Lemma IV.

Figure for Prop. XXXVIII.

Defluat aqua de vase CylindricoABCD, per canalem CylindricumEFGH, in vas inferiusIKLM; & inde effluat per vasis marginemIM. Sit autem margo ille ejusdem altitudinis cum vasis superioris fundoCD, eo ut aqua per totum canalem uniformi cum motu descendat; & in medio canalis collocetur GlobusP, sitquePRaltitudo aquæ supra Globum, &SRejusdem altitudo supra fundum vasis. Sustineatur autem Globus filo tenuissimoTV, lateribus canalis hinc inde affixo. Et manifestum est per proportionem superiorem, quod quantitas aquæ dato tempore defluentis erit ut amplitudo foraminis per quod defluit; hoc est, si Globus tollatur, ut canalis orificium: sin Globus adsit, ut spatium undique inter Globum & canalem. Nam velocitas aquæ defluentis (per superiorem Propositionem) ea eritquam corpus cadendo, & casu suo describendo dimidiam aquæ altitudinemSR, acquirere posset: adeoque eadem est sive Globus tollatur, sive adsit. Et propterea aqua defluens erit ut amplitudo spatii per quod transit. Certe transitus aquæ per spatium angustius facilior esse nequit quam per spatium amplius, & propterea velocitas ejus ubi Globus adest, non potest esse major quam cum tollitur: ideoque major aquæ quantitas, ubi Globus adest, non effluet quam pro ratione spatii per quod transit. Si aqua non sit liquor subtilissimus & fluidissimus, hujus transitus per spatium angustius, ob crassitudinem particularum, erit aliquanto tardior: at liquorem fluidissimum esse hic supponimus. Igitur quantitas aquæ, cujus descensum Globus dato tempore impedit, est ad quantitatem aquæ quæ, si Globus tolleretur, eodem tempore descenderet, ut basis Cylindri circa Globum descripti ad orificium canalis; sive ut quadratum diametri Globi ad quadratum diametri cavitatis canalis. Et propterea quantitas aquæ cujus descensum Globus impedit, æqualis est quantitati aquæ, quæ eodemtempore per foramen circulare in fundo vasis, basi Cylindri illius æquale, descendere posset, & cujus descensus per fundi partem quamvis circularem basi illi æqualem impeditur.

Jam vero pondus aquæ, quod vas & Globus conjunctim sustinent, est pondus aquæ totius in vase, præter partem illam quæ aquam defluentem accelerat, & ad ejus motum generandum sufficit, quæque, per Propositionem superiorem, æqualis est ponderi columnæ aquæ cujus basis æquatur spatio inter Globum & canalem per quod aqua defluit, & altitudo eadem cum altitudine aquæ supra fundum vasis, per lineamSRdesignata. Vasis igitur fundum & Globus conjunctim sustinent pondus aquæ totius in vase sibi ipsis perpendiculariter imminentis. Unde cum fundum vasis sustineat pondus aquæ sibi perpendiculariter imminentis, reliquum est ut Globus etiam sustineat pondus aquæ sibi perpendiculariter imminentis. Globus quidem non sustinet pondus aquæ illius stagnantis & sibi absque omni motu incumbentis, sed aquæ defluenti resistendo impedit effectum tanti ponderis; adeoque vim aquæ defluentis sustinet ponderi illi æqualem. Nam impedit descensum & effluxum quantitatis aquæ quem pondus illud accurate efficeret si Globus tolleretur. Aqua pondere suo, quatenus descensus ejus impeditur, urget obstaculum omne, ideoque obstaculum, quatenus descensum aquæ impedit, vim sustinet æqualem ponderi quo descensus ille efficeretur. Globus autem descensum quantitatis aquæ impedit, quem pondus columnæ aquæ sibi perpendiculariter incumbentis efficere posset; & propterea vim aquæ decurrentis sustinet ponderi illi æqualem. Actio & reactio aquæ per motus Legem tertiam æquantur inter se, & in plagas contrarias diriguntur. Actio Globi in aquam descendentem, ad ejus descensum impediendum, in superiora dirigitur, & est ut descendendi motus impeditus, eique tollendo adæquate sufficit: & propterea actio contraria aquæ in Globum æqualis est vi quæ motum eundem vel tollere vel generare possit,hoc est ponderi columnæ aquæ, quæ Globo perpendiculariter imminet & cujus altitudo estRS.

Si jam canalis orificium superius obstruatur, sic ut aqua descendere nequeat, Globus quidem, pondere aquæ in canali & vase inferioreIKLMstagnantis, premetur undique; sed non obstante pressione illa, si ejusdem sit specificæ gravitatis cum aqua, quiescet. Pressio illa Globum nullam in partem impellet. Et propterea ubi canalis aperitur & aqua de vase superiore descendit, vis omnis, qua Globus impellitur deorsum, orietur ab aquæ illius descensu, atque adeo æqualis erit ponderi columnæ aquæ, cujus altitudo estRS& diameter eadem quæ Globi. Pondus autem istud, quo tempore data quælibet aquæ quantitas, per foramen basi Cylindri circa Globum descripti æquale, sublato Globo effluere posset, sufficit ad ejus motum omnem generandum; atque adeo quo tempore aqua in Cylindro uniformiter decurrendo describit duas tertias partes diametri Globi, sufficit ad motum omnem aquæ Globo æqualis generandum. Nam Cylindrus aquæ, latitudine Globi & duabus tertiis partibus altitudinis descriptus, Globo æquatur. Et propterea aquæ currentis impetus in Globum quiescentem, quo tempore aqua currendo describit duas tertias partes diametri Globi, si uniformiter continuetur, generaret motum omnem partis Fluidi quæ Globo æquatur.

Quæ vero de aqua in canali demonstrata sunt, intelligenda sunt etiam de aqua quacunque fluente, qua Globus quilibet in ea quiescens urgetur. Quæque de aqua demonstrata sunt obtinent etiam in Fluidis universis subtilissimis. De his omnibus idem valet argumentum.

Jam vero per Legum Corol. 5, vis Fluidi in Globum eadem est, sive Globus quiescat & Fluidum uniformi cum velocitate moveatur, sive Fluidum quiescat & Globus eadem cum velocitate in partem contrariam pergat. Et propterea resistentia Globi in Medio quocunque Fluidissimo uniformiter progredientis, quo tempore Globus duas tertias partes diametri suæ describit,æqualis est vi, quæ in corpus ejusdem magnitudinis cum Globo & ejusdem densitatis cum Medio uniformiter impressa, quo tempore Globus duas tertias partes diametri suæ progrediendo describit, velocitatem Globi in corpore illo generare posset. Tanta est resistentia Globi in superficiei parte præcedente.Q. E. I.

Corol. 1.Si solidum Sphæricum in ejusdem secum densitatis Fluido subtilissimo libere moveatur, & inter movendum eadem vi urgeatur a tergo atque cum quiescit; ejusdem resistentia ea erit quam in Corollario secundo Propositionis xxxvi. descripsimus. Unde si computus ineatur, patebit quod solidum dimidiam motus sui partem prius amittet, quam progrediendo descripserit longitudinem diametri propriæ; Quod si inter movendum minus urgeatur a tergo, magis retardabitur: & contra, si magis urgeatur, minus retardabitur.

Corol. 2.Hallucinantur igitur qui credunt resistentiam projectilium per infinitam divisionem partium Fluidi in infinitum diminui. Si Fluidum sit valde crassum, minuetur resistentia aliquantulum per divisionem partium ejus. At postquam competentem Fluiditatis gradum acquisiverit, (qualis forte est Fluiditas Aeris vel aquæ vel argenti vivi) resistentia in anteriore superficie solidi, per ulteriorem partium divisionem non multum minuetur. Nunquam enim minor futura est quam pro limite quem in Corollario superiore assignavimus.

Corol. 3.Media igitur in quibus corpora projectilia sine sensibili motus diminutione longissime progrediuntur, non solum Fluidissima sunt, sed etiam longe rariora quam sunt corpora illa quæ in ipsis moventur: nisi forte quis dixerit Medium omne Fluidissimum, impetu perpetuo in posticam projectilis partem facto, tantum promovere motum ejus quantum impedit & resistit in parte antica. Et motus quidem illius, quem projectile imprimit in Medium, partem aliquam a Medio circulariter lato reddi corpori a tergo verisimile est. Nam & experimentis quibusdam factis, reperi quod in Fluidis satis compressis pars aliqua redditur.Omnem vero in casu quocunque reddi nec rationi consentaneum videtur, neque cum experimentis hactenus a me tentatis bene quadrat. Fluidorum enim utcunque subtilium, si densa sint, vim ad solida movenda resistendaque permagnam esse, & quomodo vis illius quantitas per experimenta determinetur, plenius patebit per Propositiones duas quæ sequuntur.

Si vas Sphæricum Fluido homogeneo quiescente plenum a vi impressa moveatur in directum, motuque progessivo semper accelerato ita pergat ut interea non moveatur in orbem: partes Fluidi inclusi, æqualiter participando motum vasis, quiescent inter se. Idem obtinebit in vase figuræ cujuscunque. Res manifesta est, nec indiget demonstratione.

Si vas Sphæricum Fluido homogeneo quiescente plenum a vi impressa moveatur in directum, motuque progessivo semper accelerato ita pergat ut interea non moveatur in orbem: partes Fluidi inclusi, æqualiter participando motum vasis, quiescent inter se. Idem obtinebit in vase figuræ cujuscunque. Res manifesta est, nec indiget demonstratione.

Fluidum omne quod motu accelerato ad modum venti increbescentis progreditur, & cujus partes inter se quiescunt, rapit omnia ejusdem densitatis innatantia corpora, & secum cum eadem velocitate defert.

Fluidum omne quod motu accelerato ad modum venti increbescentis progreditur, & cujus partes inter se quiescunt, rapit omnia ejusdem densitatis innatantia corpora, & secum cum eadem velocitate defert.

Nam per Lemma superius si vas Sphæricum, rigidum, Fluidoque homogeneo quiescente plenum, motu paulatim impresso progrediatur; Fluidi motum vasis participantis partis omnes semper quiescent inter se. Ergo si Fluidi partes aliquæ congelarentur, pergerent hæ quiescere inter partes reliquas. Nam quoniam partes omnes quiescunt inter se, perinde est sive fluidæ sint, sive aliquæ earum rigescant. Ergo si vas a vi aliqua extrinsecus impressa moveatur, & motum suum imprimat in Fluidum; Fluidum quoque motum suum imprimet in sui ipsius partes congelatas easque secum rapiet. Sed partes illæ congelatæ sunt corpora solida ejusdem densitates cum Fluido; & par est ratio Fluidi, sive id in vase moto claudatur, sive in spatiis liberis ad modum ventispiret. Ergo Fluidum omne quod motu progressivo accelerato fertur, & cujus partes inter se quiescunt, solida quæcunque ejusdem densitatis inclusa, quæ sub initio quiescebant, rapit secum, & una moveri cogit.Q. E. D.

Invenire resistentiam solidorum Sphæricorum in Mediis Fluidissimis densitate datis.

Invenire resistentiam solidorum Sphæricorum in Mediis Fluidissimis densitate datis.

In Fluido quocunque dato inveniatur resistentia ultima solidi specie dati, cujus magnitudo in infinitum augetur. Dein dic: ut ejus motus amissus, quo tempore progrediendo longitudinem semidiametri suæ describit, est ad ejus motum totum sub initio, ita motus quem solidum quodvis datum, in Fluido eodem jam facto subtilissimo, describendo diametri suæ longitudinem amitteret, est ad ejus motum totum sub initio quamproxime. Nam si particulæ minimæ Fluidi subtiliati eandem habeant proportionem eundemque situm ad solidum datum in eo movens, quem particulæ totidem minimæ Fluidi non subtiliati habent ad solidum auctum; sintque particulæ Fluidi utriusq; summe lubricæ, & viribus centrifugis centripetisque omnino destituantur; incipiant autem solida temporibus quibuscunque proportionalibus in his Fluidis similiter moveri: pergent eadem similiter moveri, adeoque quo tempore describunt spatia semidiametris suis æqualia, amittent partes motuum proportionales totis; idque licet partes Medii subtiliati minuantur, & magnitudo solidi in Medio non subtiliato moventis augeatur in infinitum. Ergo ex resistentia solidi aucti in Medio non subtiliato, dabitur per proportionem superiorem resistentia solidi non aucti in Medio subtiliato.Q. E. I.

Si particulæ non sunt summe lubricæ, supponendum est quod in utroq; Fluido sunt æqualiter lubricæ, eo ut ex defectu lubricitatis resistentia utrinq; æqualiter augeatur: & Propositio etiamnum valebit.

Corol. 1.Ergo si ex aucta solidi Sphærici magnitudine augeatur ejus resistentia in ratione duplicata, resistentia solidi Sphærici dati ex diminuta magnitudine particularum Fluidi, nullatenus minuetur.

Corol. 2.Sin resistentia, augendo solidum Sphæricum, augeatur in minore quam duplicata ratione diametri; eadem diminuendo particulas Fluidi, diminuetur in ratione qua resistentia aucta deficit a ratione duplicata diametri.

Corol. 3.Unde perspicuum est quod solidi dati resistentia per divisionem partium Fluidi non multum diminui potest. Nam resistentia solidi aucti debebit esse quam proxime ut quantitas materiæ fluidæ resistentis, quam solidum illud movendo protrudit & a locis a se invasis & occupatis propellit: hoc est ut spatium Cylindricum per quod solidum movetur, adeoque in duplicata ratione semidiametri solidi quamproxime.

Corol. 4.Igitur propositis duobus Fluidis, quorum alterum ab altero quoad vim resistendi longissime superatur: Fluidum quod minus resistit est altero rarius; suntque Fluidorum omnium vires resistendi prope ut eorum densitates; præsertim si solida sint magna, & velociter moveantur, & Fluidorum æqualis sit compressio.

Quæ hactenus demonstrata sunt tentavi in hunc modum. Globum ligneum pondere unciarumRomanarum577/22, diametro digitorumLondinensium6⅞ fabricatum, filo tenui ab unco satis firmo suspendi, ita ut inter uncum & centrum oscillationis Globi distantia esset pedum 10½. In filo punctum notavi pedibus decem & uncia una a centro suspensionis distans; & e regione puncti illius collocavi Regulam in digitos distinctam, quorum ope notarem longitudines arcuum a Pendulo descriptas. Deinde numeravi oscillationes quibus Globus quartam motus sui partem amitteret. Si pendulum deducebatur a perpendiculo addistantiam duorum digitorum, & inde demittebatur; ita ut toto suo descensu describeret arcum duorum digitorum, totaque oscillatione prima, ex descensu & ascensu subsequente composita, arcum digitorum fere quatuor; idem oscillationibus 164 amisit octavam motus sui partem, sic ut ultimo suo ascensu describeret arcum digiti unius cum tribus partibus quartis digiti. Si primo descensu descripsit arcum digitorum quatuor, amisit octavam motus partem oscillationibus 121; ita ut ascensu ultimodescriberetarcum digitorum 3½. Si primo descensu descripsit arcum digitorum octo, sexdecim, triginta duorum vel sexaginta quatuor, amisit octavam motus partem oscillationibus 69, 35½, 18½, 9⅔, respective. Igitur differentia inter arcus descensu primo & ascensu ultimo descriptos, erat in casu primo, secundo, tertio, quarto, quinto, sexto, digitorum ¼, ½, 1, 2, 4, 8 respective. Dividantur eæ differentiæ per numerum oscillationum in casu unoquoque; & in oscillatione una mediocri, qua arcus digitorum 3¾, 7½, 15, 30, 60, 120 descriptus fuit, differentia arcuum descensu & subsequente ascensu descriptorum, erit1/656,1/242,1/69,4/71,8/37,24/29partes digiti respective. Hæ autem in majoribus oscillationibus sunt in duplicata ratione arcuum descriptorum quam proxime; in minoribus vero paulo majores quam in ea ratione, & propterea (per Corol. 2. Prop. xxxi. Libri hujus) resistentia Globi, ubi celerius movetur, est in duplicata ratione velocitatis quamproxime; ubi tardius, paulo major quam in ea ratione: omnino ut in Corollariis Propositionis xxxii. demonstratum est.

Designet jamVvelocitatem maximam in oscillatione quavis, sintqueA,B,Cquantitates datæ, & fingamus quod differentia arcuum sitAV+BV3/2+CV2. Et cum velocitates maximæ in prædictis sex Casibus, sint ut arcuum dimidiorum 1⅞, 3¾, 7½, 15, 30, 60 chordæ, atque adeo ut arcus ipsi quamproxime, hoc est ut numeri ½, 1, 2, 4, 8, 16: scribamus in Casu secundo quarto & sexto numeros 1, 4, & 16 proV; & prodibit arcuum differentia1/242æqualisA+B+Cin Casu secundo; & 2 ÷ 35½ æqualis 4A+ 8B+ 16Cin casu quarto; & 8 ÷ 9⅔ æqualis 16A+ 64B+ 256Cin casu sexto. Unde si per has æquationes determinemus quantitatesA,B,C; habebimus Regulam inveniendi differentiam arcuum pro velocitate quacunque data.

Cæterum cum velocitates maximæ sint in Cycloide ut arcus oscillando descripti, in circulo vero ut semissium arcuum illorum chordæ, adeoque paribus arcubus majores sint in Cycloide quam in circulo, in ratione semissium arcuum ad eorundem chordas; tempora autem in circulo sint majora quam in Cycloide in velocitatis ratione reciproca: ut ex resistentia in circulo inveniatur resistentia in Trochoide, debebit resistentia augeri in duplicata circiter ratione arcus ad chordam, ob velocitatem in ratione illa simplici auctam; & diminui in ratione chordæ ad arcum, ob tempus (seu durationem resistentiæ qua arcuum differentia prædicta generatur) diminutum in eadem ratione: id est (si rationes conjungamus) debebit resistentia augeri in ratione arcus ad chordam circiter. Hæc ratio in casu secundo est 6283 ad 6279, in quarto 12566 ad 12533, in sexto 25132 ad 24869. Et inde resistentia 1 ÷ 242, 2 ÷ 35½, & 8 ÷ 9⅔ evadunt 6283 ÷ {6279 × 242}, 25132 ÷ {12533 × 35½} & 201056 ÷ {24869 × 9⅔}, id est in numeris decimalibus 0,004135, 0,056486& 0,8363. Unde prodeunt æquationesA+B+C= 0,004135: 4A+ 8B+ 16C= 0,05648& 16A+ 64B+ 256C= 0,8363. Et ex his per debitam terminorum collationem & reductionem Analyticam fitA= 0,0002097,B= 0,0008955&C= 0,0030298. Est igitur differentia arcuum ut 0,0002097V+ 0,0008955V3/2+ 0,0030298V2: & propterea cum per Corol. Prop. xxx. resistentia Globi in medio arcus oscillando descripti, ubi velocitas estV, sit ad ipsius pondus ut7/11AV+16/23BV3/2+ ¾CV2ad longitudinem Penduli; si proA,B, &Cscribantur numeri inventi, fiet resistentia Globi ad ejus pondus, ut 0,0001334V+ 0,000623V3/2+ 0,00227235V2ad longitudinem Penduli inter centrum suspensionis & Regulam, id est ad 121 digitos. Unde cumVincasu secundo designet 1, in quarto 4, in sexto 16: erit resistentia ad pondus Globi in casu secundo ut 0.003029 ad 121, in quarto ut 0.042875 ad 121, in sexto ut 0.63013 ad 121.

Arcus quem punctum in filo notatum in Casu sexto descripsit, erat 120 - {8 ÷ 9⅔} seu 1195/29digitorum. Et propterea cum radius esset 121 digitorum, & longitudo penduli inter punctum suspensionis & centrum Globi esset 126 digitorum, arcus quem centrum Globi descripsit erat 1243/31digitorum. Quoniam corporis oscillantis velocitas maxima ob resistentiam Aeris non incidit in punctum infimum arcus descripti, sed in medio fere loco arcus totius versatur: hæc eadem erit circiter ac si Globus descensu suo toto in Medio non resistente describeret arcus illius partem dimidiam digitorum 623/62; idque in Cycloide, ad quam motum penduli supra reduximus: & propterea velocitas illa æqualis erit velocitati quam Globus, perpendiculariter cadendo & casu suo describendo altitudinem arcus illius Sinui verso æqualem, acquirere posset. Est autem sinus ille versus in Cycloide ad arcum istum 623/62ut arcus idem ad penduli longitudinem duplam 252, & propterea æqualis digitis 15,278. Quare velocitas ea ipsa est quam corpus cadendo & casu suo spatium 15,278digitorum describendo acquirere posset. Unde cum corpus tempore minuti unius secundi cadendo (uti per experimenta pendulorum determinavitHugenius) describat pedesParisienses151/12, id est pedesAnglicos1611/24seu digitos 197½, & tempora sint in dimidiata ratione spatiorum; Globus tempore minut. 16tert.38quart.cadendo describet 15,278digitos, & velocitatem suam prædictam acquiret; & propterea cum eadem velocitate uniformiter continuata describet eodem tempore longitudinem duplam 30,556digitorum. Tali igitur cum velocitate Globus resistentiam patitur, quæ sit ad ejus pondus ut 0,63013ad 121, vel (si resistentiæ pars illa sola spectetur quæ est in velocitatis ratione duplicata) ut 0,58172ad 121.

Experimento autem Hydrostatico inveni quod pondus Globihujus lignei esset ad pondus Globi aquei magnitudinis ejusdem, ut 55 ad 97: & propterea cum 121 sit ad 213,4in eadem ratione, erit resistentia Globi aquei præfata cum velocitate progredientis ad ipsius pondus ut 0,58172ad 213,4, id est ut 1 ad 3665/6. Unde cum pondus Globi aquei, quo tempore Globus cum velocitate uniformiter continuata describat longitudinem pedum 30,556, velocitatem illam omnem in Globo cadente generare posset; manifestum est quod vis resistentiæ uniformiter continuata tollere posset velocitatem minorem in ratione 1 ad 3665/6, hoc est velocitatis totius partem 1 ÷ 3665/6. Et propterea quo tempore Globus, ea cum velocitate uniformiter continuata, longitudinem semidiametri suæ seu digitorum 37/16describere posset, eodem amitteret motus sui partem1/3262.

Numerabam etiam oscillationes quibus pendulum quartam motus sui partem amisit. In sequente Tabula numeri supremi denotant longitudinem arcus descensu primo descripti, in digitis & partibus digiti expressam: numeri medii significant longitudinem arcus ascensu ultimo descripti; & loco infimo stant numeri oscillationum. Experimentum descripsi tanquam magis accuratum quam cum motus pars tantum octava amitteretur. Calculum tentet qui volet.

Postea Globum plumbeum, diametro digitorum duorum & pondere unciarum Romanarum 26¼ suspendi filo eodem, sic ut inter centrum Globi & punctum suspensionis intervallum esset pedum 10½, & numerabam oscillationes quibus data motus pars amitteretur. Tabularum subsequentium prior exhibet numerumoscillationum quibus pars octava motus totius cessavit; secunda numerum oscillationum quibus ejusdem pars quarta amissa fuit.

In Tabula priore seligendo ex observationibus tertiam, quintam & septimam, & exponendo velocitates maximas in his observationibus particulatim per numeros 1, 4, 16 respective, & generaliter per quantitatemVut supra: emerget in observatione prima2/193=A+B+C, in secunda 2 ÷ 90½ = 4A+ 8B+ 16C, in tertia8/30æqu. 16A+ 64B+ 256C. Quæ æquationes per reductiones superius expositas dant,A= 0,000145,B= 0,000247&C= 0,0009. Et inde prodit resistentia Globi cum velocitateVmoventis, in ea ratione ad pondus suum unciarum 26¼, quam habet 0,000923V+ 0,000172V3/2+ 0,000675V2ad Penduli longitudinem 121 digitorum. Et si spectemus eam solummodo resistentiæ partem quæ est in duplicata ratione velocitatis, hæc erit ad pondus Globi ut 0,000675V2ad 121 digitos. Erat autem hæc pars resistentiæ in experimento primo ad pondus Globi lignei unciarum 577/22ut 0,00227235V2ad 121: & inde fit resistentia Globi lignei ad resistentiam Globi plumbei (paribus eorum velocitatibus) ut 577/22in 0,00227235ad 26¼ in 0,000675, id est ut 130309 ad 17719 seu 7⅓ ad 1. Diametri Globorum duorum erant 6⅞ & 2 digitorum, & harum quadrata sunt ad invicem ut 47¼ & 4, seu 1113/16& 1 quamproxime. Ergo resistentiæGloborum æquivelocium erant in minore ratione quam duplicata diametrorum. At nondum consideravimus resistentiam fili, quæ certe permagna erat, ac de pendulorum inventa resistentia subduci debet. Hanc accurate definire non potui, sed majorem tamen inveni quam partem tertiam resistentiæ totius minoris penduli, & inde didici quod resistentiæ Globorum, dempta fili resistentia, sunt quamproxime in dimidiata ratione diametrorum. Nam ratio 7⅓ - ⅓ ad 1 - ⅓, id est 7 ad⅔seu 10½ ad 1, non longe abest a diametrorum ratione duplicata 1113/16ad 1.

Cum resistentia fili in Globis majoribus minoris sit momenti, tentavi etiam experimentum in Globo cujus diameter erat 18¼ digitorum. Longitudo penduli inter punctum suspensionis & centrum oscillationis erat digitorum 122¾ inter punctum suspensionis & nodum in filo 109½ dig. Arcus primo penduli descensu a nodo descriptus, 32 dig. arcus ascensu ultimo post oscillationes quinque ab eodem nodo descriptus, 28 dig. Summa arcuum seu arcus totus oscillatione mediocri descriptus, 30 dig. Differentia arcuum 4 dig. Ejus pars decima seu differentia inter descensum & ascensum in oscillatione mediocri2/5dig. Ut radius 109½ ad radium 122½, ita arcus totus 60 dig. oscillatione mediocri a Nodo descriptus, ad arcum totum 67⅛, oscillatione mediocri a centro Globi descriptum: & ita differentia2/5ad differentiam novam 0,4475. Si longitudo penduli, manente longitudine arcus descripti, augeretur in ratione 126 ad 122½, velocitas ejus diminueretur in ratione illa dimidiata; & arcuum descensu & subsequente ascensu descriptorum differentia 0,4475diminueretur in ratione velocitatis, adeoque evaderet 0,4412. Deinde si arcus descriptus augeretur in ratione 67⅛ ad 1243/31, differentia ista 0,4412augeretur in duplicata illa ratione, adeoque, evaderet 1,509. Hæc ita se haberent, ex hypothesi quod resistentia Penduli esset in duplicata ratione velocitatis. Ergo si pendulum describeret arcum totum 1243/31digitorum, & longitudo ejus inter punctum suspensionis & centrum oscillationis esset 126 digitorum, differentiaarcuum descensu & subsequente ascensu descriptorum foret 1,509dig. Et hæc differentia ducta in pondus Globi penduli, quod erat unciarum 208, producit 313,9. Rursus ubi pendulum superius ex Globo ligneo constructum, centro oscillationis, quod a puncto suspensionis digitos 126 distabat, describebat arcum totum 1243/31digitorum, differentia arcuum descensu & ascensu descriptorum fuit126/121in 8 ÷ 9⅔ seu25/29, quæ ducta in pondus Globi, quod erat unciarum 577/22, producit 48,55. Duxi autem differentias hasce in pondera Globorum ut invenirem eorum resistentias. Nam differentiæ oriuntur ex resistentiis, suntque ut resistentiæ directe & pondera inverse. Sunt igitur resistentiæ ut numeri 313,9& 48,55. Pars autem resistentiæ Globi minoris, quæ est in duplicata ratione velocitatis, erat ad resistentiam totam ut 0,58172ad 0,63013, id est ut 44,4ad 48,55; & pars resistentiæ Globi majoris propemodum æquatur ipsius resistentiæ toti, adeoque partes illæ sunt ut 313,9& 44,4quamproxime, id est ut 7,07ad 1. Sunt autem Globorum diametri 10¾ & 6⅞; & harum quadrata 351½ & 4717/64sunt ut 7,438& 1, id est ut Globorum resistentiæ 7,07& 1 quamproxime. Differentia rationum haud major est quam quæ ex fili resistentia oriri potuit. Igitur resistentiarum partes illæ quæ sunt (paribus Globis) ut quadrata velocitatum, sunt etiam (paribus velocitatibus) ut quadrata diametrorum Globorum; & propterea (per Corollaria Prop. XL. Libri hujus) resistentia quam Globi majores & velociores in aere movendo sentiunt, haud multum per infinitam aeris divisionem & subtiliationem diminui potest, proindeque Media omnia in quibus corpora multo minus resistuntur, sunt aere rariora.

Cæterum Globorum, quibus usus sum in his experimentis, maximus non erat perfecte Sphæricus, & propterea in calculo hic allato minutias quasdam brevitatis gratia neglexi; de calculo accurato in experimento non satis accurato minime sollicitus. Optarim itaque (cum demonstratio vacui ex his dependeat) utexperimenta cum Globis & pluribus & majoribus & magis accuratis tentarentur. Si Globi sumantur in proportione Geometrica, puta quorum diametri sint digitorum 4, 8, 16, 32; ex progressione experimentorum colligetur quid in Globis adhuc majoribus evenire debeat.

Jam vero conferendo resistentias diversorum fluidorum inter se tentavi sequentia. Arcam ligneam paravi longitudine pedum quatuor, latitudine & altitudine pedis unius. Hanc operculo nudatam implevi aqua fontana, fecique ut immersa pendula in medio aquæ oscillando moverentur. Globus autem plumbeus pondere 1661/6unciarum, diametro 3⅝ digitorum, movebatur ut in Tabula sequente descripsimus, existente videlicet longitudine penduli a puncto suspensionis ad punctum quoddam in filo notatum 126 digitorum, ad oscillationis autem centrum 134⅛ digitorum.

In experimento columnæ quartæ, motus æquales oscillationibus 535 in aere, & 11/5in aqua amissi sunt. Erant autem oscillationes in aere paulo celeriores quam in aqua, nimirum in ratione 44 ad 41. Nam 14⅔ oscillationes in aqua, & 13⅔ in aere simul peragebantur. Et propterea si oscillationes in aqua in ea ratione accelerarentur ut motus pendulorum in Medio utroque fierent æquiveloces, numerus oscillationum 11/5in aqua, quibus motus idem ac prius amitteretur (ob resistentiam auctam in ratione illa duplicata & tempus diminutum in ratione eademsimplici) diminueretur in eadem illa ratione 44 ad 41, adeoque evaderet 11/5in41/44seu123/110. Paribus igitur Pendulorum velocitatibus motus æquales in aere oscillationibus 535 & in aqua oscillationibus123/110amissi sunt; ideoque resistentia penduli in aqua est ad ejus resistentiam in aere ut 535 ad123/110. Hæc est proportio resistentiarum totarum in Casu columnæ quartæ.

Designet jamAV+CV2resistentiam Globi in aere cum velocitateVmoventis, & cum velocitas maxima, in Casu columnæ, quartæ sit ad velocitatem maximam in casu columnæ primæ ut 1 ad 8, & resistentia in Casu columnæ quartæ ad resistentiam in Casu columnæ primæ in ratione arcuum differentiæ in his casibus, ad numeros oscillationum applicatæ, id est ut2/535ad 16 ÷ 85½ seu ut 85½ ad 4280: scribamus in his Casibus 1 & 8 pro velocitatibus, atque 85½ & 4280 pro resistentiis, & fietA+C= 85½ & 8A+ 64C= 4280 seuA+ 8C= 535, indeque per reductionem æquationum proveniet 7C= 449½ &C= 643/14&A= 212/7; atque adeo resistentia ut 212/7V+ 643/14V2quamproxime. Quare in Casu columnæ quartæ ubi velocitas erat 1, resistentia tota est ad partem suam quadrato velocitatis proportionalem, ut 212/7+ 643/14seu 85½, ad 643/14; & idcirco resistentia penduli in aqua est ad resistentiæ partem illam in aere quæ quadrato velocitatis proportionalis est, quæque sola in motibus velocioribus consideranda venit, ut 85½ ad 643/14& 535 ad123/110conjunctim, id est ut 637 ad 1. Si penduli in aqua oscillantis filum totum fuisset immersum, resistentia ejus fuisset adhuc major; adeo ut penduli in aere oscillantis resistentia illa quæ velocitatis quadrato proportionalis est, quæque sola in corporibus velocioribus consideranda venit, sit ad resistentiam ejusdem penduli totius, eadem cum velocitate in aqua oscillantis, ut 800 vel 900 ad 1 circiter, hoc est ut densitas aquæ ad densitatem aeris quamproxime.

In hoc calculo sumi quoque deberet pars illa resistentiæ penduli in aqua, quæ esset ut quadratum velocitatis, sed (quodmirum forte videatur) resistentia in aqua augebatur in ratione velocitatis plusquam duplicata. Ejus rei causam investigando, in hanc incidi, quod Arca nimis angusta esset pro magnitudine Globi penduli, & motum aquæ cedentis præ angustia sua nimis impediebat. Nam si Globus pendulus, cujus diameter erat digiti unius, immergeretur, resistentia augebatur in duplicata ratione velocitatis quamproxime. Id tentabam construendo pendulum ex Globis duobus, quorum inferior & minor oscillaretur in aqua, superior & major proxime supra aquam filo affixus esset, & in Aere oscillando, adjuvaret motum penduli eumque diuturniorem redderet. Experimenta autem hoc modo instituta se habebant ut in Tabula sequente describitur.

Resistentia hic nunquam augetur in ratione velocitatis plusquam duplicata. Et idem in pendulo majore evenire verisimile est, si modo Arca augeatur in ratione penduli. Debebit tamen resistentia tam in aere quam in aqua, si velocitas per gradus in infinitum augeatur, augeri tandem in ratione paulo plusquam duplicata, propterea quod in experimentis hic descriptis resistentia minor est quam pro ratione de corporibus velocissimis in Libri hujus Prop. xxxvi & xxxviii. demonstrata. Nam corpora longe velocissima spatium a tergo relinquent vacuum, ideoque resistentia quam sentiunt in partibus præcedentibus, nullatenus minuetur per pressionem Medii in partibus posticis.

Conferendo resistentias Mediorum inter se, effeci etiam ut pendula ferrea oscillarentur in argento vivo. Longitudo fili ferrei erat pedum quasi trium, & diameter Globi penduli quasi tertiapars digiti. Ad filum autem proxime supra Mercurium affixus erat Globus alius plumbeus satis magnus ad motum penduli diutius continuandum. Tum vasculum, quod capiebat quasi libras tres argenti vivi, implebam vicibus alternis argento vivo & aqua communi, ut pendulo in Fluido utroque successive oscillante invenirem proportionem resistentiarum: & prodiit resistentia argenti vivi ad resistentiam aquæ ut 13 vel 14 ad 1 circiter: id est ut densitas argenti vivi ad densitatem aquæ. Ubi Globum pendulum paulo majorem adhibebam, puta cujus diameter esset quasi ½ vel ⅔ partes digiti, prodibat resistentia argenti vivi in ea ratione ad resistentiam aquæ quam habet numerus 12 vel 10 ad 1 circiter. Sed experimento priori magis fidendum est, propterea quod in his ultimis vas nimis angustum fuit pro magnitudine Globi immersi. Ampliato Globo, deberet etiam vas ampliari. Constitueram quidem hujusmodi experimenta in vasis majoribus & in liquoribus tum Metallorum fusorum, tum aliis quibusdam tam calidis quam frigidis repetere: sed omnia experiri non vacat, & ex jam descriptis satis liquet resistentiam corporum celeriter motorum densitati Fluidorum in quibus moventur proportionalem esse quamproxime. Non dico accurate. Nam Fluida tenaciora pari densitate proculdubio magis resistunt quam liquidiora, ut oleum frigidum quam calidum, calidum quam aqua pluvialis, aqua quam Spiritus vini. Verum in liquoribus qui ad sensum satis fluidi sunt, ut in Aere, in aqua seu dulci seu falsa, in Spiritibus vini, Terebinthi & Salium, in Oleo a fœcibus per destillationem liberato & calefacto, Oleoque Vitrioli & Mercurio, ac Metallis liquefactis, & siqui sint alii, qui tam Fluidi sunt ut in vasis agitati motum impressum diutius conservent, effusique liberrime in guttas decurrendo resolvantur, nullus dubito quin regula allata satis accurate obtineat: præsertim si experimenta in corporibus pendulis & majoribus & velocius motis instituantur.

Quare cum Globus aqueus in aere movendo resistentiam patiatur qua motus sui pars1/3261, interea dum longitudinemsemidiametri suæ describat (ut jam ante ostensum est) tollatur, sitque densitas aeris ad densitatem aquæ ut 800 vel 850 ad 1 circiter, consequens est ut hæc Regula generaliter obtineat. Si corpus quodlibet Sphæricum in Medio quocunque satis Fluido moveatur, & spectetur resistentiæ pars illa sola quæ est in duplicata ratione velocitatis, hæc pars erit ad vim quæ totum corporis motum, interea dum corpus idem longitudinem duarum ipsius semidiametrorum motu illo uniformiter continuato describat, vel tollere posset vel eundem generare, ut densitas Medii ad densitatem corporis quamproxime. Igitur resistentia quasi triplo major est quam pro lege in Corollario primo Propositionis xxxviii. allata; & propterea partes quasi duæ tertiæ motus illius omnis quem Globi partes anticæ movendo imprimunt in Medium, restituuntur in Globi partes posticas a Medio in orbem redeunte, inque spatium irruente quod Globus alias vacuum post se relinqueret. Unde si velocitas Globi eousque augeatur ut Medium non posset adeo celeriter in spatium illud irruere, quin aliquid vacui a tergo Globi semper relinquatur, resistentia tandem evadet quasi triplo major quam pro Regula generali novissime posita.

Hactenus experimentis usi sumus oscillantium pendulorum, eo quod eorum motus facilius & accuratius observari & mensurari possint. Motus autem pendulorum in gyrum actorum & in orbem redeundo circulos describentium, propterea quod sint uniformes & eo nomine ad investigandam resistentiam datæ velocitati competentem longe aptiores videantur, in consilium etiam adhibui. Faciendo enim ut pendulum circulariter latum duodecies revolveretur, notavi magnitudines circulorum duorum, quos prima & ultima revolutione descripsit. Et inde collegi velocitates corporis sub initio & fine. Tum dicendo quod corpus, velocitate mediocri describendo circulos duodecim mediocres, amitteret velocitatum illarum differentiam, collegi resistentiam qua differentia illa eo omni corporis per circulos duodecim itinere amitti posset; & resistentia inventa, quanquam hujus generisexperimenta minus accurate tentare licuit, probe tamen cum præcedentibus congruebat.

Denique cum receptissima Philosophorum ætatis hujus opinio sit, Medium quoddam æthereum & longe subtilissimum extare, quod omnes omnium corporum poros & meatus liberrime permeet; a tali autem Medio per corporum poros fluente resistentia oriri debeat: ut tentarem an resistentia, quam in motis corporibus experimur, tota sit in eorum externa superficie, an vero partes etiam internæ in superficiebus propriis resistentiam notabilem sentiant, excogitavi experimentum tale. Filo pedum undecim longitudinis, ab unco chalybeo satis firmo, mediante annulo chalybeo, suspendebam pyxidem abiegnam rotundam, ad constituendum pendulum longitudinis prædictæ. Uncus sursum præacutus erat acie concava, ut annulus arcu suo superiore aciei innixus liberrime moveretur. Arcui autem inferiori annectebatur filum. Pendulum ita constitutum deducebam a perpendiculo ad distantiam quasi pedum sex, idque secundum planum aciei unci perpendiculare, ne annulus, oscillante Pendulo, supra aciem unci ultro citroque laberetur. Nam punctum suspensionis in quo annulus uncum tangit, immotum manere debet. Locum igitur accurate notabam, ad quem deduxeram pendulum, dein pendulo demisso notabam alia tria loca ad quæ redibat in fine oscillationis primæ, secundæ ac tertiæ. Hoc repetebam sæpius, ut loca illa quam potui accuratissime invenirem. Tum pyxidem plumbo & gravioribus, quæ ad manus erant, metallis implebam. Sed prius ponderabam pyxidem vacuam, una cum parte fili quæ circum pyxidem volvebatur ac dimidio partis reliquæ quæ inter uncum & pyxidem pendulam tendebatur. (Nam filum tensum dimidio ponderis sui pendulum a perpendiculo digressum semper urget.) Huic ponderi addebam pondus aeris quam pyxis capiebat. Et pondus totum erat quasi pars septuagesima octava pyxidis metallorum plenæ. Tum quoniam pyxis Metallorum plena, pondere suo tendendo filum, augebat longitudinem penduli,contrahebam filum ut penduli jam oscillantis eadem esset longitudo ac prius. Dein pendulo ad locum primo notatum distracto ac dimisso, numerabam oscillationes quasi septuaginta & septem, donec pyxis ad locum secundo notatum rediret, totidemque subinde donec pyxis ad locum tertio notatum rediret, atque rursus totidem donec pyxis reditu suo attingeret locum quartum. Unde concludo quod resistentia tota pyxidis plenæ non majorem habebat proportionem ad resistentiam pyxidis vacuæ quam 78 ad 77. Nam si æquales essent ambarum resistentiæ, pyxis plena ob vim suam insitam septuagies & octies majorem vi insita pyxidis vacui, motum suum oscillatorium tanto diutius conservare deberet, atque adeo completis semper oscillationibus 78 ad loca illa notata redire. Rediit autem ad eadem completis oscillationibus 77.

Designet igiturAresistentiam pyxidis in ipsius superficie externa, &Bresistentiam pyxidis vacuæ in partibus internis; & si resistentiæ corporum æquivelocium in partibus internis sint ut materia, seu numerus particularum quæ resistuntur: erit 78Bresistentia pyxidis plenæ in ipsius partibus internis: adeoque pyxidis vacuæ resistentia totaA+Berit ad pyxidis plenæ resistentiam totamA+ 78But 77 ad 78, & divisimA+Bad 77But 77, ad 1, indequeA+BadBut 77 × 77 ad 1, & divisimAadBut 5928 ad 1. Est igitur resistentia pyxidis vacuæ in partibus internis quinquies millies minor quam ejusdem resistentia in externa superficie, & amplius. Sic disputamus ex hypothesi quod major illa resistentia pyxidis plenæ oriatur ab actione Fluidi alicujus subtilis in Metallum inclusum. Ac causam longe aliam esse opinor. Nam tempora oscillationum pyxidis plenæ minora sunt quam tempora oscillationum pyxidis vacuæ, & propterea resistentia pyxidis plenæ in externa superficie major est, pro ipsius velocitate & longitudine spatii oscillando descripti, quam ea pyxidis vacuæ. Quod cum ita sit, resistentia pyxidum in partibus internis aut nulla erit aut plane insensibilis.

Hoc experimentum recitavi memoriter. Nam charta, in qua illud aliquando descripseram, intercidit. Unde fractas quasdam numerorum partes, quæ memoria exciderunt, omittere compulsus sum. Nam omnia denuo tentare non vacat. Prima vice, cum unco infirmo usus essem, pyxis plena citius retardabatur. Causam quærendo, reperi quod uncus infirmus cedebat ponderi pyxidis, & ejus oscillationibus obsequendo in partes omnes flectebatur. Parabam igitur uncum firmum, ut punctum suspensionis immotum maneret, & tunc omnia ita evenerunt uti supra descripsimus.

Eadem methodo qua invenimus resistentiam corporum Sphæricorum in Aqua & argento vivo, inveniri potest resistentia corporum figurarum aliarum; & sic Navium figuræ variæ in Typis exiguis constructæ inter se conferri, ut quænam ad navigandum aptissimæ sint, sumptibus parvis tentetur.

De Motu per Fluida propagato.

Pressio non propagatur per Fluidum secundum lineas rectas, nisi ubi particulæ Fluidi in directum jacent.

Pressio non propagatur per Fluidum secundum lineas rectas, nisi ubi particulæ Fluidi in directum jacent.


Back to IndexNext