CHAPTER X

Panel Sections for Laboratory Test.In order to make a laboratory study of the painted panels on the Atlantic City and Pittsburg fences, it was thought advisable to remove small sections from representative areas and transfer them to the laboratory for such work. The fences were visited by the official inspection committees soon after the first annual inspection, and the panels were carefully looked over. Upon each was marked out a representative portion, care being exercised to select areas where previous inspections had not disturbed the surface of the film in any manner. The inspectors then placed the number of the panel upon the areas which had been marked off, as well as their initials. The marked sections were sawed out, wrapped in tissue paper, and then transferred to the laboratory where they were placed upon models of the respective fences from which they had been removed. The illustration shows the model test fences set up together. It is very apparent that the Pittsburg panels are much the darker in color, due to the soot, and in some cases lead sulphide formed upon their surfaces. This difference was undoubtedly due to the atmospheric conditions prevailing where the tests were made. One would be led to suppose that a paint film exposed to an atmosphere such as is found in Pittsburg would show deterioration more rapidly than one exposed in Atlantic City. In all the tests and experiments, however, the Atlantic City panels appeared broken down to a much greater extent; though it is true that the Pittsburg panels had darkened considerably and presented a rather mottled appearance. The deposit of soot on the Pittsburg panel seemed to act as a preservative coating for the film beneath, and prevented marked disintegration.

Sections of Atlantic City and Pittsburg FencesSections of Atlantic City and Pittsburg Fences Arranged for Laboratory Examination

Sections of Atlantic City and Pittsburg Fences Arranged for Laboratory Examination

Sections of Atlantic City and Pittsburg FencesSections of Atlantic City and Pittsburg Fences

Sections of Atlantic City and Pittsburg Fences

Panels tested giving Formula Number and Degree of ChalkingUpper set of tests made on Panels from Atlantic City FenceLower set of tests made on Panels from Pittsburg FenceFigures at left indicate Formula NumberFigures at right indicate Degree of Chalking

Upper set of tests made on Panels from Atlantic City FenceLower set of tests made on Panels from Pittsburg FenceFigures at left indicate Formula NumberFigures at right indicate Degree of Chalking

Color Standard usedColor Standard used in Comparison of Panel Section

Color Standard used in Comparison of Panel Section

Chalking Test.Small strips of black felt, about one inch square, were firmly attached to a block of wood, and by a clamp having the same pressure in each case, the wood with its surface of black felt was fixed to the panel. This apparatus, which resembles a blackboard eraser, is firmly drawn across the panel in one direction for a certain definite distance, during which time it gathers all the chalked surface presented by the painted wood. Upon detaching the apparatus from the panel it is observed that the black cloth becomes whitened to an extent proportionate to the chalking that has taken place on the given area.

After each one of the panels had been treated in the same manner by the same operator, the black cloths were assembled on one large board and photographed. A definite standard of chalking was made up, and the operator was enabled to put down opposite the report on each panel the degree of chalking which had taken place, No. 1 representing the least amount and No. 10 the greatest amount of chalking.

Degree of Whiteness Shown by Panels.It was a very simple matter to gauge the whiteness of the various panels, by comparing them with a series of standard boards painted with three coats of white paint. Florence Brand, New Jersey zinc oxide, was used as the standard for whiteness and termed “No. 1.” In making “No. 2” standard, to the zinc oxide was added .01% of lampblack. By adding .02% of lampblack to the zinc, standard “No. 3” was obtained, and so on, increasing the amount of lampblack in each case by .01%. These standards were run up to “No. 30,” and the various panels on the different fences compared with them. The degrees of whiteness are recorded in progressive numbers, No. 1 being the standard for whiteness and No. 30 the darkest. The Atlantic City panels ranged from 3 to 8 in the scale of whiteness, while the Pittsburg panels required the use of the entire range of standards.

Resistance to Abrasion.The apparatus used for determining the abrasion resistance of a paint was made of a glass tube about six feet long, having an internal bore of7⁄8inch. This was supported in an upright position over a dish which held the panel under test at an angle of 45 degrees. The abrasive material consisted of No. 00 emery, which was dropped into the tube through a funnel having a bore of 5 mm. When the emery reached the bottom of the long tube it scattered itself so as to strike a surface on the panel about an inch in diameter. The emery was constantly poured in until the paint coating had worn away, showing the bare wood. The weight in pounds of emery powder required to show the disruption of the coating is recorded and reported as the measure of the “abrasion resist.” The panel requiring the greatest weight of emery to cause abrasion is evidently the most resistant to abrasion. Paint is often subjected to serious abrasion, through the blowing of sand, especially at the seashore, and to withstand such action should contain a proportion of pigments especially resistant to abrasion, such as silica, zinc oxide, asbestine, and barytes.

Apparaturs for Determining Abbrasion ResistanceApparatus for Determining the Abrasion Resistance of Paints

Apparatus for Determining the Abrasion Resistance of Paints

Making Photomicrographs.The photomicrographs which are herewith shown were made in the following manner: A part of a panel was placed upon the stage of the microscope and held firmly in place with clips. By varying the adjustment and carefully running over the field the condition of the surface was readily given, using the same eye-piece and objective throughout the tests, and obtaining a magnification of thirty-three. Great care was exercised to secure an average field showing the general and typical appearance of every panel. Little difficulty was experienced in so doing, as the laboratory panels gave very representative surfaces of the large panels on the fence. The instrument was then inclined horizontally and the eye-piece was fitted into the camera nose. In the back of the bellows of the camera was placed the ground glass for focusing. To secureillumination the light from an electric arc lamp was reflected from a mirror directly upon the painted surface of the panel, which in turn was reflected through the camera on to the ground glass. The plate-holder was then put in position and six-second exposures were made, afterward developing and printing.

Checking and Cracking.What was termed “fine matt checking” at the First Annual Inspection was not visible at the time to certain members of the Inspection Committee, but it is an established fact that the checking was an existing condition, as the photomicrographs have shown. This checking has a very peculiar characteristic in that the lines are very narrow and hair-like, being somewhat interlaced and peculiarly forked. That this hair matt checking is a preliminary condition which afterwards develops into matt checking and into marked or heavy checking seems to be indicated.

It appears from an examination of the photomicrographs of the paint films that a paint coating closely resembles the surface of the earth, and is subject to the same basic laws that have caused the various geodetic changes in the earth’s crust. Observation of a dried pond or lake bed will disclose types of fissuring and cracking similar to those shown by dried paint coatings in which the oil has been fully oxidized, and especially in the case of paints containing pigments which act upon the oil to produce compounds brittle in nature.

At Atlantic City the panels were all clean and free from dirt, presenting continuous exposure of the films, and thus maintaining conditions for active checking. At Pittsburg, soon after the panels began to chalk, the large amount of dust and black soot in the atmosphere completely covered the panels with a very thick, resistant coating of carbon, which acted as a seal or protector, preventing disintegration to a great extent. This coating was extremely hard to remove, and photomicrographs, before and after removal of this coating by rubbing with a damp cloth, failed to reveal marked checking on any of the formulas except those made of strictly pure basic carbonate-white lead. The checking, even on these, was not as marked as at Atlantic City. It is presumed that after the chalking had taken place and the chalked pigment had been washed from the panels, the gradually increasing coat of carbon and lead sulphide had protected the panels from checking, or possibly the atmosphere of Pittsburg, which in other respects had deteriorated the panels to a greater extent than at Atlantic City, did not have the extreme action in causing checking that the Atlantic City atmosphere seemed to have effected.

Results on Combination Pigment Paints.It will be noticed that the checking on most of the combination pigment paints made of lead, zinc, and inert pigments, was moderate, and in many cases of a fine order. It has been observed that the percentage of zinc oxide in a paint is not always a criterion upon which future checking may be judged. Nor could it be said that the checking is dependent upon the percentage of basic carbonate-white lead added to the paint. However, it appears that scientific blending of the various pigments, with regard to their physical properties in oil, such as their strength and elastic limit, develops the greatest resistance to both cracking and checking. Elasticity is vital, but strength must be combined therewith in order to prevent disruptions of the paint coating. Paint films made of certain inert pigments, when tested on the filmometer, were relatively high in strength, but relatively low in elasticity. Such pigments, when used in large percentage, form coatings which are hard and apt to crack. The use, however, of these pigments in moderate percentages seems very beneficial in overcoming the effect of using an excessive percentage of white lead, or of zinc oxide.

Results on White Lead Paints.The maximum checking was observed on the basic carbonate-white lead panels, the size of the checks in some cases being several times larger than those on the other panels.

On some of the basic carbonate-white leads the checking was of a very peculiar nature, consisting of very broad fissures in the paint coating, disclosing the wood surfaces beneath. The type of checking existing was also distinct in its structure, being hexagonal in shape. One of the most marked features shown by the basic carbonate-white lead films was the extreme roughness of their surfaces. This roughness is most likely due to the excessive chalking which had taken place.

Results on Silica and Barytes Paints.The checking of paints very high in silica resolved itself into fine hair-like lines which are generally lateral to each other, and indicate a cracked appearance. The checking of paints containing very high percentagesof barytes was also of a distinct nature, being generally forked in appearance and of no definite striation.

Surface Condition of Fume Pigment Paints.The panels painted with basic sulphate-white lead (sublimed white lead) showed complete absence of checking. This was also true of the panels painted with zinc lead. These are both fume products and are extremely fine in their physical size, which may account for this condition. Although zinc oxide is made in a similar manner, it gives a much harder paint coating than either of the afore-mentioned pigments, and presents a surface which develops considerable checking, generally of a medium order. The past theories regarding zinc oxide, in which it has been maintained that zinc oxide gives the maximum checking, are evidently incorrect, as the checking found on the zinc oxide panels was not as marked or deep as the checking on the basic carbonate-white lead panels; in fact, the checking might be more in the line of a cracking, possibly due to the brittle nature of the coating composed of straight zinc. This is especially true of zinc paints containing insufficient oil.

The Importance of the Physical Nature of Pigments.It appears that very fine grinding of materials, chosen for their characteristic fineness, with the absence of any unfavorable physical condition or chemical sensitiveness, are important factors in the making of a paint to resist cracking or checking. The purity of the essential materials, as well as the scientific compounding of these materials, with due regard to the law of minimum voids, are great factors which enhance the qualities of paints, greater, perhaps, than the variation of percentages of the various pigments which go to make up a paint.

A series of new test panels to take the place of those panels which were condemned and subsequently removed from the Atlantic City and Pittsburg fences, were painted and exposed during June, 1909. These new test panels are of white pine, this wood having been selected by the joint inspection committee as offering the best condition for future tests. The method used in painting these panels was the same as in the previous tests, together with the adoption of certain refinements in the reductions, application, etc. Thirty-six formulas were selected with careful regard to the percentage of components, including several paints containing lithopone combined with whiting and zinc oxide,[22]two pigments which gave promise of supporting the lithopone for outside use. Some of these lithopone paints contained special vehicles which it was thought would prevent the destructive action which lithopone seems to have upon linseed oil. In order to obtain a criterion of the value of the new formulas applied, as against the wearing of straight white leads, the original white leads used in the previous tests were included, and other brands were added. Each formula was painted out in white, yellow, and gray, upon panels of white pine wood arranged in sequence upon the fence, and properly identified. The customary opacity test, in the form of a small black square, was stencilled over the priming coat of each panel, as in the former tests. The composition of the vehicle in all the new tests was standard, using pure linseed oil with a small percentage of turpentine drier. The tints used in each formula were secured at the time of application by the use of standard colors, lampblack, and medium chrome yellow, using an approximate amount for each formula.

[22]A brief study of the theory of solutions (See Cushman and Gardner on “Corrosion and Preservation of Iron and Steel”), involving the modes of iron formation, will be invaluable to the student who is inquiring into the cause of the peculiar fogging of lithopone, with the idea in view of correcting this evil by physical or chemical treatment. Inasmuch as our observations thus far have led us to believe that the fogging of lithopone takes place in the presence of moisture, with the contributory and necessary action of chemically active rays from the sun or other source, it is fair to assume that under these conditions the insoluble molecule of zinc sulphide and barium sulphate reverts by intricate molecular disturbance and ionization back to the soluble barium sulphide and zinc sulphate from which the lithopone is formed by metathesis. If this be true, then the acid nature of these soluble salts is no doubt combated and overcome at the moment of formation by the basic nature of zinc oxide and calcium carbonate, which tend to ionize to an alkaline reaction. The value of zinc oxide and calcium carbonate in lithopone paints as detergents of blackness, has been demonstrated at both Atlantic City and Pittsburg.” H. A. G.

[22]A brief study of the theory of solutions (See Cushman and Gardner on “Corrosion and Preservation of Iron and Steel”), involving the modes of iron formation, will be invaluable to the student who is inquiring into the cause of the peculiar fogging of lithopone, with the idea in view of correcting this evil by physical or chemical treatment. Inasmuch as our observations thus far have led us to believe that the fogging of lithopone takes place in the presence of moisture, with the contributory and necessary action of chemically active rays from the sun or other source, it is fair to assume that under these conditions the insoluble molecule of zinc sulphide and barium sulphate reverts by intricate molecular disturbance and ionization back to the soluble barium sulphide and zinc sulphate from which the lithopone is formed by metathesis. If this be true, then the acid nature of these soluble salts is no doubt combated and overcome at the moment of formation by the basic nature of zinc oxide and calcium carbonate, which tend to ionize to an alkaline reaction. The value of zinc oxide and calcium carbonate in lithopone paints as detergents of blackness, has been demonstrated at both Atlantic City and Pittsburg.” H. A. G.

Recently Placed Panels in FenceSection of Fence Showing New Panels Recently Placed

Section of Fence Showing New Panels Recently Placed

Appearance 1909 TestsAppearance of 1909 Tests

Appearance of 1909 Tests

An inspection of these new tests was made during June, 1910, and the results of the inspection are shown onpages 178to181. The results of the inspection prove that it is unsafe to use lithopone in a paint containing white lead of any type, early darkening and failure being shown in every case where such a combination existed. The formulas in the new test, which were properly balanced and which had a low percentage of lithopone combined with zinc oxide and whiting, presented in some cases very good surfaces. A rough, sandy surface, however, was shown where lithopone was used in any great quantity.


Back to IndexNext