LEAF PRINTS.

FIG. 22.

Let us take, for instance, the making of transparencies. These are very simply made. Any moderately rapid dry plate can be used for the purpose. Every amateur becomes possessed after a time of a large number of negatives, good, bad, and indifferent. Let him carefully go through these, selecting all the printable ones and the pictures that he mostadmires. From these, transparencies can be made, either by contact, or enlarged or reduced in the camera. Persons residing in cities often have a nicely furnished room utterly marred by an unsightly outlook. Perhaps a view of chimney pots and dirty back yards. In such a case all that is necessary is to fit in place of the lower panes some neat photographs on glass, backed with thin ground-glass. These can be puttied in or they can be fitted in neat brass frames and hung up against the windows.

The craze of the present day appears to be in the direction of bright and gaudy colors, except with the more highly cultivated, who recognize the artistic value of unobtrusive colors and delicate tints. A photograph, provided it is a good one, is always to be preferred to colored pictures unless the latter are by good artists. We once constructed with a half dozen of transparencies a very neat lamp shade. Some idea of it can be obtained from Fig. 23.

FIG. 23.

A brass frame is first constructed, and any wire worker will execute this so as to hold the six or eight pictures. The transparencies are made, cut down to the size and shape required and fitted in; then ground glass of the same size and shape is fitted, small brass tabs at the back being used to keep them in their places behind the transparency. The glasses should not fit too tightly in the brass frames or, on expanding by the heat, they will crack.

A hall lamp can be treated in the same way, the colored glass removed and photographic transparencies substituted. Photos on glass can in the same way be used for a variety of other purposes, such as fire screens, candle shades, etc.

Next look up your stock of prints, scraps, waste prints, etc.

Often from a large, spoilt picture you can get a neat little bit about a couple of inches square or less; look up all these and from them a photographic chess-board can be made. Our illustration in Fig. 24 is intended to show what is meant, although our artist has not been happy in the selection of his material to represent photographic views and portraits. First mark out a square the size you wish the chess-board to be. Divide it into sixty-four squares and draw a neat border round it. Thirty-two of the squares are then neatly pasted over with selected photographs as varied as possible in subjects. Sixteen are fitted one way and sixteen the other. Our illustration is incorrect in this respect. The sixteen pictures should be placed the right way on the sixteen squares nearest to each player. When the photographs have all been pasted on and dried the whole is sized and varnished. If, however, it is desired to preserve this photographic chess-board, and at the same time to use it frequently, a better plan is to cover over with a glass plate and bind all round the edges to prevent dust from entering.

FIG. 24.

In a similar way a neat card table can be manufactured. Fig. 25 is intended to illustrate the top of the table covered with photographs and protected by a glass plate.

A little consideration will no doubt give various other similar ideas to the reader.

Those who can work the carbon process successfully have it in their power to transfer photographs in various colors to all kinds of supports, to wood for instance. The panels of a door can be very considerably improved by the insertion of photographs on fine grain wood, varnished.

FIG. 25.

Pictures can in this manner be transferred to plates, china and ornaments of every description.

Various methods of printing on silk and various fabrics have from time to time been given. Perhaps the best for our purpose is the primuline process, as various colored images can be produced, with but little trouble, on all kinds of material. A description of the process will be found in another part of this work. (See Page39.)

These the amateur can hand over to his better half or female relations, who with the natural feminine abilities will produce all sorts of pretty artistic articles for decorating the room.

We are well aware that we have by no means enumerated one half of the various means in which photography can be employed for decorating the house, but hope at least to have given the reader some idea of what its capabilities are.

FIG. 26.—LEAF PRINT. BY T. GAFFIELD.

Nothing can exceed the beauty of form and structure of the leaves of different plants. Ruskin observes: "Leaves take all kinds of strange shapes, as if to invite us to examine them. Star-shaped, heart-shaped, spear-shaped, fretted, fringed, cleft, furrowed, serrated, sinuated; in whirls, in tufts, in spires, in wreaths; endlessly expressive, deceptive, fantastic, never the same, from footstalk to blossom, they seem perpetually to tempt our watchfulness and take delight in outstripping our wonder." Photography has placed in our hands a simple method of preserving facsimiles of their ever varying shapes that will last long after the leaf has died and crumbled to dust. Although the discovery of the darkening action of silver chloride when exposed to light was discovered by Scheele as far back as 1777, little was apparently known of the possibilities attending the discovery until 1839, when FoxTalbot read a paper on "A Method of Photogenic Drawing," in which he described various experiments that could be made with paper coated with this substance, and showed many pictures of leaves, ferns, and pieces of lace which he had obtained.

FIG. 27.—LEAF PRINT. BY T. GAFFIELD.

The illustrations which we reproduce herewith are reproductions from leaf prints made by Mr. Thomas Gaffield, who has made quite a study of this fascinating pastime. In a little work entitled "Photographic Leaf Prints," published in 1869, he describes his method. The leaves and ferns are firstselected and pressed between the leaves of a book. They must not be dried, as in that state they do not so readily permit the light to pass through and the delicate structure of the leaf would not be reproduced. They should therefore only be pressed sufficiently to allow the excess of moisture to be extracted. A sheet of glass is put into the printing frame and the leaves artistically arranged. When the arrangement is satisfactory the leaves are attached to the glass with a little mucilage to prevent them from slipping out of their places. A sheet of sensitive paper, albumen, gaslight, or platinum is then inserted, the frame closed up and exposed to the light until a very dark print is obtained. The time required in printing must be found by practice; it will, of course, differ according to the intensity of the light. It is a good plan to employ an actinometer to judge the correct exposure. It is not possible to open the frame, as a double or blurred picture would result. The halves should be exposed sufficiently long to enable the light to penetrate through them and give a distinct image of the veins and structure.

When the printing is completed the paper is removed and toned and fixed in the usual manner. If platinotype or gaslight paper is used, this, of course, requires development. The resulting picture gives us a light impression of the leaves on a dark background, but if so desired, the print thus obtained can be used as a negative. It can be made transparent with wax or vaseline, and prints obtained from it giving a dark image on a white ground. It is difficult to say which picture is the more beautiful. We give illustrations of pictures of both kinds. (Figs. 26 and 27.)

Naturally enough, the beauty of these pictures lies in the careful selection and arrangement of the leaves. Those which are too thick should not be used. Delicate ones, showing all the veins by transmitted light, are the most suitable. They can be arranged artistically, in any shape or form. We prefer, however, a life-like arrangement to the construction of various shapes and designs.

By the following method anyone can, without any knowledge of drawing, produce from a photograph a pen and ink sketch suitable for reproduction as an illustration. From the negative a silver print is made on albumen or gelatine or collodion paper. This is fixed without toning in a solution of hyposulphite of soda. It must then be thoroughly washed to remove all traces of hypo, and when dry, the outlines of the photograph are traced over with a fine pen and a waterproof ink, obtainable at any artist's material store. If the photographer possesses a little knowledge of drawing, some of the shading can also be attempted. When the ink is dry the picture is immersed in a saturated solution of bichloride of mercury (poison) when the photograph will disappear, leaving the outline sketch intact. The picture is again well washed and dried. Newspaper sketches are often made from photographs in this manner, a zincotype being quickly produced from the drawing. Gaslight paper can also be used.

Photographs can be very effectively printed upon silk, satin, or other fabrics. There are several methods of accomplishing this. A simple one is the following:[2]The silk best suited for the purpose is that known as Chinese silk, and this is first washed in warm water with plentiful lather of soap, then rinse in hot water, and gradually cool until the final washing water is quite cold. Next prepare the following solutions: Tannin, 4 parts; distilled water, 100 parts. Sodium chloride, 4 parts; arrowroot, 4 parts; acetic acid, 12 parts; distilled water, 100 parts.

[2]From the "Encyclopaedic Dictionary of Photography," by the author.

[2]From the "Encyclopaedic Dictionary of Photography," by the author.

The arrowroot is mixed up into a paste with a little of the distilled water, and the remainder added boiling hot, with the acid and the salt previously dissolved in it. When the solutionis quite clear the tannin solution is added, and the whole allowed to get fairly cool. The silk is then immersed for about three minutes, being kept under without air in the folds, and then hung up to dry, or stretched out with pins on a flat board. The material is then sensitized by brushing over with the following solution: Silver nitrate, 12 parts; distilled water, 100 parts; nitric acid, 2 drops to every 3 ounces. Other methods of sensitizing are by immersing in or floating on the silver solution. After sensitizing, the material is dried by pinning on to a board to keep flat. It is then cut up as required, and printed behind the negative. Every care must be taken in printing to keep the material flat, and without wrinkles or folds. It must also be kept quite straight; otherwise, the image will be distorted. Printing is carried on in the same manner as with printing-out paper. It is then washed and toned in any toning bath. The sulphocyanide gives the best action. Fix in a 10 per cent. solution of hyposulphite of soda for ten minutes; wash and dry spontaneously. When just damp, it is ironed out flat with a not over-heated iron. Black tones can be obtained with a platinum toning bath, or with the uranium and gold toning bath, made up as follows: Gold chloride, 1 part; uranium nitrate, 1 part. Dissolved and neutralized with sodium carbonate, and then added to sodium chloride, 16 parts; sodium acetate, 16 parts; sodium phosphate, 16 parts; distilled water, 4,000 parts.

Very effective results may be made by printing with wide white margins, obtained by exposing with a non-actinic mask.

Another method is the following: Ammonium chloride, 100 grains; Iceland moss, 60 grains; water (boiling), 20 ounces.

When nearly cold this is filtered, and the silk immersed in it for about fifteen minutes. To sensitize, immerse the silk in a 20 grain solution of silver nitrate for about sixteen minutes. The silver solution should be rather acid.

Or immerse the silk in water, 1 ounce; sodium chloride, 5 grains; gelatine, 5 grains. When dry, float for thirty seconds on a 50 grain solution of silver nitrate. Dry, slightly overprint and tone in the following bath: Gold chloride, 4 grains; sodiumacetate, 2 drachms; water, 29 ounces. Keep twenty-four hours before using. Fix for twenty minutes in hypo, 4 ounces to the pint of water.

On this page we reproduce a curious photograph by M. Bracq, which appeared some time ago in thePhoto Gazette.

By M. Bracq. From Photo Gazette.FIG. 28.—A CATASTROPHE.

Despite all the terrible catastrophe which it represents, carrying pictures along with him in his fall, the subject has not experiencedthe least uneasiness, not even so much as will certainly be felt by our readers at the sight of the tumble represented.

The mode of operating in this case is very simple and we are indebted toLa Naturefor the description of the method employed by M. Bracq. The photographic apparatus being suspended at a few yards from the floor of the room, in such a way as to render the ground-glass horizontal (say between the two sides of a double ladder—a combination that permits of easy focusing and putting the plates in place), there is spread upon the floor a piece of wall paper, about 6 feet in length by 5 feet in width, at the bottom of which a wainscot has been drawn. A ladder, a few pictures, a statuette, and a bottle are so arranged as to give an observer the illusion of the wall of a room, that of a dining room for instance. A hammer, some nails, etc., are placed at the proper points. Finally, a 5 feet by 2-1/2 feet board, to which a piece of carpet, a cardboard plate, etc., have been attached, is placed under the foot of a chair, which then seems to rest upon this false floor at right angles with that of the room.

FIG. 29.

Everything being ready, the operator lies down quietly in the midst of these objects, assumes a frightened expression, and waits until the shutter announces to him that he can leave his not very painful position. This evidently is merely an example that our readers will be able to modify and vary at their will.

By means of a dye process known as the "Primuline Process," very pretty images in various colored dyes can be made upon silks, satins, cotton goods, etc. The material is firstdyed in a hot solution of primuline, made by adding about 15 to 30 grains of the dye to a gallon of hot water; a little common salt should also be added. On immersing the fabric, and stirring it about in the solution, it becomes of a primrose yellow color, when it is removed and washed under a cold-water tap. The next process is to diazotize it by immersion for half a minute or so in a cold solution of sodium nitrate, one-quarter per cent., which has been sharply acidified with hydrochloric or other acid. The material is again washed in cold water, but it must be kept in a weak light. It can be hung up to dry, in the dark, or exposed while wet beneath the object of which it is required to produce a positive reproduction. This process gives a positive from a positive, so that any ordinary picture on a sufficiently translucent material—flowers, ferns, etc.—can be reproduced. Printing requires about half a minute in the direct sunlight to half an hour or more in dull weather, or if the material to be printed through is not very transparent. The high lights become of a pale yellow, so that a faint image is perceptible; but this is made visible in almost any color by development in a weak solution (about one-fourth per cent.) of a suitable phenol or amine. The following have been found suitable:

For Red.—An alkaline solution of β-napthol.

For Maroon.—An alkaline solution of β-napthol-disulphonic acid.

For Yellow.—An alkaline solution of phenol.

For Orange.—An alkaline solution of resorcin.

Brown.—A slightly alkaline solution of pyrogallol, or a solution of phenylene-diamine-hydrochloride.

For Purple.—A solution of α-napthylamine hydrochloride.

For Blue.—A slightly acid solution of amido-β-napthol-sulphonate of sodium, now better known as "eikonogen."

If the design is to be made in several colors, this can be done by painting on the different developers, suitably thickened with starch. After developing, the material is well washed and dried. With the purple and blue developers it is necessary to wash the material finally in a weak solution of tartaricacid. Wool and silk require a longer exposure to light than other fabrics, and cannot be successfully developed with the maroon or blue developer.

AA. The sky and side light.BB. Two dark backgrounds.C. The white screen in oblique position.D. The subject.E. The camera.FIG. 30.

FIG. 31.

Silhouette portraits were at one time very popular. They are simply made, and if the effect is well carried out will afford considerable amusement. The best description of their manufacture was given some time ago by Herr E. Sturmann, inDie Photographische Korrespondenz. His method is as follows:

Place two dark backgrounds in parallel position about 4 feet from the sky and side light of the studio and distant from each other about six feet. Improvise a dark tunnel by drawing a black cloth, of non-reflecting material, over the two dark grounds, and arrange a white screen, somewhat larger than the distance between the two dark grounds, in an oblique position so as to be fully illuminated.

The subject to be silhouetted must be placed in the centre of the tunnel, one side of the face turned towards one ground, but comparatively nearer to the white screen so that the side of the face turned towards the camera is as much as possible in the shade.

FIG. 32.

Focus must be taken accurately, so that the outlines of the figure are perfectly sharp.

As it is the object to obtain a perfectly transparent, glass-clear silhouette upon an absolutely opaque ground, but a very short time of exposure is required.

Develop as usual and to secure perfect opacity intensifymore than usual. Plates of lower sensitiveness invariably give the best results. A slow plate or one made particularly for reproduction is well adapted for this kind of work. With ferrous oxalate or hydrochinon developer there is scarcely any need of intensifying.

FIG. 33.

FIG. 34.

To obviate the shadows cast upon the floor by the lower parts of the figure, place it upon a thick, large plate-glass, supported by props of five or six inches in height, and spread upon the floor under the glass a piece of white muslin. The muslin must be free of folds or wrinkles, and be so connected with the white screen, that the division line between is not reproduced upon the plate.

The very feeble shadows of the feet can be easily touched away with pencil.

Single persons or groups of two or three figures can be photographed in this peculiar style with very good effect.

For heads and busts expose in the usual manner, but to obtain silhouettes similar to those our grandmothers had cut in black paper, and long before photography was thought of, cut an appropriate mask of black paper to cover the part not wanted during printing.

FIG. 35.

It should be borne in mind that in this class of work the white background only is the object to be photographed, hence the necessity of but very short exposures. With longer exposures absolute blacks and whites are impossible.

The following is a curious and interesting experiment, based upon the peculiar property possessed by fluorescent substances of altering the refrangibility of the chemical light rays. Take a colorless solution of bisulphate of quinine, and write or draw with it on a piece of white paper. When dry the writing or design will be invisible, but a photograph made of it will show them very nearly black.

Get a glass-blower to make an ordinary shaped wine-bottle of very thin and clear glass, and clean it well. Next take the white of two eggs and add to it 29 grains of ammoniumchloride dissolved in 1 drachm of spirits of wine, and one-half ounce of water. Beat this mixture into a thick froth and then allow it to stand and settle. Filter through a tuft of cotton-wool, and pour into the specially made bottle. By twisting the bottle round, an even layer of the solution will deposit itself on the sides. Pour off the remaining solution, allow the film in the bottle to dry, and again repeat the operation.

The next operation is to sensitize the film with a solution of nitrate of silver, 40 grains to 1 ounce of water. Pour this in and turn the bottle round for a few minutes, then pour off the superfluous solution and again dry. Hold the neck of the bottle for a few seconds over another bottle containing ammonia, so as to allow the fumes to enter it. Printing is the next operation; this is accomplished by tying a film negative round the bottle, and covering up all the other parts from the light. Print very deeply, keeping the bottle turning round all the time. Toning, fixing, and washing can be done in the ordinary way by filling the bottle up with the different solutions. The effect is very curious, and can be improved by coating the inside of the bottle with white enamel.

These can be produced by what is known as the powder or dusting-on process. The principle of the process is this: An organic, tacky substance is sensitized with potassium bichromate, and exposed under a reversed positive to the action of light. All the parts acted upon become hard, the stickiness disappearing according to the strength of the light action, while those parts protected by the darker parts of the positive retain their adhesiveness. If a colored powder be dusted over, it will be understood that it will adhere to the sticky parts only, forming a complete reproduction of the positive printed form. Prepare—Dextrine, one-half ounce; grape sugar, one-half ounce; bichromate of potash, one-half ounce; water, one-half pint: or saturated solution bichromate of ammonia, 5drachms; honey, 3 drachms; albumen, 3 drachms; distilled water, 20 to 30 drachms.

Filter, and coat clean glass plates with this solution, and dry with a gentle heat over a spirit lamp. While still warm the plate is exposed under a positive transparency for from two to five minutes in sunlight, or from ten to twenty minutes in diffused light. On removing from the printing frame, the plate is laid for a few minutes in the dark in a damp place to absorb a little moisture. The next process is the dusting on. For a black image Siberian graphite is used, spread over with a soft flat brush. Any colored powder can be used, giving images in different colors. When fully developed the excess of powder is dusted off and the film coated with collodion. It is then well washed to remove the bichromate salt. The film can, if desired, be detached and transferred to ivory, wood, or any other support.

If a black support be used, a ferrotype plate on Japanned wood, for instance, pictures can be made from a negative, but in this case a light colored powder must be used. The Japanese have lately succeeded in making some very beautiful pictures in this manner. Wood is coated over with that black enamel for which they are so famous, and pictures made upon it in this manner. They use a gold or silver powder.

With this process an almost endless variety of effects can be obtained. For instance, luminous powder can be employed and an image produced which is visible in the dark.

Some time ago we suggested a plan of making what might be termed "post-mortem" photographs of cremated friends and relations. A plate is prepared from a negative of the dead person in the manner described, and the ashes dusted over. They will adhere to the parts unexposed to light, and a portrait is obtained composed entirely of the person it represents, or rather what is left of him. The idea is not particularly a brilliant one, nor do we desire to claim any credit for it, but we give it here for the benefit of those morbid individuals who delight in sensationalism, and who purchase and treasure up pieces of the rope used by the hangman.

A method of making a photograph which can be made to appear at will is thus described inLes Recreations Photographiques.

Take a convex watch crystal, V, or any similar larger glass if desired—for instance, those used for colored photographs; clean the glass well, place it perfectly level, convex side down, and fill it even full with a mixture of white wax and hog's lard. When it has solidified, apply to the back a flat glass plate, P, cut exactly to the largest dimensions of the convex glass, secure the glasses together with a strip, B, of gold-beater's skin, fastened by strong glue as shown in the figure. Now mount a portrait, with the front towards the convex glass, on the plate P. The combination is now ready; by heating it the wax between the two glasses melts and becomes transparent, allowing the portrait to be seen; on cooling it will lose its transparence and the portrait will disappear.

FIG. 36.

If an object be placed against a non-actinic background and an exposure made, the black parts surrounding it will not have any effect upon the plate, and the object can be shifted to another part and another exposure made. In a recent article published inLa Nature, and translated in theScientific American, a number of curious effects obtained by photography by M. R. Riccart, of Sainte-Foix-les-Lyons, are described and illustrated.

FIG. 37.—A DECAPITATION.

The system employed by the author of these photographs is that of the natural black background obtained through the open door of a dark room, combined with diaphragms skillfullyarranged in the interior of the apparatus, between the objective and sensitized plate. This is the surest method of obtaining the desired effect with the greatest precision, without the junctions being visible, and with perfect sharpness in the cutting of the parts removed. For this effect, it is necessary to place the diaphragm at three or four centimeters from the ground glass, in the last folds of the bellows of the camera.

FIG. 38.—ANOTHER DECAPITATION.

The following are a few data as to the manner in which the scenes that we reproduce were obtained. The first, representing a decapitation by means of a saber (Fig. 37), was taken by means of an exposure in which the head was placed upon the block, the subject inclining forward upon his knees, and adiaphragm, occupying about two-thirds of the plate, completely masking the body up to the neck. Then, without changing the position of the apparatus, the diaphragm was placed on the other side in order to conceal the head, and the body was photographed in the second position along with the person representing the executioner. It would have been possible, by a third exposure, to so arrange things as to make the executioner the decapitated person. It was by the same process that the three following scenes were obtained: A person with his head placed before him in a plate (Fig. 38); a man carrying his head in a wheelbarrow (Fig. 39); and a person to whom his own head is served in a plate (Fig. 40). Such scenes may be varied to any extent. Fig. 41 is a photograph of a decapitation, while Fig. 42 is made by two exposures of an individual at different distances but so combined as to give the appearance of one exposure. Fig. 43 is that of a person in a bottle. The individual represented wasfirst photographed on a sufficiently reduced scale to allow him to enter the bottle. This exposure was by using a screen containing an aperture, as for the Russian background. But this precaution was taken merely to conceal the floor, and yet it would perhaps be preferable in such a case to have the subject stand upon a stool covered with a very black fabric. However this may be, when once the first impression has been made, there is nothing more to be done than to photograph the bottle on a larger scale and the result is obtained.

FIG. 39.—THE HEAD IN THE WHEELBARROW

FIG. 40.—THE HEAD UPON A PLATE.

There are three principal methods of copying mechanical drawings, tracings, sketches, etc. These are: (1) A process to obtain white lines upon a blue ground; (2) a process by which blue lines upon a white ground are obtained; and (3) a process giving black or violet-black lines upon a white ground.

FIG. 41.—THE SAWED-OFF HEAD.

The first process is undoubtedly the simplest, as after printing upon the paper it is developed and fixed by simple immersion in cold water; but, at the same time, the white lines on the blue ground are not so clear and effective as the other processes. The cyanotype paper, as it is called, can beobtained ready for use at any draughtsman's stores, but if you prefer to make it yourself, here is the recipe: Two solutions are made—20 parts of red prussiate of potash are dissolved in 100 parts of water, and 10 parts of ammonio-citrate of iron in 60 parts of water. These two solutions should be mixed together immediately before using, and the operation must be performed in the dark. Paper is floated on this solution, or applied with a broad camels-hair brush, and hung up to dry. If it is well dried and carefully preserved from light, moisture and air, this paper will keep for some time. After printing—which, when sufficient, should show the lines copied of a yellow color upon a blue ground—the prints should be washed in several waters, and if a few drops of chlorinewater or dilute hydrochloric acid be added to the washing water, the blue ground will appear much darker and the lines rendered clearer and whiter. The commercial paper sold is generally prepared by this method.

FIG. 42.—THE REDUCTION.

FIG. 43.—MAN IN A BOTTLE.

Blue prints may be given a black tone by plunging them into a solution of 4 parts of caustic potash in 100 parts of water; then, when the blue color has entirely disappeared under the action of the potash, and a yellowish color has taken its place, they are immersed in a solution of 4 parts of tannin in 100 parts of water; then washing them again, we obtain prints whose tone may be assimilated to that of pale writing ink.

In the process giving blue lines upon a white ground, it is necessary that the action of the light shall be to convert theiron compound into one that can be discharged from instead of being fixed on the paper, so that we obtain a positive from a positive. Abney describes the process as follows: Thirty volumes of gum solution (water 5 parts, gum 1 part) are mixed with 8 volumes of a citrate of iron and ammonia solution (water 2 parts, double citrate 1 part), and to this is added 5 volumes of a solution of ferric chloride (water 2 parts, ferric chloride 1 part). This solution thus formed is limpid at first, but will gradually become thicker, and should be used soon after mixing. It is then applied with a brush to the paper (which should be well sized) and dried in the dark. Exposure is accomplished in a few minutes, the paper being placed under the drawing in the printing frame. It is then developed with potassium ferrocyanide, 50 grains, water 1 ounce, applied with a brush until all the details appear of a dark-blue color. The print is then rapidly rinsed, and placed in a dish containing the clearing solution, made of 1 ounce of hydrochloric acid and 10 ounces of water.

The third process, which gives violet-black lines on a white ground, is the following: Make up the sensitive solution with water, 16 ounces; gelatine, 4 drachms; perchloride of iron (in a syrup condition), 1 ounce; tartaric acid, 1 ounce; sulphate of iron, 4 drachms. The paper is floated on or brushed over with this and dried. The exposure is about the same as with the last process. When sufficient, the greenish-yellow color will turn white, except the lines, which should be somewhat dark. The developing solution is composed of 1 part of gallic acid in 10 parts of alcohol and 50 of water. When immersed in this solution the lines will turn blacker. The finish is then made by thoroughly washing in water.

These are obtained as follows: A sheet of paper is coated with a ten per cent solution of gelatine, and when dry this is floated on a ten per cent solution of bichromate of potash. Again dry and expose beneath a positive transparency. The print thus obtained is then immersed in a ten per cent solution of chloride of cobalt. The parts unacted upon by light will absorb the solution. Wash and dry. We then have a faint image which will alter its color according to the state of the atmosphere. In damp weather it will be almost if not entirely invisible, but when the weather is fine and dry, or if the image be heated before a fire it will turn to a bright blue color.

Some time ago dry-plates were placed on the market which would develop, apparently, with water and a little ammonia only. The secret of the method was that the backs of the plates were coated with a soluble gum, containing the developing agents, and, of course, when the plate was immersed in the water, they instantly dissolved and formed the developer. Plates thus prepared are useful in traveling where it is not always possible to get the necessary developing solutions. To prepare them the backs are coated with the following mixture:

Pyrogallic acid154grainsSalicylic acid15grainsGum or dextrine154grainsAlcohol1fluid dr.Water5fluid dr.

This is allowed to dry at an ordinary temperature. After exposure, all that is necessary to develop is to immerse the plates in water containing a small quantity of ammonia.

There are quite a number of different methods of making caricature portraits. A simple one is to make two photographs of an individual, one of the head alone and another of the entire body on a much smaller scale. From these two negatives prints are made, and the larger head is cut out and pasted on the shoulders of the full length figure. Any signs of the cutting out are removed by the use of a brush and a little coloring matter. From this combined print another negative is made so that any number of these caricature prints can be made without extra trouble. The effect is shown in Fig. 44.

From Tissandier's Handbook. FIG. 44.—CARICATURE PORTRAIT.

Foregrounds for making caricature portraits are sold in this country. The method of using them is shown in Fig. 45.The card containing the grotesque drawing is held by the sitter on his knees and arranged by the photographer in such a way that his head rests just above the neck of the painted body. A white background is arranged behind and when the negative is made all traces of the edges of the foreground are removed by careful re-touching.

FIG. 45.—CARICATURE

FIG. 46.—MAKING THE CARICATURE PORTRAIT.

Another method of obtaining grotesque caricature portraits has been devised by M. Ducos du Hauron. His apparatus, which he calls "La Photographie Transformiste," is thus described by Schnauss in his "Photographic Pastimes." A, Fig. 47, is the front of the box, which is furnished with an exposing shutter formed of a simple sliding piece fitting into the grooves R R, R R. B P are two screens pierced with slitsa a,c c. C is the rear end of the box where the dark slide is placed. D is the lid of the box, which is lifted either for placing the slotted screens or for putting in the sensitive plate.When not working direct from nature, the transparency is placed in the grooves R R, R R, at A.

FIG. 47.—THE HAURON "TRANSFORMISTE."

FIG. 48.—PHOTOGRAPH AND DISTORTIONS WITH THE "TRANSFORMISTE."

According to the arrangement of the slits, the caricatures obtained will be different. If, for instance, the first slit be a vertical one, and the other,i.e., the one nearest the picture, a horizontal one, the picture, in comparison with the original, willbe distorted lengthwise. If, however, one of the slits forms no straight line, but a curved one, the transformed picture will show either lengthwise or sideways curved lines, according to the slit being a vertical or a horizontal one. The form of the resulting picture will also be different according to which one of the slotted plates is placed more or less obliquely in the box.


Back to IndexNext