator, and the heavier water below, towards the poles. If this be a correct statement of that gentleman’s theory, fidelity to our standards compels us to question the soundness of the conclusion. The mere fact of the surface water of the ocean being lighter than that of the bottom, cannot on any known principles of science cause any movement of the surface waters towards the equator. When such an acute and practical physicist is driven, by the palpability of the fact that the polar waters are continually tending towards the equator, to seek the cause in the tropical evaporation, it shows that the dogma, which teaches that rotation can produce no motion, is unsound.

Sir John Herschel, in speaking of the solar spots, says: “We may also observe that the tranquillity of the sun’s polar, as compared with his equatorial regions (if his spots be really atmospheric), cannot be accounted for by its rotation on its axis only, but must arise from some cause external to the sun, as we see the belts of Jupiter and Saturn and our trade winds arise from a cause external to these planets combining itself with their rotations, whichalone(and he lays an emphasis on the word) can produce no motions when once the form of equilibrium is attained.”

With respect to the origin of the solar spots, we have no disposition to question the conclusion; but, as regards theprinciplelaid down, that rotation can produce no motions when once the form of equilibrium is attained, we must unequivocally dispute it. If our atmosphere were of uniform density, the rotation of the earth would cause no current such as we have described; with our atmosphere as it is, the result will be different. The momenta of two portions of matter are the products of their inertiæ by their motions, and, in the present case, we must take the inertiæ of equal spaces. A cubic inch of air at the surface, and at three miles above the surface, is as 2 to 1; but their centrifugal velocity varies only as the radiiof the respective spheres, or as 1320 to 1321. In the polar regions, therefore, the momentum of the surface air preponderates, and, in this case, thesurfacecurrent is towards the equator, and the upper current towards the poles. When, however, the centrifugal velocity is considerably increased in a lower latitude, and the curvature of the surface becomes more and more inclined to the direction of that resolved part of the centrifugal force, which is alwaysfromthe axis, the surface layers will evince a tendency to leave the surface, and an intermingling will then take place in the space between latitude 70° and 50°, or in latitude 60°. As this layer is continually urged on in the same direction by the surface layer of latitudes above 60°, the upper layer now becomes a current settingtowardsthe equator, and, consequently, the back current occupies the surface. Now, considering that the rarefying action of the sun is elevating the air under the equator, there must necessarily be an upper current from the equator to the poles; so that if we conceive the two currents to meet about latitude 30°, there will be a second intermingling, and the current from the poles will again occupy the surface. Thus, we regard a part of the effect of the trades to the rotation of the earth, which is the chief impelling power at the poles, as the sun is at the equator; and the latitudes 60° and 30° will be marked by some especial phenomena of temperature, and other meteorological features which do actually obtain. These would be much more marked if the irregular configuration of land and sea, the existence of mountain chains, and the different heating power of different latitudes, owing to the unequal distribution of the land, did not interfere; and the currents of the air (disregarding the deflection east and west) might then be represented by a treble link or loop, whose nodes would vary but little from latitudes 30° and 60°. As it is, it has, no doubt, its influence, although unimportant, when compared with the disturbing action of the ethereal vortices.

There is another phenomenon due to the action of the radial stream, which has given much trouble to the physicist, and which has yet never been explained. This is the horary oscillations of the atmospheric pressure which, in some countries are so regular that the time of day may be ascertained by the height of the barometer. According to Humboldt, the regularity of the ebb and flow in the torrid regions of America, is undisturbed by storms or earthquake. It is supposed that the maxima occur at 9A. M.and 10 ½P. M., and the minima at 4A. M.and 4 ¼P. M.From the morning minimum to the morning maximum is, therefore, five hours; from the evening minimum to the evening maximum is 6 ¼ hours; from the evening maximum to the morning minimum is 5 ½ hours, and from the morning maximum to the evening minimum is 7 ¼ hours. Again, these oscillations are greatest at the equator, and diminish with the increase of latitude.

Fig. 23

If we suppose the earth’s axis perpendicular to the plane of the vortex, and P the pole in theabove figure, and SP the line joining the centre of the earth and sun, M andmwill represent the points in the earth’s equator where it is midday and midnight respectively. The solar stream penetrates the terral vortex; and strikes the earth’s atmosphere along the lines parallel to SP. The direct effect would be to pile up the atmosphere at N and n; and therefore, were the earth at rest, the maximum would be at 6A. M.and 6P. M., and the minimum at midday and midnight; but the earth rotating from N towards M, carries along the accumulated atmosphere, being more sluggish in its motions than the producing cause, which cause is still exercised to force it back to N. From this cause the maximum is now found at K. For a like reason the minimum at M would be found at L, but on account of the motion of the earth being now in the same direction as the solar stream, the minimum is found still more in advance at k; so that, according to the theory, the interval between the morning maximum and the evening maximum, should be greater than the interval between the evening maximum and the morning maximum; and so it is, the first being 13 ½ hours and the last 10 ½ hours. The morning minimum should also be less marked than the evening minimum, and this also is a fact. The effect also should be greater in the tropics than in high latitudes, which again also obtains; being 1.32 French lines at the equator, and only 0.18 at latitude 70°. Had the earth no obliquity, the effect would be as the squares of the cosines of the latitude; but the ratio is diminished by the inclination of the axis. But there are other variations of the barometer of longer period, apparently depending on the phases of the moon, but which cannot be reconciled to the attracting power of the moon as an atmospheric tide; and Arago concluded that they were due to somespecial cause, of which the nature and mode of action are unknown. Perhaps this theory will obviate the difficulty, as although the central vortex comes to the meridian at the same time as the moon, its effect will be different on the inferior meridian to what it is on the superior one; whereas the moon’s attraction should be the same on both. That the passage of a vortex over or near a particular place should affect the barometer, is too obvious to need explanation, and thereforewe may say that the theory will explain all those varieties both small and great, which have caused so much speculation for the last fifty years.

In applying the theory to the magnetism of the earth, we must bear in mind that the earth is probably magnetic by induction, and not in virtue of its own specific action. The rotation of the surrounding ether, and the consequent production of a radial stream, calls the ether into motion within the earth’s interior, as well as on the surface; but it does not follow that the ether shall also enter the earth at its poles and escape at its equator, for the obliquity of the vortex would interfere with this result. It is sufficient that this does occur in the terral vortex immediately surrounding the earth. From late experiments it is pretty well established that the axial direction of the needle, (and of other bodies also,) is due to peculiar internal arrangement in laminæ or layers, the existence of which is favorable to the passage of the magnetic current.

According to the experiments[27]of Dr. Tyndal, it is found that the magnetism of a body is strongest along the line of greatest density. As, therefore, the laminæ of bodies may be considered planes of pressure, when these planes are suspended horizontally, the directive force is greatest, and the longest diameter of the body sets axial. On the other hand, when the body was suspended so that the laminæ were vertical, the longest diameter set equatorial. Now, we know that the crust of the earth is composed of laminæ, just as the piece of shale in Doctor Tyndal’s experiments, and that these layers are disposed horizontally. And whatever force originally arranged the land and water on our globe, it is evident that the continents are longestfrom north to south, and therefore correspond to the natural direction of the magnetic force.

In consequence of the intrinsic difficulties of this question, and the mystery yet attaching to it, we may be permitted to enter a little more minutely into it, and jointly consider other questions of interest, that will enable us to refer the principal phenomena of terrestrial magnetism to our theory.

We have before adverted to the discrepancies in the earth’s compression, as determined by the pendulum, and also to the uncertainty of the moon’s mass, as deduced from the nutation of the earth’s axis. It is also suspected that the southern hemisphere is more compressed than the northern; and other phenomena also point out the inadequacy of the law of gravitation, to account for the figure of the earth.

From the invariability of the axis of rotation, we must conclude that whatever form is the true form, it is one of equilibrium. In casting our eyes over the map of the world, we perceive that the surface is very unequally divided into land and sea; and that the land is very unequally arranged, both north and south, and east and west. If we compare the northern and southern hemisphere, we find the land to the water about 3 to 1. If we take the Pacific portion, and consider the north end of New Zealand as a centre, we can describe a great circle taking in one half the globe, which shall not include one-tenth of the whole land. Yet the average height of the remaining nine-tenths, above the level of the sea, is nearly 1,000 feet. Call this nine-tenths nearly equal to one-fourth of the whole surface, and the protuberant land in the hemisphere, opposite the South Pacific, amounts to 1 ⁄ 30,000 part of the whole mass of the earth, or about 1 ⁄ 700 of the mass of the moon. Again, the mean density of the earth is about 5 ½—water being unity,—and the mean density of the surface land is only about half this: but three-fourths of the whole surface is water. Hence, we see that the materials of the interior of the earth must be eithermetallic or very compressible. To assign a metallic nucleus to the earth, is repugnant to analogy; and it is not rendered even probable by facts, as we find volcanic emissions to contain no heavier elements than the sedimentary layers. Besides, there are indications of a gradual increase of density downwards, such as would arise from the compressibility of the layers. Seeing, therefore, the equilibrium of the whole mass, and the consequent hydrostatic balance of the land in the sea,—seeing also the small compressibility of the solid portions, and the great compressibility of the fluid, the inference is legitimate that the whole is hydrostatically balanced, and that our globe is a globe of water, with an intermediate shell of land, specifically lighter than the fluid in which it is suspended. Where this shell is of great thickness, it penetrates to greater depths, and attains to greater elevations above the surface of the aqueous globe; where it is less thick, it is found below the surface, and forms the bottom of the upper ocean. Recent soundings give much greater depths to some parts of the ocean, than the most elevated land upon the globe. Captain Denham, of H. B. M. ship Herald, lately sounded in 37° south and 37° west, and found bottom at 7,706 fathoms, or about nine English miles.

As the interior portions of our globe are totally unknown, and the compressibility of water is well established, it is just as sane to consider water the most abundant element of nature, as solid land. The great question to ask is, whether there may not be other phenomena incompatible with this supposition? It is plain that the permanency of terrestrial latitudes and longitudes would be unaffected by the conditions we have supposed. Would the precession of the equinoxes be also unaffected? Mr. Hopkins has entered into such an investigation, and concludes: “Upon the whole, then, we may venture to assert that the minimum thickness of the crust of the globe, which can be deemed consistent with the observed amount of precession, cannot be less than one-fourth or one-fifth of the radius of theearth.”These investigations were made on the hypothesis of the interior fluidity being caused by the fusion of the central portions of a solid globe; but it is evident that the analytical result would be the same if these central parts were water, inclosed by an irregularly-spherical shell of land. Nor would the result be affected, if we considered certain portions of the interior of this solid shell to be in a state of fusion, as no doubt is the case.

May not the uncertainty of the mass of the moon, be owing to the fact that this shell is not so rigidly compacted but that it may yield a little to external force, and thus also account for the tides in the Pacific groups, rather obeying the centrifugal force due to the orbit velocity of the earth, than the attraction of the moon?

Since the days of Hipparchus the sidereal day has not diminished by thehundredthpart of a second; and, consequently, seeing that the contraction of the mass must be limited by the time of rotation, it is inferred that the earth has not lost 1 ⁄ 508th of one degree of heat since that time. This conclusion, sound as it is, is scarcely credible, when we reflect on the constant radiation into a space 60° below zero. Admit that the globe is a globe of water, whose average temperature is the temperature it receives from the sun, and the difficulty vanishes at once. Its diameter will be invariable, and the only effect of the cooling of the solid parts will be to immerse them deeper in the water, to change therelativelevel of the sea without changing its volume. This is no puerile argument when rightly considered; but there is another phenomenon which, if fairly weighed, will also conduct us to the same views.

It is now a fact uncontroverted, that the sea does actually change its level, or rather, that the elevation of continents is not only apparent but real. The whole coast of Sweden and Finland is rising at the present day at the rate of four feet in a century, while on the south a contrary effect is produced. Various hypotheses have been formed concerning this interesting fact. Yet from the indications of geology, it must have been an universal phenomenon in the early ages of the world, in order to account for the emersion of sedimentary deposits from the fluid which deposited them. May not internal fires be yet spreading, and the continents expanding instead of contracting? And may there not be an inequality in this process, so as necessarily to immerse in one direction nearly as much as to elevate in another? One fact is certain, the elements are scattering the materials of the land along its Oceanic coasts, which of itself must produce a very minute effect in disturbing the hydrostatic balance; but a more efficient agent is the earthquake and volcano.

The upheaving of tracts of land by earthquakes, as on the coast of Chili would thus be satisfactorily explained, by attributing a certain resistance due to cohesion or friction preventing agradualchange of level, but producing it suddenly by the jar of the earthquakes. May we not inquire also, whether the facility with which the earth seems moved by this destructive agent, does not point to the same solution as the irregularity of the figure of the earth?

This is a subject on which it is allowable to speculate, especially if any light can be thereby thrown on the still more mysterious source of terrestrial magnetism. It is for such a purpose that we have permitted ourselves to digress from that subject. In this connection we also may acknowledge our indebtedness to the sacred volume for the first germ of this theory of the weather.

Believing in the authenticity of the Mosaic history of the deluge, the author found it difficult to refer that event to other than natural causes, called into action by the operation of other causes, and all simultaneous with the going forth of the fiat of Omnipotence. Thus reasoning, he was led to regard the deluge as a physical phenomenon inviting solution, and as a promisingexponent to the climatology of the early world. He looked upon the bow of promise, as the autograph of the Creator, the signature to a solemn bond, upon which the eye of man had never before rested. But if there was no rainbow before the deluge, there was no rain; and following up this clue, he was not only enabled to solve the problem, but also led to the true cause, which produces the principal commotions in our atmosphere.

Science boasts of being the handmaid of religion; yet there are names of note in her ranks who have labored rather to invest this phenomenon with the mantle of fable, and to force it into collision with the records graven on the rocky pages of geognosy. But the world is ever prone to be captivated by the brilliancy of misapplied talents, instead of weighing merit by its zeal in reconciling the teachings of those things which are seen, with those which are revealed.

If our globe be constituted as we suppose, the land might experience repeated submersions, without involving the necessity of any great departure from established laws. And we might refer to the historical record of one of these, with all the minute particulars as positive data, imposing on us the necessity of admitting that the solid parts of the globe are hydrostatically balanced in the sea. But, modern science is not always correctly defined when called the pursuit of truth, nor human learning the means of discovering it.

If we could divest ourselves of this prejudice, we should have a ready solution of the difficulty presented by the earth having two north magnetic poles, and probably two also in the south. For, by regarding the old and new continents as two distinct masses of land whose bases are separated by 6,000 miles of water, we recognize two great magnets, dependent, however, for their magnetism, on the rotation of the terral vortex.

This is no place to enter into a lengthy discussion of such a difficult subject as magnetism, but we may be allowed to entera protest against the current theory of electro-magnetism, viz.: that a force is generated by a galvanic current at right angles to the producing cause, which is contrary to the fundamental principles of mechanics. We may conceive that a current is induced from or to the surrounding space by the rarefaction or condensation attending the transmission of such a current along a wire, and that rotation should follow, just as a bent pipe full of small holes at the lower end, and immersed in water as a syphon, will generate a vorticose motion in the water; but mere juxtaposition, without participation and communication with the general current, is irrational, and, therefore, not true.

We have always regarded a magnetic needle as a part of the great natural magnet, the earth; that its north pole actually points to the north, and its south pole to the south; and, being free to move, it is affected by the circular motion of the surrounding ether, and by every motion by which the ether is directed. If there was any attraction between the earth and the needle, opposite poles would be presented, but it is not so—the force is merely directive.

Let us now see whether we cannot assign an adequate cause for the secular and periodic variations in the inclination and declination of the needle. These have been generally referred to changes of temperature, as in fact, also, the magnetism of the earth is sometimes ascribed to galvanic or electric currents, called forth by a daily change of temperature. Our theory gives a totally different explanation of these variations.

In the northern hemisphere, the north point of the needle moves from east to west in the morning from about 8 ½A. M.to 1 ½P. M., and returns to its mean position about 10P. M.It then passes over to the east, and again returns to its mean position about 8 or 9A. M.The analogy of this motion, withthe horary changes in the barometer, indicate a common origin. Humboldt, in the instructions he drew up for theAntarcticExpedition under Sir James Ross, says: “The phenomena of periodical variations depend manifestly on the action ofsolar heat, operating probably through the medium of thermo electric currents induced on the earth’s surface. Beyond this rude guess, however,nothing is yet known of their physical cause. It is even still a matter of speculation whether the solar influence be a principal or only a subordinate cause.” That the sun may exert a modifying influence on the phenomenon is not unlikely, but that he cannot be the principal cause, is evident from the following considerations. These horary variations of the magnetic needle are as great at the bottom of deep mines far removed from solar influence, as on the surface. They are as great,ceteris paribuson a small island in the midst of the ocean, as in the interior of continents, where the heating power of the surface is vastly greater. They are extremely regular, so that between the tropics, according to the sagacious Humboldt, “the time of the day may be known by the direction of the needle, as well as by the height of the barometer.”

But what is the cause of these variations? This question is the most difficult of all physical problems, and we shall only aim at indicating the causes which are yet perhaps too intricately involved to afford a positive numerical determination. Admitting the existence of two principal solid masses whose general direction is from south to north, and that these masses are more susceptible of permeation by the ethereal fluid than the waters in which they are suspended, we have a general solution of the position of the magnetic poles, and of the isogonic, isoclinic, and isodynamic lines. Considering, too, that the southern poles of these masses are the points of ingress, and the northern poles the points of egress, it is easily understood that the ethereal medium having the temperature ofspace, will cause the southern hemisphere to be colder than the northern, and also that the magnetic poles will be the poles of maximum cold, and the centres respected by the isothermal and isogeothermal lines.

The general direction of the magnetism of the earth may be considered as the controlling influence, therefore, in determining the position of the magnetic needle; but there are other causes which, to some extent, will modify the result. That half of the globe turned away from the sun will partake of the density of the ether at that distance, which is greater than on the side next the sun; the magnetic intensity ought, therefore, to be greater in the night than in the day. The poles of the great terrestrial magnets, or even the position of a magnetic needle on the surface, are continually placed by the earth’s rotation in a different relation to the axes of the terral vortex, and the tangential current, which is continually circulating around the globe, has its inclination to a given meridian in a perpetual state of change. If we conceive that there is a tendency to force the needle at right angles to this current, we shall have an influence which varies during the day, during the year, and during the time occupied by a complete revolution of the node. The principal effect, however, of the horary variation of the needle is due to the radial stream of the sun, which not only penetrates the atmosphere, but also the solid crust of the earth. Its principal influence is, however, an indirect influence, as we shall endeavor to explain.

No fact in the science of electro-magnetism is, perhaps, better established than the disposition of an ethereal current to place itself at right angles to the magnetic meridian, and conversely, when the current is not free to move, to place the needle at right angles to the current. Now, the terrestrial magnet or magnets, may be considered to be surrounded by a body of ether in rotation, which, in the earth, on its surface, and for some distance from the surface, is made to conform to thegeneral rule, that is, to circulate at right angles to the magnetic meridian. Outside this again, the ether more and more conforms to the position of the axis of the vortex, and this position varying, it must exertsomeinfluence on the surface currents, and, therefore, change in some degree the position of the magnetic meridian. The radial stream comes from the sun in parallel lines, and strikes the globe and its superficial ethereal envelope just as we have shown its action on the atmosphere; but in this last case the magnetic equator is not a great circle, neither can we suppose its effects to be an accumulation of a fluid which is imponderable at points 90° from the plane passing through the centre of the earth and sun, and coincident with the plane of the central meridian, and a depressing effect on that meridian. Its precise influence must be, from the nature of the cause, to deflect the circular current towards the poles, in places less than 90° from the meridian, and a contrary effect must be produced in places greater than 90° from the meridian. Let us assume, for argument’s sake, that the magnetic poles of the earth correspond to the poles of rotation, the parallels of latitude will, therefore, represent the ethereal currents circulating around the globe. Now, at sunrise, the radial stream of the solar vortex is tangential to the surface, and, therefore, can produce no change in these currents. As the sun ascends say about 8 or 9A. M., the radial stream striking only the surface of the earth perpendicularly in that place where the sun is vertical (which we will suppose at the equator), streams off on every side, as the meridians do from the pole, and the circles of latitude (that is the ethereal currents) being parallel to the equator, they are met by the radial stream obliquely, and deflected towards either pole. By this deflection they are no longer at right angles to the meridians. But, from the principle of reaction above noticed, the magnetic meridians will place themselves at right angles to the current, or, in other words, the magnetic pole will change its position on the surfaceof the earth with respect to that particular place. But, in other parts of the world, the meridians are in opposite phases at the same instant of absolute time; therefore, the magnetic poles are not points, but wide areas enclosing the magnetic poles of all the countries under the sun. As this conforms to observation, it is worthy our especial attention, and may be understood by the subjoinedfigure, in which the oblique curves represent the course of the tangential current in the different positions of the sun, the parallel lines representing the solar radial stream.

Fig. 24

As the sun gains altitude the action of the radial stream is at a greater and greater angle to the circular currents, and attains its maximum at noon, still acting, however, after noon; but seeing that the circular current possesses a force of re-action, that is, that the magnetism of the earth is ever striving to bring these currents to their natural direction, an hour or two after noon, the currents tend again to the equator, and the maximum deflection is passed, and finally ceases a few hours after sunset. Now let us attend to what is going on on the opposite side of the world. The radial stream passing over the polar regions, now produces a contrary effect; the ethereal atmosphere of the great magnet is accumulated on the farthest side from the sun,by the action of the radial stream passing over the polar region, the parallel currents are now bent towards the equator, being at a maximum in places where it is an hour or two past midnight. Before they were concave to the equator, and now they are convex; the magnetic meridian is therefore deflected the contrary way to what it was in the day time, by the same principle of reaction. After the maximum, say at 4A. M., the deflection gradually ceases, and the magnetic meridian returns to its mean position at 8 or 9A. M.These times, however, of maximum and minimum, must vary with the time of the year, or with the declination of the sun, with the position of the moon in her orbit, with the perigee of the orbit, and with the place of the ascending node; there are also minor influences which have an effect, which present instrumental means cannot render appreciable.

What says observation? The needle declines from its mean position in the whole northern hemisphere to the westward, from about 8.30A. M., until 1.30P. M.; it then gradually returns to its mean position by 10A. M.After 10P. M., it passes over to the eastward, and attains its maximum deflection about three or four hours after midnight, and is found again at its mean position about 9A. M.Now, this is precisely the direction of the deviation of the magnetic meridian, the needle therefore only follows the meridian, or still continues to point to the temporary magnetic pole. And although we have assumed, for the sake of simplicity, that the mean magnetic pole corresponds to the pole of rotation; in truth there are two magnetic poles, neither of which correspond; yet still the general effect will be the same, although the numerical verification will be rendered more difficult.

In the southern hemisphere the effect is the reverse, (this southern hemisphere, however, must be considered separated from the northern by the magnetic equator, and not by the geographical one,) the needle declines to the eastward in themorning, and goes through the same changes, substituting east for west, and west for east. Does observation decide this to be to be a fact also? Most decidedly it does; and this alone may be considered a positive demonstration, that the theory which explains it is true. The contrary deflection of the needle in the northern and southern hemisphere may be formally proclaimed as utterly beyond the reach of the common theory of magnetism to explain. This difficulty arises from considering the needle as the disturbed body instead of the earth; and also from the fact that the effect of solar heat must be common to needles in both hemispheres, and act upon similar poles, and consequently the deflection must be in the same direction.

But a still more capital feature is presented by the discovery of Colonel Sabine, that the deflection is in contrary directions at the Cape of Good Hope, at the epoch of the two equinoxes. This arises from the great angle made by the magnetic meridian at this place, with the terrestrial meridian—the variation being by Barlow’s tables, 30° to the westward. The sun varies in declination 47° throughout the year. At the southern solstice, therefore the radial stream strikes the circular current on the southern side, and deflects it towards the equator, rendering the declination to the westward in the morning; but at the northern solstice the radial stream strikes the current on its northern side, and the deflection is eastward in the morning. And the vicinity of the Cape of Good Hope is, perhaps, the only part of the world where this anomaly will obtain; as it is necessary not only that the declination shall be considerable, but also that the latitude shall not be very great.

Observation also determines that the amount of the horary variation increases with the latitude. Near the equator, according to Humboldt, it scarcely amounts to three or four minutes, whilst it is from thirteen to fourteen minutes in the middle of Europe. The theory explains this also; for as the circles recede from the equator, the angles made by their planes with thedirection of the radial stream increases, and hence the force of deflection is greater, and the effect is proportioned to the cause. We have also a satisfactory explanation of the fact that there has not yet been discovered a line ofno variation of horary declinationas we might reasonably anticipate from the fact that the declinations are incontrary directionsin the northern and southern hemisphere. This is owing to the ever-varying declination of the sun. There would be such a line, no doubt, if the axis of the earth were perpendicular to the plane of the orbit, and the magnetic pole coincided with the pole of rotation: for then the equator would be such a line.

But there are also irregular fluctuations in the direction of the magnetic needle. These depend on the moon, and are caused by the passage of the vortices over or near to the place of observation. The action of these vortices is proved to be of variable force, whether arising from atmospheric conditions, or due to an increased activity of the ethereal medium throughout the whole system, is at present immaterial. They do vary, and sometimes the passage of a vortex will deflect the needle a whole degree. At other times, there are magnetic storms extending over a great part of the earth’s surface; but there is reason to suppose, that the extent of these storms has been over estimated. Thus, on the 25th of September, 1841, a magnetic storm was observed in Toronto, and at the same time there was one felt at the Cape of Good Hope. There is no great mystery in this. If we suppose the axis of the central vortex, for instance, to have passed Toronto in latitude 43° 33′ north, in ordinary positions of the moon, in her orbit, the southern portion of the axis would be in 33° or 34° south latitude, and consequently would have passed near the Cape of Good Hope on the same night. Now, we certainly could not expect the northern portion of the vortex to be intensely active,without the southern portion being in the same state of activity. That this is the true explanation is proved by magnetic storms in the same hemisphere being comparatively limited in extent; as, according to Gauss and Weber, magnetic storms which were simultaneously felt from Sicily to Upsala, did not extend from Upsala to Alten. Still it would not be wonderful if they were felt over a vast area of thousands of miles as a consequence ofgreatdisturbance in the elasticity of the ether in the terral vortex; as the solid earth must be permeable to all its motions, and thus be explicable on the general principles we have advanced.

But besides these variations which we have mentioned, there are changes steadily going on, by which the isodynamic, isogonic and isoclinic lines are permanently displaced on the surface of our planet. These must be attributed to changes of temperature in the interior of the globe, and to the direction in the progress of subterranean fires, which it may also be expected will change the isogeothermal lines. But there are changes, which although of long period, are yet periodic, one of which is obviously due to the revolution of the lunar nodes in eighteen and a half years, and the revolution of the apogee in nine years. The first is continually changing the obliquity of the axis of the vortex, and they both tend to limit the vortices in their extreme latitudes; but the planet Jupiter has an indirect influence, which is probably equal, if not greater, than the action of the moon, in changing the magnetic declination.

From the investigations of Lamont, it would appear, that the period of the variations of magnetic declination is about 10⅓ years, while, more recently, R. Wolfe has suggested the connection between this variation and the solar spots, and assigns a period of 11.11 years, and remarks, that it “corresponds more exactly with the variations in magnetic declination than the period of 10⅓ years established by Lamont. The magnetic variations accompany the solar spots, not only intheir regular changes, but even in their minor irregularities: this latter fact is itself sufficient to prove definitely the important relations between them.”[28]

As the planet Jupiter exerts the greatest influence on the sun, in forcing the centre from the mechanical centre of the system, the longitude of the sun will in a great measure depend on the position of this planet; and, in consequence, the sun will generally revolve around this centre in a period nearly equal to the period of Jupiter. The sidereal period of Jupiter is about twelve years, but the action of the other planets tend to shorten this period (at least, that has been the effect for the last twenty or thirty years), and bring it nearly to the period assigned by M. Wolfe to the variations in the magnetic declinations. As this has its influence on the radial stream, and the radial stream on the declination, we see at once the connection between them. When we come to a consideration of the solar spots, we shall exhibit this influence more fully.

Let us now examine another phenomenon. The Aurora Borealis has been generally considered to be in some way connected with the magnetism of the earth, and with the position of the magnetic pole. It is certain that the appearance of this meteor does affect the needle in a way not to be mistaken, and (although not invariably) the vertex of the luminous arch will usually conform to the magnetic meridian. Yet (and this is worthy of attention), the observations made in the North Polar Expeditions[29]“appear to prove, that in the immediate vicinity of the magnetic pole the development of light is not in the least degree more intense or frequent than at some distance from it.” In fact, as the American magnetic pole is, as stated, in latitude 73°, the central vortex will seldom reach so high,and, consequently, the aurora ought at such times to be more frequent in a lower latitude. In a late work by M. de la Rive, this gentleman expresses the opinion, that the cause of the aurora is not due to a radiation of polar magnetism, but to a purely electrical action.[30]His explanation, however, is not so satisfactory as his opinion. Now, we have examined numerous cases of auroral displays, and never yet found one which could not be legitimately referred to the action of ethereal vortices. Generally, the aurora will not be visible, when the upper surface of the atmosphere of that latitude in which the vortex is known to be (reckoning in the direction of the magnetic meridian) is below the horizon, which shows that the brightest portion is in the atmosphere. In latitude 41° even, it may show itself when the vortex is three days north, more frequently when one or two days north; but when the vortex passes centrally, or south, it rarely is seen, and this is the only difficulty in explaining it by the theory. But, when we reflect that the ether shoots out in straight lines, and at an angle corresponding to the magnetic dip, we are at no loss to perceive the reason of this. If each minute line composing the light were seen endwise, it would be invisible; if there were millions such in the same position, they could add nothing to the general effect; but, when viewed sideways, the case would be different, there would be a continued reduplication of ray upon ray, until in the range of some hundreds of miles an effect might be produced amounting to any degree of intensity on record. Now, this is the case when the aurora is immediately overhead, it will be invisible to those below, but may be seen by persons a hundred miles south; so, also, when it is to the south, it is too oblique to the line of vision to be seen, especially as all the rays to the northward of the observer can contribute nothing to increase the effect. That it is of the nature of rays very much diffused, can hardly be doubted; and, therefore, if onlyof a few miles in depth, its impressions are too faint to be sensible. By referring to the record of the weather in the second section of this work, an auroral display will be found on July 12th, the central vortex having passed a little to the northward the same evening, and the next day passing southdescending. On that occasion the author saw an inclined column, in profile, due east, and between himself and a line of bluffs and timber, about eight miles distant; And, he has not any doubt that the mass of rays began where he stood. As in a shower, every drop, passing through a conical surface, whose axis passes through the sun and through the eye, contributes to form the apparently distant rainbow.

The altitude of this meteor has been much exaggerated, especially of those rings or luminous arches, which are often detached completely from the luminous bank. On the 24th of May, a bright aurora was visible at Ottawa, but the author’s attention was engrossed by the most brilliant arch of light he had ever seen. It was all the time south of the zenith, and had no visible connection with the aurora north. At 9 hours, 59 minutes, 30 seconds mean solar time, Arcturus was in the exact centre of the band, at which time it was very bright, and full 7° wide. At the same time, Prof. G. W. Wheeler observed the aurora in Perryville, in the State of Missouri, only 1° of longitude to the westward, but did not see the arch.[31]The difference of latitude between the two places being 3° 30′, and the weather, as he states, clear and still, there is only one reason why he did not see the arch: it must have been toolow, and had become merged in the bank of light. At the time mentioned, the altitude of Arcturus was 68° 30′, and, as Prof. Wheeler assigns only 10° as the altitude of the bank, the maximum elevation of the arch, on the supposition of its composing a part of the bank, was 43 miles. At Perryville, the bank and streamers had disappeared at 10 o’clock. At Ottawa,the arch or bow disappeared at 10 h. 5 m., differing only the fraction of a minute from the time at Perryville; but, the bank was still visible, but low and faint, the greatest altitude having been over 30°. To show the rapid fluctuations in width and position of this bow, we will add a few of the minutes taken at the time with great care, in hopes some other observer had been equally precise. When first seen, there were three luminous patches, or elongated clouds of light; one in Leo, one in Bootes, and another in Ophinchus, all in line. This was about 9h. 15m. The times following are correct to 30 seconds:

This aurora was due to theinner vortex ascending, whose period was at this time 28 days.

There are several circumstances to be observed in this case. The bow brightened and faded simultaneously with the aurora, and respected the vertex of the auroral bank, being apparently concentric with it. The bow, therefore, depends on the same cause, but differs from the aurora in being limited to thesurfaceof the atmosphere in which the vortex has produced a wave to the southward of its central path, as may be understood by inspectingFig. 2,Sec. 1,—the figure representing the polar current of the central vortex. On the 29th of May, 1840,[32]the author saw a similar phenomenon, at the same time of night, and passing over the same stars southward until it reached within 5° of Jupiter and Saturn, to which it was parallel. This atmospheric wave offers a greater resistance to the passage of the ether: hence the light. On this account it is, also, that when the passage of a vortex is attended by an auroral display there will be no thunder-storm. There may be an increase of wind; but the atmosphere at such times is too dry to make a violent storm, and there is a silent restoration of the equilibrium, by the ether passing through the dry atmosphere, without meeting any condensable vapor, and becoming luminous on account of the greater resistance of the air when unmixed with vapor. We thus see also the connection between the aurora and the linear cirri, and we have a triumphant explanation of the fact, that when the observer is north of the northern limit of the vortices, he sees the aurora to the south and not to the north; for, to see it to the northward, he would have to see it in the same latitude as it appears in the south, and, consequently, have to see across twice the complement of the latitude. We thus see, also, why the temperature falls after an aurora; for, the passage of electricity in any shape, must have this effect on account of the great specific caloric of this fluid. We see, also, why the aurora should be more frequent where the magnetic intensity is greatest and be consequently invisible at the equator, and why the magnetic needle is so sensibly affected at the time of its occurrence. We may, perhaps, here be allowed to allude to another phenomenon connected with terrestrial magnetism and electricity.

The awful and destructive concussions which sometimes are produced at great depths beneath the surface of the soil, would seem to indicate that no force but that of electricity is adequate to account for the almost instantaneous desolation of wide tracts of the earth’s surface. But we do not mean to say that the action of the terral vortices, combined with the internal conditions of our planet, is the only cause; although it is far from improbable that the same activity of the ether, which generates through these vortices, the full fury of the hurricane in the tropics, may be simultaneously accompanied by asubterraneanstorm. And physicists are too rash to reject the evidence on which the connection of the phenomena rests.

In the extract given by Colonel Reid, in his “Law of Storms,” from Sir George Rodney’s official report of the great hurricane of 1780, it is stated, that, “Nothing but an earthquake could have occasioned thefoundationsof the strongest buildings to be rent; and I am convinced that the violence of the wind must have prevented the inhabitants from feeling the earthquake which certainly attended the storm.”[33]Again, in the Savannah-la-Mar hurricane, which occurred the same year and month, the Annual Register, published at Jamaica, states, that at the same time, “a smart shock of an earthquake was felt.” The general serenity of equatorial regions is due to the fact that they are beyond the limit of the vortices, as in Peru, where neither rain nor lightning nor storm is ever seen. Thunder and rain, without storms, however, are common in other tropical countries,also out of the reach of the vortices. But even in those parts, (as the Antilles,) lying in the track of these vortices, the weather is not asfrequentlydisturbed as in higher latitudes. The storms of the Antilles, when they do occur, however, are fearful beyond any conception, showing the presence of some cause, auxiliary to the ordinary disturbing action of the vortices, which, when simultaneously occurring, adds tremendously to their force.

That earthquakes are precededsometimesby a peculiar haziness and oppressiveness, similar to that which sometimes precedes a storm, is a current opinion in volcanic countries. And Humboldt, who doubts the connection, has to confess that sudden changes of weather havesucceededviolent earthquakes, and that “during the great earthquake of Cumana, he found the inclination of the needle was diminished 48′.” He also mentions the simultaneous occurrence of shocks, from earthquakes, and a clap of thunder, and the agitation of the electrometer during the earthquake, which lasted from the 2d of April to the 17th of May, 1808; but concluding that “these indications presented by clouds, by modifications of atmospheric electricity, or by calms, cannot be regarded asgenerallyornecessarilyconnected with earthquakes, since in Peru, Canada, and Italy, earthquakes are observed, along with the purest and clearest skies, and with the freshest land and sea breezes. But if no meteorological phenomena indicates the coming earthquake, either on the morning of the shock or a few days previously, the influence of certain periods of the year, (the vernal and autumnal equinoxes,) the commencement of the rainy season in the tropics, after long drought, cannot be overlooked, even though the genetic connection of meteorological processes, with those going on in the interior of our globe, is still enveloped in obscurity.”[34]

It is at the equinoxes that the earth changes her distances from the sun most rapidly, and whether she is passing from herperihelion or from her aphelion, the density of the ether externally is changing in the subduplicate ratio of these distances and consequently at these times there will be the greatest disturbance of the electric equilibrium. How far our views of the internal structure of our globe, (considered along a diameter as a solid crust, then a fused mass separated from the lower ocean by another solid crust, and separated from a similar arrangement on the opposite side by an interposed mass of water, perhaps also possessing a solid nucleus,) may affect this question, is difficult to say; but that the agent is electric, appears highly probable; and very recently it has been discovered, by M. Ratio Menton, that a piece of iron, suspended by attraction to a magnet, will fall on the approach of an earthquake; thus indicating that the power of the magnet is temporarily weakened by the action of some disturbing force.


Back to IndexNext