Chapter 33

Note 25, p.171.--Billiards.

Note 25, p.171.--Billiards.

Note 25, p.171.--Billiards.

This interesting game is of French origin (billiard, ofbile, and from the Latin,pila, a ball). It was hailed as a favourite diversion at the court of Henry III. of France; and was thence communicated to all the courts of modern Europe. To the novice it may appear as a game of accidents and chances, but experience has enabled us to determine the effects of the stroke given to a ball with wonderful precision; and it is quite extraordinary to observe the accuracy with which an accomplished player can effect his object, by measuring with his eye the angle at which he should make the stroke, the position of the ball with respect to the cushion, and the distance of the point of the ball from its centre, at which it should be struck. By such skilful management the ball may be made to take directions which would, at first view, be regarded as contraryto all the known laws of motion, such, for instance, as passing round an object, such as a hat placed on the table, and to strike a ball behind it into a pocket.

Upon this subject the reader should consult a work by M. Mingaud, which has been translated and published by John Thurston, the celebrated billiard-table maker of Catherine Street, Strand. We understand that a still more complete work may be expected from the same source.

Note 26, p.172.--Collision of bodies.

Note 26, p.172.--Collision of bodies.

Note 26, p.172.--Collision of bodies.

In investigating the effects produced upon bodies by collision, it is necessary to distinguish between elastic and non-elastic substances, since their motions after impact are governed by very different laws.

If two bodies,void of elasticity, move in one right line, either the same or contrary ways, so that one body may strike directly against another, let thesumof their motions before the stroke, if they move the same way, and thedifferenceof their motions, if contrary ways, be divided into two such parts as are proportional to the quantities of matter in the bodies, and each of those parts will respectively exhibit the motion of each body after the stroke: for example, if the quantities of matter in the bodies be astwotoone, and their motions before the stroke asfiveandfour, then the sum of their motions isnine, and the difference isone; and therefore, when they move the same way, the motion of that body, which is astwo, will, after the stroke, besix, and the motion of the other,three; but, if they move in contrary directions, the motion of the greater body after the stroke will betwo-thirds of one, and of the lesser bodyone-third of one; for, since the bodies are void of elasticity, they will not separate after the stroke, but move together with one and the same velocity; and, consequently, their motions will be proportional to their quantities of matter; and it follows from the fact of action and reaction being equal, that no motion is either lost or gained by the stroke when the bodies move the same way; because, whatever motion one body imparts to the other, so much must it lose of its own; and, consequently, thesumof their motions before the stroke is neither increased nor diminished by the stroke, but is so divided between the bodies, as that they may move together with one common velocity; that is, it is divided between the bodies in proportion totheir quantities of matter: but it is otherwise, where the bodies move in opposite directions, or contrary ways, for then the smaller motion will be destroyed by the stroke, as also an equal quantity of the greater motion, because action and reaction are equal; and the bodies, after the stroke, will move together equally swift, with thedifferenceonly of their motions before the stroke; consequently, that difference is, by means of the stroke, divided between them in proportion to their quantities of matter.

The several particular cases, concerning the collision of bodies, may be reduced to four general ones; viz.

1st. It may be, that one body only is in motion at the time of the stroke.

2nd. They may both move one and the same way.

3rd. They may move in direct opposition to each other, and that with equal quantities of motion.

4th. They may be carried with unequal motions in directions contrary to each other.

As the bodies may be either equal or unequal, each of these four general cases may be considered as consisting of two branches.

As to the first, if a body in motion strikes another equal body at rest, they will, according to the proposition, move together each of them with one half of the motion that the body had which was in motion before the stroke; and since the quantity of motion in any body is as the product arising from the multiplication of its quantity of matter into its velocity, the common velocity of the two bodies will be but one half of the velocity of the moving body before the stroke.

As to the second general case, where both the bodies are in motion before the stroke, and move one and the same way. In order to find their common velocity after impact, let the sum of their motions before the stroke be divided by the sum of the bodies, and the quotient will express the common velocity.

As to the third general case, where the bodies move in direct opposition to each other, if they have equal quantities of motion, they will upon the stroke lose all their motion, and continue at rest; for, by the proposition, the bodies after impact will be carried with the difference of their motions before the stroke; which difference, in such a case, is nothing.

When two bodies meet with unequal quantities of motion, if the difference of their motions be divided by the sum of the bodies, the quotient will express their common velocity after the stroke; for, by the proposition, the difference of their motions before the stroke is equal to the sum of their motions after the stroke; consequently, that difference divided by the sum of the bodies must give the velocity.

Such are the principal laws which govern the collision of bodies devoid of elasticity. The motions of elastic bodies are determined by different rules: for when they are perfectly elastic, the velocity gained by the body struck, and the velocity lost by the striking body, will be twice as great as if the bodies were perfectly inelastic. In estimating, therefore, the motions of such bodies, we may first consider what they would have been after impact, had they been inelastic, and thence deduce the desired conclusion. See Helsham’s Lectures, a work in which the subject appears to be very clearly treated.

Note 27, p.181.--Druidical remains.

Note 27, p.181.--Druidical remains.

Note 27, p.181.--Druidical remains.

Karn-brêh hill rises a little to the south-west of Redruth in Cornwall, to an elevation of 697 feet. Its principal interest is derived from the speculations of the antiquary, Doctor Borlase, who regarded it as having been once the grand centre of druidical worship; and he asserts, in his Antiquities of Cornwall, that, at this very time, the remains of those monuments which were peculiar to that priesthood may be discovered, such asrock-basins,circles,rock-idols,cromlechs,karns,caves,religious enclosures,logan stones,a gorseddau, or place of elevation, whence the druids pronounced their decrees, and the traces of agrove of oaks. This is all very ingenious and imposing, and may be easily believed by those who have either not visited the spot, or, having visited it, not viewed the objects with geological eyes. There is no ground whatever for considering the druidical monuments of Dr. Borlase as the works of man: on the contrary, they are evidently the results of the operation of time and the elements, the usual agents employed by Nature in the decomposition of mountain masses: but the age of antiquarian illusion is past; the light of geological science has dispelled the phantoms created by the wizard Fancy, just as the rising sun dissolvesthe mystic forms which the most common object assumes in twilight, when viewed through the medium of credulity and superstition. The “rock-basins” of antiquaries are rounded cavities on the surface of rocks, and are occasionally as spheroidal internally as if they had been actually formed by a turning-lathe. It was this artificial appearance which first suggested the hypothesis concerning their origin, and induced the antiquary to regard them as pools of lustration. It may, however, be remarked, in the first place, that, supposing them to have been the works of the druids, these priests must have been indefatigable artists, for there is scarcely a block of granite on which one or more of such pools are not visible, although some are, undoubtedly, much more complete and imposing than others. We shall introduce to the reader an account of these rock-basins in the words of their great defender, and we think that he will be amused with the ingenuity and confidence with which the antiquary dwells upon every appearance, and bends the facts to suit his favourite theory. “Since no author has mentioned, and attempted to explain these monuments, let us see what light and assistance their shape and structure, exposition, number, and place, considered together with the customs and known rites of antiquity, may afford us in this untrodden path. Of these basins there are two sorts; some have lips or channels to them, others have none; and therefore, as those lips are manifestly the works of design, not of accident, those that have so material a difference must needs have been intended for a different use, and yet both these sorts seem to be the works of the same people, for there is a multitude of these basins which have no lips or outlets, as well as those which have, to be seen on Karn-brêh hill, and elsewhere, on contiguous rocks. Their shape is not uniform; some are quite irregular, some oval, and some are exactly circular. Their openings do not converge in the top as a jar or hogshead, but rather spread and widen, as if to expose the hollow as much as possible to the skies. Some have little falls into a larger basin, which receives their tribute, and detains it, having no outlet. Other large ones intermixed with little ones have passages from one to another, and, by successive falls uniting, transmit what they receive into one common basin, which has a drain to it, that serves itself and all the basins above it.”

“The lips do not all point in the same direction, some tending to the south, some to the west, others to the north, and others again to the intermediate points of the compass;by which it seems as if the makers had been determined in this particular, not by any mystical veneration for one region of the heavens more than another, but by the shape and inclination of the rock, and for the most easy and convenient outlet.” We must here beg the reader to pause. The above remark is really too valuable to be suffered to pass without some notice. And so the absence of all design and arrangement is adduced as a proof of their artificial origin! What would Dr. Borlase have said, had all these lips been found to point in the same direction? But to proceed:

“The size of rock-basins is as different as their shape; they are formed from six feet to a few inches in diameter. Many uses may suggest themselves to the imaginations of the curious from the description of these new, and hitherto scarce-mentioned monuments; in order, therefore, to obviate some prepossessions, and prevent the mind from resting so far on groundless suppositions as may make it more difficult to embrace the truth, I shall first consider what, in all probability,cannothave been the design of them.”

The doctor then proceeds to show that they could never have been intended for evaporating salt; nor for pounding tin ore, nor for receiving obelisks, or stone deities, nor for altars; and then suggests that they could be no other than vessels most ingeniously contrived for holding holy-water for the rites of washing and purification. “If,” adds the learned antiquary, “fitness can decide the use--and where history is deficient, it is all reason that it should--we shall not long be at a loss. They are mostly placed above the reach of cattle, frequently above the inspection of man; nay, the stones which have these basins on them, do not touch the common ground, but stand on other stones.--Wherefore? but that the water might neither be really defiled by the former, nor incur the imaginary impurity, which touching the ground, according to the druid opinion, gave to every thing that was holy.” We do not know what ideas the druids entertained with respect to the purity of water, but we have seen water in some of these pools so impregnated with the excrement of sea-birds, that we musthave been as thirsty as Tantalus, before we could have been induced to cool our tongues with it.

“But,” adds Dr. Borlase, “there are some basins which have no lip or channel; and, therefore, as they could not contribute any of their water to the common store, theymusthave been appropriated to another use; and since these are found in the same places with the others above-mentioned which have outlets or mouths to them, they must have been subservient to the same system of superstition, though in a different method.”

“These basins are sometimes found near twenty feet high from the common surface; and, therefore, being so withdrawn from vulgar eyes, so elevated from the ground, which was supposed, as I said before, to defile all, they had likely a proportionably greater degree of reverence, and their waters accounted more holy, and more efficacious.”

We shall not trouble the reader with any further quotations from this learned antiquary, except in concluding the history, after the fashion of melo-dramatists, with a splendid scene, in which, with the author’s assistance, we shall bring all the performers on the stage, dressed in appropriate costume, and surrounded by all the pomp of druidical worship.

“From these basins,” says Dr. Borlase, “on solemn occasions the officiating druid, standing on an eminence, sanctified the congregation with a more than ordinarily precious lustration before he expounded to them, or prayed for them, or gave forth his decisions. This water he drank, or purified his hands in, before it touched any other vessel, and was consequently accounted more sacred than the other holy-water. To these more private basins, during the time of libation, the priest might have recourse, and be at liberty to judge by the quantity, colour, motion, and other appearances in the water, of future events, of dubious cases, without danger of contradiction from the people below. This water might serve to mix their mistletoe withal, as a general antidote: for, doubtless, those who would not let it touch the ground, would not mix this their divinity (the mistletoe) with common water. Oak leaves, without which the druid rites did scarce ever proceed, ritually gathered and infused, might make some very medicinal or incantorial potion. Lastly, libations of water were never to be made to their gods, but when theyconsisted of this purest of all water, as what was immediately come from the heavens, and partly therefore thither to be returned, before it touched any other water or any other vessel whatsoever, placed on the ground.”

“Aslogan, or rocking-stones, were some of thepiæ fraudesof the druids, the basins found on them might be used to promote the juggle; by the motion of the stone the water might be so agitated, as to delude the enquirer by a pretended miracle; might make the criminal confess; satisfy the credulous; bring forth the gold of the rich; and make the injured, rich as well as poor, acquiesce in what the druid thought proper.”

Sorry are we to destroy a web which has been so ingeniously woven by its author; but the interests of truth admit not of compromise. Dr. Macculloch, in an interesting paper, published in the Transactions of the Geological Society, on the decomposition of the granite tors of Cornwall, has justly observed, that the true nature of these rock-basins may be easily traced by inspecting the rocks themselves. On examination, they will always be found to contain distinct grains ofquartz, and fragments of the other constituent parts of the granite. A small force is sufficient to detach from the sides of these cavities additional fragments, showing that a process of decomposition is still going on under favourable circumstances. The principal of these circumstances is the presence of water, or rather the alternate action of air and water. If a drop of water can only make an effectual lodgement on a surface of this granite, a small cavity is sure to be sooner or later produced; this will insensibly enlarge as it becomes capable of holding more water; and the sides, as they continue to waste, will necessarily retain an even and rounded cavity, on account of the uniform texture of the rock. This explanation is sufficiently satisfactory: in addition to which, it may be stated, that these very basins not unfrequently occur on the perpendicular sides of rocks, as may be distinctly seen in the granite of Scilly, and in the gritstone rocks in the park of the late Sir Joseph Banks, in the parish of Ashover, in Derbyshire; a fact which at once excludes the idea of their artificial origin.

The other grotesque and whimsical appearances of rocky masses, such asrock idols,logan stones,&c.are to be explained by the tendency which granite possesses of wearingmore rapidly on the angles and edges than on the sides; thus, then, upon simple and philosophical principles, are such appearances to be satisfactorily accounted for, and thephantasmagoriaof Borlase vanishes as the light penetrates the theatre so long dedicated to its exhibition.

We shall conclude this note with a few observations upon the celebrated logan, or logging, stone, near the Land’s End, Cornwall, of which we present our readers with a faithful sketch.

Mound of stone with a boulder balanced atop a point in the middle.

The foundation of this part of the coast is a stupendous group of granite rocks, which rise in pyramidal clusters to a great altitude, and overhang the sea. The celebratedlogan stonehere represented is an immense block weighing above sixty tons. The surface in contact with the under rock is of very small extent, and the whole mass is so nicely balanced, that, notwithstanding its magnitude, the strength of a single man applied to its under edge is sufficient to make it oscillate. It is the nature of granite to disintegrate into rhomboidal and tabular masses, which, bythe further operation of air and moisture, gradually lose their solid angles, and approach the spheroidal form. The fact of the upper part of the cliff being more exposed to atmospheric agency than the parts beneath, will sufficiently explain why these rounded masses so frequently rest on blocks which still preserve the tabular form; and since such spheroidal blocks must obviously rest in that position in which their lesser axes are perpendicular to the horizon, it is equally evident that, whenever an adequate force is applied, they must vibrate on their point of support.

Although we are thus led to deny the druidical origin of this stone, for which so many zealous antiquaries have contended, still we by no means intend to deny that the druids employed it as an engine of superstition; it is possible that, having observed so curious a property, they dexterously contrived to make it answer the purposes of an ordeal, and, by regarding it as thetouch-stoneof truth, acquitted or condemned the accused by its motions. Mason poetically alludes to this supposed property in the following lines:--

“Behold yon hugeAnd unknown sphere of living adamant,Which, poised by magic, rests its central weightOn yonder pointed rock; firm as it seems,Such is its strange and virtuous property,It moves obsequious to the gentlest touchOf him whose heart is pure, but to a traitor,Tho’ e’en a giant’s prowess nerved his arm,It stands as fixed as Snowdon.”

“Behold yon hugeAnd unknown sphere of living adamant,Which, poised by magic, rests its central weightOn yonder pointed rock; firm as it seems,Such is its strange and virtuous property,It moves obsequious to the gentlest touchOf him whose heart is pure, but to a traitor,Tho’ e’en a giant’s prowess nerved his arm,It stands as fixed as Snowdon.”

“Behold yon hugeAnd unknown sphere of living adamant,Which, poised by magic, rests its central weightOn yonder pointed rock; firm as it seems,Such is its strange and virtuous property,It moves obsequious to the gentlest touchOf him whose heart is pure, but to a traitor,Tho’ e’en a giant’s prowess nerved his arm,It stands as fixed as Snowdon.”

“Behold yon huge

And unknown sphere of living adamant,

Which, poised by magic, rests its central weight

On yonder pointed rock; firm as it seems,

Such is its strange and virtuous property,

It moves obsequious to the gentlest touch

Of him whose heart is pure, but to a traitor,

Tho’ e’en a giant’s prowess nerved his arm,

It stands as fixed as Snowdon.”

Note 28, p.186.--Animal suction.

Note 28, p.186.--Animal suction.

Note 28, p.186.--Animal suction.

We are indebted to Sir Everard Home for a description of that peculiar structure by which several species of animals are enabled to sustain their bodies in opposition to the force of gravity. His first paper upon this subject is published in the 106th volume of the Philosophical Transactions, in which he says, he was not aware that any animal, larger than the house-fly, was endowed by nature with such a power, so as to admit of examination, until Sir Joseph Banks mentioned that thelacerta gecko, a species of lizard, which is a native of the island of Java, comes out of an evening from the roofs of the houses, and walks down the smooth, hard, and polished chinam walls, in search of the flies which settle upon them, and which are its naturalfood, and then runs up again to the roof of the house. Sir Joseph, while at Batavia, amused himself with catching this animal, by standing close to the wall, at some distance from the lizard, with a long flattened pole, which being made suddenly to scrape the surface of the wall, knocked the animal down. He presented Sir Everard with a specimen weighing five ounces and three quarters, avoirdupois, which enabled him to ascertain the peculiar mechanism by which the feet of this animal can keep their hold of a smooth, hard, perpendicular wall, and carry up so large a weight as that of its body.

The foot has five toes, at the end of each of which, except that of the thumb, is a very sharp and much curved claw; on the under surface of each toe are sixteen transverse slits, leading to so many cavities or pockets, the depth of which is nearly equal to the length of the slit that forms the orifice; they all open forward, and the external edge of each opening is serrated, like the teeth of a small-toothed comb. The cavities, or pockets, are lined with a cuticle, and the serrated edges are also covered with it. The structure just described is supplied with various muscles, whose action is to draw down the claw, open the orifices of the pockets, and turn down the serrated edges upon the surface on which the animal stands. Upon examining attentively the under surface of the toes, when the pockets are closed, Sir Everard Home was struck with their resemblance to the surfaces of that portion of theEchineis remora, or sucking fish, by which it attaches itself to the shark, or to the bottom of ships; and it consequently suggested the probability of obtaining, from an examination of this latter apparatus, much useful information which might be applicable to the subject of the lizard, more especially as the parts of which it is composed are so much larger, and therefore more within the reach of anatomical examination.

The surface on the top of the head of this fish, fitted for adhesion, is of an oval form, and bears a considerable proportion to the size of the whole animal; it is surrounded by a broad, loose, movable edge, capable of applying itself closely to the surface on which it is placed; and it is evident that when the external edge is so applied, and the cartilaginous plates are raised up, the interstices must become so many vacua, and the serrated edge of eachplate will keep a sufficient hold of the substance on which it rests to retain it in that position, assisted by the pressure of the surrounding water, without a continuance of muscular exertion. It thus appears that the adhesion of thesucking fishis produced by so many vacua being formed through an apparatus worked by the voluntary muscles of the animal, and the pressure of the surrounding water.

From the similarity of the mechanism of the under surface of the toes of thelacerta gecko, there can be no doubt that the purpose to which it is applied is the same: but as in the one case the adhesion is to take place under water, and is to continue for longer periods, the means are more simple; in the other, where the mechanism is to be employed in air, under greater disadvantages with respect to gravity, and is to last for very short periods, and then immediately afterwards to be renewed, a more delicate structure of parts, a greater proportional depth of cavities, and more complex muscular structure, become necessary.

Having ascertained the principle on which an animal of so large a size as thelacerta geckois enabled to support itself in its progressive motion against gravity, Sir E. Home felt himself more competent to inquire into the mechanism by which the common fly is enabled, with so much facility, to support itself in still more disadvantageous situations. In the natural size the feet of the fly are so small, that nothing can be determined respecting them; Keller was the first person who made a drawing of the fly’s foot in a highly magnified state, in which the concave surfaces are visible, and which, no doubt, like those of the lizard above described, are employed to form vacua, which enable the fly to move under such disadvantageous circumstances. Mr. Bauer, who has so greatly distinguished himself in microscopic researches, was judiciously enlisted into the service of Sir E. Home upon this occasion; and he has shown that this principle, on which progressive motion against gravity depends, is very extensively employed by nature in the structure of the feet of insects; and Sir Everard observes, that, now this structure is known, it can be readily demonstrated by looking at the movement of the feet of any insect upon the inside of a glass tumbler, through a common magnifying glass; the different suckers are readily seen separately to be pulled off from the surface of the glass, and reapplied to another part.

In consequence of the expedition to the polar regions, Sir E. Home was enabled to obtain and examine the foot of the walrus, in which he detected a resemblance in structure to that of the fly; and it is not a little curious that two animals so different in size should have feet so similar in their use. In the fly the parts require to be magnified one hundred times to render the structure distinctly visible; and in the walrus the parts are so large, as to require being reduced four diameters, to bring them within the size of a quarto page.

Nor is progressive motion, the only function in which Nature avails herself of the pressure of the atmosphere for the accomplishment of her purposes. The act of feeding is continually effected in this manner. The operation of sucking is too familiar to require comment. It may not, perhaps, be so generally known, that it is by the very same process that bees reach the fine dust and juices of hollow flowers, like the honeysuckle, and some species of foxglove, which are too narrow to admit them. They fill up the mouth of the flower with their bodies, and suck out the air, or at least a large portion of it, by which the soft sides of the flower are made to collapse, and the juice and dust are squeezed towards the insect, as completely as if the hand had pressed it externally. It is by a similar process that the oyster is enabled to close its shell so firmly; for, if a hole be bored in it, it may be opened without the least difficulty.

Note 29, p.191.--Accidental discoveries.

Note 29, p.191.--Accidental discoveries.

Note 29, p.191.--Accidental discoveries.

Those who are not acquainted with the operations by which the mind is enabled to arrive at truth, are too apt to attribute to accident that which is the result of great intellectual labour and acuteness. Observation, analogy, and experiment are the three great stepping-stones by which the philosopher is enabled to ascend from darkness to light: it is true that his foot may accidentally be placed upon the first, but his own efforts are required to complete the ascent. To the mass of mankind the preliminary step is obvious, and they at once conclude that the succeeding ones are equally easy and simple. In this view of the subject, it was by accident that Sir Isaac Newton discovered the laws of gravitation, for his mind was directed to the investigation by the accidental fall of an apple from its tree;it was by accident that Galileo discovered the isochronous movement of the pendulum, for it was suggested by the vibration of a chandelier: but how many persons might have witnessed the fall of an apple, or the vibration of a chandelier, without arriving at similar truths? It has been said that we are indebted for the important invention in the steam-engine, termedhand gear, by which its valves or cocks are worked by the machine itself, to an idle boy of the name of Humphrey Potter, who, being employed to stop and open a valve, saw that he could save himself the trouble of attending and watching it, by fixing a plug upon a part of the machine which came to the place at the proper times, in consequence of the general movement. If this anecdote be true, what does it prove? That Humphrey Potter might be very idle, but that he was, at the same time, very ingenious. It was a contrivance, not the result of accident, but of acute observation and successful experiment. Glass is said to have been discovered by persons having accidentally kindled a fire on the sandy shore with sea-weed, when the alkali from the ashes united with the silex of the sand; and Pliny tells us thatminium, or red lead, was first recognised, in consequence of a fire that took place at the Piræus at Athens, where someceruse, which had been exposed to the fire, had been found converted into a red substance. A thousand such accidents might be related, were we not affording a sample rather than a catalogue. We are endeavouring to combat a popular but mischievous error; and we are happy at finding the same feeling expressed in a work which, from its extensive circulation, must prove highly useful in correcting it. “Very few discoveries,” says the author, “have been made by chance and by ignorant persons; much fewer than is generally supposed. They are generally made by persons of competent knowledge, and who are in search of them. The improvement of the steam-engine by Watt resulted from the most learned investigation of mathematical, mechanical, and chemical truths. Arkwright devoted many years, five at least, to his invention of spinning-jennies. The new process of refining sugar, by which more money has been made in a shorter time, and with less risk and trouble, than was perhaps ever gained by an invention, was discovered by Mr. Howard, a most accomplished chemist, and it was the fruit of a long course of experiments, in the progressof which, known philosophical principles were constantly applied, and one or two new principles ascertained.”--Library of Useful Knowledge.

Note 30, p.193.--Weight of the superincumbent ocean.

Note 30, p.193.--Weight of the superincumbent ocean.

Note 30, p.193.--Weight of the superincumbent ocean.

If we include the pressure of the atmosphere, a body at the depth of 100 feet would sustain that of 60 pounds on the square inch; while one at 4,000 feet, a depth by no means considerable, it would be exposed to a pressure of about 1,830 pounds. We need not, therefore, feel surprised, that on the foundering of a ship at sea, though its timbers part, not a spar floats to the surface; for if the hull has sunk to a great depth, all that is porous is penetrated with water or greatly compressed. Captain Scoresby states that when, by the entangling of the line of the harpoon, a boat was carried down with the whale, it required after it was recovered two boats to keep it at the surface. Sir J. Herschel has recorded a melancholy anecdote, which may well be adduced in farther illustration of our subject:--“After the invention of the diving-bell, and its success in sub-aqueous processes, it was considered highly desirable to devise some means of remaining for any length of time under water, and rising at pleasure without any assistance. Some years ago an ingenious individual proposed a project by which this end was to be accomplished. It consisted in sinking the hull of a ship made quite water-tight, with the decks and sides strongly supported by shores, and the only entry secured by a stout trap-door, in such a manner, that by disengaging from within the weights employed to sink it, it might rise of itself to the surface. To render the trial more satisfactory, the projector himself made the first essay. It was agreed that he should sink in twenty fathoms water, and rise again without assistance at the expiration of twenty-four hours. Accordingly, making all secure, and provided with the means of making signals to indicate his situation, this unhappy victim of his own ingenuity entered and was sunk. No signal was made, and the time appointed elapsed. The pressure of the water at so great a depth had, no doubt, been completely under-estimated, and the sides of the vessel being at once crushed in, the unfortunate projector perished, before he could even make the signal concerted to indicate his distress.”

Note 31, p.199.

Note 31, p.199.

Note 31, p.199.

Hencepecuniafrom pecus.Opesquasi Oves. SeeNote 6.

Note 32, p.207.--The cause of iridescence.

Note 32, p.207.--The cause of iridescence.

Note 32, p.207.--The cause of iridescence.

If a soap-bubble be blown up, and set under a glass, so that the motion of the air may not affect it, as the water glides down the sides and the top grows thinner, several colours will successively appear at the top, and spread themselves from thence in rings down the sides of the bubble, till they vanish in the same order in which they appeared; at last a black spot appears at the top, and spreads till the bubble bursts. Hence it follows that the colours of a body depend in some degree upon the thickness and density of the particles that compose it; and that, if the density be changed, the colour will likewise be changed. That the production of colours depends upon the nature of the surfaces upon which light falls, is beautifully exemplified by the iridescence of mother of pearl; and which has been satisfactorily shown to depend upon a singular peculiarity in the structure of that substance. On its surface, which to the unassisted eye, and even to the touch, appears to be finely polished, there are innumerable little lines, orgrooves, in some places as many as two or three thousand in the space of an inch, which, lying parallel, regularly follow each other in all their windings; by the edges of which the rays of light are reflected, and the continual change of colour arises from their continual bendings. Whatever doubts might have existed upon the subject, some late experiments of Dr. Brewster have dissipated them, by showing that the colours which play so beautifully on the surface of mother of pearl, may be communicated by pressure to sealing-wax and several other substances. The discovery of this fact was in some measure accidental; he had stuck a piece of mother of pearl on a cement made of rosin and bees-wax, and on separating this cement he found that it had acquired the property of exhibiting colours. Several persons who witnessed the effect, concluded that it arose from the presence of a thin film of the mother of pearl, which might have scaled off and adhered to the wax: but such an explanation was at once refuted, by plunging the wax in acid, which must have dissolved the mother of pearl, had anybeen present; but the acid had no effect, and the colours of the impression remained unimpaired. It is clear, then, that it is the grooves, as Dr. Brewster conjectured, which occasion the iridescence in the mother of pearl, as well as in the waxen impression. In consequence of this curious discovery, Mr. Barton succeeded in producing the same appearance on glass, and on different metals, by simply cutting grooved lines on their surface. These lines are so fine that, without a microscope, they are scarcely visible, and the glass and the metal appear to retain their polish: yet they and the colours also may be communicated by an impression, like those from the mother of pearl, to the wax. In like manner the varying and delicate hues exhibited by the wings of certain butterflies, arise from the action of light upon the parallel and equidistant striæ upon their surfaces.

Note 33, p.224.--Vegetable barometers.

Note 33, p.224.--Vegetable barometers.

Note 33, p.224.--Vegetable barometers.

The following are a few of those plants which indicate changes in the weather:--

Chickweedis an excellent barometer. When the flower expands fully, we are not to expect rain for several hours; should it continue in that state, no rain will disturb the summer’s day. When it half conceals its miniature flower, the day is generally showery; but, if it entirely shuts up, or veils the white flower with its green mantle, let the traveller take the hint and put on his great-coat. The different species oftrefoilalways contract their leaves at the approach of a storm; so certainly does this take place, that these plants have acquired the name of thehusbandman’s barometer.

The tulip and several of the compound yellow flowers also close before rain. There is, besides, a species of wood-sorrel, which doubles its leaves before storms and tempests. Thebauhinia, or mountain ebony,cassia, and sensitive plants, observe the same habit.

Note 34, p.225.--Saint Swithin.

Note 34, p.225.--Saint Swithin.

Note 34, p.225.--Saint Swithin.

The popular adage ofForty days’ rain after St. Swithin, is a tradition which seems to have derived its origin from the following circumstance. Swithin, orSwithum, bishop of Winchester, who died in 868, desired that he might beburied in the open church-yard, and not in the chancel of the minster, as was usual with other bishops; and his request was complied with; but the monks, on his being canonized, considering it disgraceful for the saint to lie in a public cemetery, resolved to remove the body into the choir, which was to have been done with solemn procession on the 15th of July. It rained, however, so violently for forty days together at this season, that the design was abandoned. “Now, without entering into the case of the bishop,” says Mr. Howard, in his work on the Climate of London, “who was probably a man of sense, and wished to set the example of a more wholesome, as well as a more humble, mode of resigning the perishable clay to the destructive elements, I may observe, that the fact of the hindrance of the ceremony by the cause related is sufficiently authenticated by tradition; and the tradition is so far valuable, as it proves that the summers in this southern part of our island, were subject, a thousand years ago, to occasional heavy rains, in the same way as at present.” Mr. Howard has shown, by a table, that the notion commonly entertained on this subject, if put strictly to the test of experience, at any one station, in this part of the island, will be found fallacious; he, however, very justly observes, that “the opinion of the people on subjects connected with Natural History is commonly founded, in some degree, on fact or experience;” and to do justice to the popular observation in question, he states that, “in a majority of our summers, a showery period, which, with some latitude as to time and local circumstances, may be admitted to constitute daily rain for forty days, does come on about the time indicated by this tradition; not that any long space before is often so dry as to mark distinctly its commencement.”

Note 35, p.230.--The whale.

Note 35, p.230.--The whale.

Note 35, p.230.--The whale.

Did the whale know his own power, he would easily destroy all the machinery which the art of man could devise for catching him; it would be only necessary for him to swim on the surface in a straight line in order to break the thickest rope; but the fish, on being struck by the harpoon, obeys a natural instinct, which, in this instance, betrays him to his death. Sir H. Davy, in his Salmonia, observes, that the whale, not having an air-bladder, cansink to the lowest depths of the ocean, and mistaking the harpoon for the teeth of a sword-fish, or a shark, he instantly descends, this being his manner of freeing himself from these enemies, who cannot bear the pressure of a deep ocean; and from ascending and descending in small space, he thus puts himself in the power of the whaler.--SeeNote 30.

Note 36, p.235.--Progressive motion in fishes:boats impelled by paddling, rowing, &c.

Note 36, p.235.--Progressive motion in fishes:boats impelled by paddling, rowing, &c.

Note 36, p.235.--Progressive motion in fishes:

boats impelled by paddling, rowing, &c.

To render the subject to which this note refers farther intelligible, we may show the means by which a fish moves forward in the water. The accompanying diagram and demonstration are from Dr. Roget’s Bridgewater Treatise.

Diagram of fish’s motion.

The tail is the principal instrument by which the progressive motion is effected. Thus--suppose that the tail is inclined to the right; if, in this situation, the muscles of the left side, tending to bring the tail in a right line with the body, are suddenly thrown into action, the resistance of the water, by reacting against the broad surface of the tail in the direction P R, perpendicularly to that surface, will cause the muscular action to give the whole body an impulse in that direction; and the centre of gravity, C, will move onwards in the direction C B, parallel to P R. This impulse is not destroyed by the farther flexion of the tail towards the left side, because the principal force exerted by the muscles has already been expended in the motion from R to M, in bringing it to a straight line with the body; and the force which carries it on to L is much weaker, and therefore occasions a more feeble reaction. When the tail has arrived at the position L, indicated by the dotted outline, a similar action of the muscles on the right side will create a resistance and an impulse in the direction of K L, and a motion of the whole body in the same direction, C A. These impulses being repeated in quick succession, the fish moves forward in the diagonal C D, intermediate between the direction of the two forces.

Upon the same principle a boat is impelled by paddling; and the action of the rudder of a ship in turning the vessel will be readily understood. In this latter case, however, there is an additional mechanical advantage; since the point round which the vessel turns, is beyond the middle and towards the prow, and hence the force applied at the extremity of the keel acts as by an arm of a lever.

Note 37, p.236.--Flight of birds.

Note 37, p.236.--Flight of birds.

Note 37, p.236.--Flight of birds.

In appreciating the mechanical means by which a bird is enabled to direct its course, we must not omit to take into account the power it possesses of changing the position of the centre of gravity of its body, so that the reaction of the air may be modified with regard to each wing.

Note 38, p.236.--Flight of insects.

Note 38, p.236.--Flight of insects.

Note 38, p.236.--Flight of insects.

The command possessed by insects in directing and changing their course, seems more perfect even than that of birds. Many of them travel on their wings to immense distances, and, considering their comparative size, they generally move through the air with greater velocity than that of birds. Bees have been known to fly great distances from their hive, in search of food; and the silk-worm moth has travelled more than a hundred miles in a very short space of time. Many of our readers have, no doubt, noticed with surprise the apparent facility with which gnats have accompanied them, although they may have been advancing on horseback at a full gallop; and the author during the last summer has been forcibly struck with the manner in which flies and other insects have kept up with a railway carriage, alternately flying in and out of the vehicles, as though they had been at perfect rest. Some species possess a remarkable power of poising themselves in the air, and hovering for a length of time over the same spot, without falling or rising, advancing or retreating; theDragon-flyaffords a striking example of this fact.


Back to IndexNext